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Abstract

Network Calculus is a system theory for deterministic queueing systems. The min—plus
convolution is an operation that is used for computations in network calculus. But until
now there are few results on computing this convolution efficiently. Being able to do
this is of great importance in order to make the application of network calculus more
widespread. Therefore, this issue is targeted in this report. We give a brief overview
over the basics of network calculus, introducing some basic operations in the min—plus
algebra. Then transforms used to compute the classical convolution in the usual algebra
are reviewed and basic results are listed. In the following we attempt to derive similar
results for the min—plus convolution. We make use of the Fenchel transform, a tool used
in convex analysis.

Finally, we make use of the property, that in network calculus one usually deals with
piecewise linear functions. For convex functions good results exist. Since there are
very few results in the nonconvex case, we first analyse these by a brute force method,
before pointing out the general equation for a certain type of functions, which are often
encountered in Network Calculus.






1 Introduction

Improving Quality of Service (QoS) in the Internet has become a significant issue in
recent years. The most common QoS architectures are Integrated Services [3] and Dif-
ferentiated Services [1].

For modelling and evaluating QoS enabled networks, there is a concept that begins to
gain more and more importance in judging and improving network performance. This
tool is referred to as network calculus. It is a more theoretical (and systematical) ap-
proach that tries to apply methods known from classical system theory to computer
networks. The first concepts of network calculus were developed in a series of papers by
Cruz, essentially in [5] and [6].

In [2] the study of network caculus is motivated as follows:

”Network Calculus is a set of recent developments that provide deep insights into flow
problems encountered in networking. The foundation of network calculus lies in the
mathematical theory of dioids, and in particular the Min-Plus dioid, which is also known
as Min-Plus algebra. With network calculus, we are able to understand some fundamen-
tal properties of integrated services networks, window flow control, scheduling and buffer
or delay dimensioning.”

Network calculus is a theory of deterministic queueing systems found in computer net-
works. It can also be viewed as the system theory that applies to computer networks.
The main difference with traditional system theory, as the one that was so successfully
applied to design electronic circuits, is that here we consider another algebra, namely
the Min-Plus algebra.

As in conventional system theory, one can define a convolution on this algebra, which
turns out to be very helpful in theory. Investigating this so called min—plus convolution
is subject of this report.

This report is outlined as follows. We first give an introduction to Network Calculus,
Min-plus Algebra, and some transforms from conventional system theory. This is fol-
lowed by a review of some related work and pointing out of some existing result. We
then describe our ideas and approaches. Finally, we analyse a special case often en-
countered in Network Calculus and develop a general equation to calculate its min—plus
convolution.



1.1 Network Calculus Basics

The following definitions are taken out of [2].
Input and output functions

Definition: R(t) is called an input function, if R(0) = 0 and R is wide—sense increasing,
that is for all ¢; < ¢, holds R(t;) < R(t2).
R(t) denotes the number of bits arriving in the interval [0,¢]. The time ¢ and R(t) can

either be discrete or continuous. If both ¢ and R(t) are continuous, we say we have a
fluid model. There are mappings between continuous and discrete time models.

Definition: R°(t) is called an output function for a system S, if it cumulates the output
(in bits) of S in the interval [0,¢] for all ¢ > 0.

In this definition S might be a single buffer, a network node or a complete network. As
above, t and R°(t) may be discrete or continuous.

For a system S it should (obviously) hold R°(¢) < R(t); this assumptions implies in
particular that we have a lossless system without routing loops.

Arrival curves

We want to formulate necessary conditions for service guarantees. One approach is to
place constraints on the arrival process of flows. Enforcing this constraint is called traffic
requlation. In order to abstract from a specific traffic regulation algorithm we introduce
the concept of arrival curves.

Definition: A wide-sense increasing function « is called an arrival curve for an input
function R(t), if a(t) =0 for t < 0 and for ¢ > 0

R(t) — R(t — s) < a(s) Vo<s<t

holds. We also say R is a—smooth or R is constrained by «.

Service curves

Arrival curves constrain the flow arrival process. To offer guarantees on flow characte-
ristics such as maximum delay, throughput or zero loss network nodes need to allocate
capacity to flows. An important mechanism here is the scheduling strategy. In order to
abstract from a specific packet scheduling discipline we introduce the concept of service
curves.

