
[PKS08] Konstantin Pussep, Aleksandra Kovacevic, Ralf Steinmetz; On NAT Traversal in Peer-to-
Peer Applications. In: IEEE: WETICE Collaborative Peer-to-Peer Systems Workshop
(COPS108), June 2008.

On NAT Traversal in Peer-to-Peer Applications

Konstantin Pussep, Matthias Weinert, Aleksandra Kovacevic and Ralf Steinmetz
Multimedia Communications Lab, TU Darmstadt
{pussep, sandra, Steinmetz) @ kom.tu-dannstadt.de

Abstract can be added later on.

A widely used technique to overcome the shortage of
unique public IP addresses is Network Address Translation
(NAT), which hides several hosts behind a single public ad-
dress. This method works smoothly with client-server archi-
tectures; however; it causes severe problems with the peer-
to-peer (p2p) communication paradigm. Due to the side
effects of NA?: the establishing connection is made possible
only by using special NAT traversal techniques. This paper
presents a lightweight framework for NAT traversal, which
smoothly integrates with p2p applications. The framework
can be easily used by most p2p applications, is extensible
und does not require additional maintenance overhead.

1. Introduction

Network Address Translation (NAT) devices introduce a
severe problem for peer-to-peer Systems, since every peer
should be able to contact the other peers in order to use
their services. For example, in a Distributed Hash Ta-
ble (DHT) [3, 71 the peers hidden behind NAT cannot be
easily accessed by other peers and therefore cannot con-
tribute to the DHT routing. Unfortunately, p2p applications
have to deal with the majority of users being hidden behind
NAT [8].

Only special NAT traversal techniques make these con-
nections to hidden hosts possible. However, the success rate
of different techniques depend on the NAT device used and
the implementation is complex. Most of the NAT traversal
solution are either part of proprietary applications or nested
in the application code. More general approaches [2] or [I]
are application domain specific or not light-weight. Other
approaches, e.g. [6], [5], do not provide all the functional-
ity required for a p2p application.

In this paper we present a simple yet extensible solution
for NAT traversal for p2p applications. The solution is sim-
ple in the sense that it does not incur additional maintenance
overhead and can be ernployed by any p2p application. Fur-
thermore, it is extensible in that new traversal techniques

2. Background

Handling of NAT devices is complex because different
implementations show different behavior. If a NAT device
forwards an initial message from a host inside the intemal
network to an extemal host, a mapping is created that en-
ables the device to fonvard later answers to the correct in-
ternal machine. Depending on the type of the NAT imple-
mentation, this mapping contains different information [4].

While such mechanisms like port fonvarding and UPnP
could solve the NAT traversal in a reliable way they must be
provided at the User side and the developer of a p2p applica-
tion cannot rely on their existence. Other techniques can be
implemented by an application itself, for example, connec-
tion reversal, hole punching and relaying (as fallback). All
these techniques are discussed in detail in the long version
of this paper [4].

3. Framework

In addition to the low maintenance overhead, a flexible
NAT traversal framework has to offer a simple API and be
extensible to Support an easy integration of new NAT traver-
sal mechanisms. We assume that each instance of the client
application has a globally unique identiiier. If an instance
cannot be reached directly, our framework uses this ID to
distinguish multiple hosts with the same public IP address.
For example, in a DHT each peer already has a unique ID
that can be reused. Further, the framework can ask the ap-
plication instance for possible relay hosts for the peer with
a given ID. If the application cannot provide a potential re-
lay peer, the framework can make use of public relay hosts.
This is done to avoid maintenance overhead for an addi-
tional overlay. Many p2p applications, such as DHTs or
BitTorrent already know peers able to coordinate the NAT
traversal process.

Our framework is implemented in Java and make use of
Java New 10. The framework architecture is shown in Fig-
ure 1. Application developers need to use the NAT subsys-

Figure 1. Framework architecture

requestTCPChannel(PeerHandle h): SocketChannel
requestUDPChannel(PeerHandle h): DatagramChannel

I r e ~ i s t e r ~ h a n n e l (~ e ~ v ~ r ~ w k e t ~ h a n n e l C)

(a) Design oC the IConnectionBroker

I g e t ~ e l a y ~ o s t s ~ o r (~ e e r ~ a n d l e h): DatagramChannel I
(b) Design of the IApplicationCallback

Figure 2. Interfaces

tern in order to use the NAT traversal mechanisms. This sub-
system provides the application with standard java . nio
channels which are used to perform the real U 0 operations.
The NAT subsystern uses the j ava . n io and the Cornrnu-
nication Subsystem. It contains the components that enable
clients of the framework to establish connections with peers
behind NAT devices. Finally, the Cornrnunication Sub-
system provides functionality to establish a message-based
communication between peers.

The main interface exposed to the application is the
IConnectionBroker as presented in Figure 2(a). The first
two methods allow the establishment of a channel to a given
peer. This peer is specified by the PeerHanclle interface that
contains the peer's address and ID. The two registerlhan-
nel methods give application developers the capability to
inform the framework that a given channel can be used for
signaling. Such a channel can be used to coordinate NAT
traversal actions or can be the target of relayed communica-
tion. Possible Parameters are UDP channels and TCP server
chamels.

The second interface shown in Figure 2(b) is the IAppli-
cationCallback which has to be implemented by the appli-
cation developer. The method getOwnPeerID() returns the
TD of the local application instance. The traffic generated
by the NAT subsystem, for example punch requests, will in-
clude this ID to prevent confusion when several peers share
the same public IP address. The second method requests all
known peers who might act as a relay for a target peer.

NAT traversal techniques have to be implemented as spe-
cial strategies specifying how to establish communication.
In this Paper, we implemented the following techniques:
connection reversal, UDP hole punching, and relaying as a

fallback solution. For the reasons discussed in Section 2 we
skipped TCP hole punching and UPnP. Upon an application
request the framework selects the most promising traversal
strategy according to the NAT status of the involved peers.
As several strategies may be possible, the order in which
these techniques are deployed is defined by their priorities.
The technique with the highest priority starts to process the
request; if it fails, the next technique will be invoked. Once
a valid result is retumed, the connection is established and
peers exchange data transparently, i.e. unaware of the NAT
devices in between.

In order to evaluate our framework we developed an in-
stant mcssengcr with a filc transfer function. Thc applica-
tion relies on our framework for NAT traversal. We tested
the NAT traversal in two fixed environments, one with vir-
tual machines and one with real Intemet hosts. In both cases
some peers were hidden behind a NAT while other were
publicly available. The framework proved able to find a
suitable mechanism for each scenario, while in some setups
(TCP connection with both peers behind different NATs) it
had to resort to relaying with a third peer acting as a relay.

4. Conclusion

In this work we pointed out the connectivity problem re-
sulting from the need to establish communication with peers
behind NAT devices. We presented a lightweight solution
that has been shown capable of providing an easy way to
integrate NAT traversal functionality into p2p applications.
Currently, we are integrating this framework in a file shar-
ing application for collaborative communities.

References

[I] Jxta project. http://www.jxta.org.
[2] Google. Libjingle. http: //code . google . com/p/

lib jingle/.
[3] P. Maymounkov and D. Mazikres. Kademlia: A peer-to-peer

information system based on the XOR metric. In IPTPS,
2002.

[4] K. hssep, M. Weinert, N. Liebau, and R. Steinmetz. Flex-
ible framework for nat traversal in peer-to-peer applications.
Technical report, TU Darmstadf Nov 2007.

[5] J. Rosenberg, R. Mahy, and C. Huitema. Traversal Using Re-
lay NAT (TURN), 2005. http: //www. jdrosen .net/
papers/draft-rosenberg-midcom-turn-08.
txt.

[6] J. Rosenberg et al. Stun-simple traversal of user datagram
protocol (udp) through network address translators (nats).
RFC3489, March, 2003.

[7] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
Systems. In Middleware, 2001.

[8] M. Zhang et al. Large-scale live media streaming over peer-
to-peer networks through global internet. In PZMS, 2005.