Definition: Consider a system S and a flow through S with input function R and
output function R°. We say S offers a service curve 8 to the flow, if S is wide—sense
increasing and

R°>R®p

Here the operation ® denotes the min—plus convolution in the Min-Plus algebra.
An important observation is theorem 1.4.6 in [2]:



Theorem 1.4.6 Assume a flow traverses systems S; and Sy in sequence. Assume S;
offers a service curve (3;, 1 = 1,2 to the flow. Then the concatenation of the two systems
offers a service curve of 31 ® S5 to the flow.

1.2 Min—plus Algebra

The standard algebra is defined on the triple (R, +,-). In contrast, the min—plus algebra
is defined on the triple (R U oo, min, +), or (R U oo, ®,®) with & = min and ® = - .
One can show, that the min—plus algebra is a dioid or a semi—ring. That is we have

e closure of @:

Va,be RUoo = a®b=min{a,b} e RUoo

e associativity of &:

(a ®b) ® ¢ = min{min{a, b}, ¢} = min{a, min{b, c}} = a @ (b ¢)

e existence of a zero element for ®:

Va € RU oo = a ® oo = min{a,0} =a

e idempotency of min:

Va e RUoo = min{a, e} = min{a}

e commutativity of @:

Va,be RUoo = a® b=min{a,b} = min{b,a} =bBa

e associativity of ®

e absorption of zero element for ®

e neutral elemet for ®

e distributivity of © with respect to ®

These characteristics define a commutative dioid.



The min—plus algebra is different from the algebra we are used to. We will illustrate this
with a few examples:

1. We are used to having a unique inverse operation with respect to the common
addition:
adb=c

With the interpretation of & = +, we get b = ¢ — a, which is obviously the unique
solution. In the min—plus algebra we interpret @ as min, so the above equation
reads

min{a, b} = ¢

There are various cases for the choice of b, assuming a and c are given. For
simplicity, we show the effects chosing different numbers for a and c.

a) a = 1 and ¢ = 0. In this case b is uniquely determined, if equality should
hold: b =0 =c.

b) a = —1 and ¢ = 0. In this case a solution to the equation does not exist, no
matter if we chose b > a or b < a!

¢) a=0and ¢ = 0. In this case we can take b > 0 = q, yielding infinitely many
solutions to the equation. This can be fixed by taking the smallest b that
satisfies the equation. In this case we would take b = 0. b is referred to as
smallest approximation from above.

The latter argument can be extended to much more general equations and even
systems of equations, where one can define a solution operator as the greatest lower
bound or the least upper bound; we won’t need these operators in this paper, so
for details please refer to e.g. [7].

2. In the conventional algebra we have

ada=2a
that is @ + @ = 2a. In the min—plus algebra we have by the idempotency of the
addition:

a®a=a
Furthermore consider the formula

a®(20a)
In the conventional sense, that is with & = 4+ and ® = -, we have

a+2-a=3a

If we take & = min and ® = 4+, we have
a® (20 a) =min{a,a+2} =a

which is in general not equal to 3a.



3. In the min—plus algebra expressions of the form
box™, m €N

(with 2™ = 2 ®...® x) can be understood as piecewise linear functions in the

m—times
conventional sense, since ® = + :

boxz"=m-z+0b

This is a helpful interpreation, if we want to investigate a power-series in one
variable in the min—plus algebra. Geometrically (in two space dimensions) we can
easily evaluate expressions like

f(z) = 69 a; ® '
i€l

if I is a finite set, a; € R. We simply draw the piecewise affine functions 7 - x + a;
and determine the minimum at each point z € R.

Remark 1.1 Convexity will prove to be very helpful for us; its formal definition
is postponed to the next chapter. We just note that it is immediately clear that f
can not be convex.

We hope that the examples just given suffice to show that one has to get used to the
min-plus algebra and that easy computations in the conventional algebra do not carry
over immediately to the min—plus algebra!

Min—plus convolution
We want to define a convolution for special functions f : R — R. Let

F:={f:R—=R|supp(f) SRS, f(t1) < f(ts) Vi1 <to}

denote the set of nonnegative wide-sense increasing functions. Then define for f,g € F
and ¢ > 0 the min—plus convolution by

©:FxFaF  (fog))= inf (f(t-3)+g(s))
The min—plus convolution has the following properties, as is shown in [2]:

Let f,g,h € F.

e closure
(f®g) eF

e associativity
(feg)®@h=f®(9®h)



e zero element for min is absorbing for ®
fQe=c¢€
with €(t) = 400 for t > 0 and €(¢) = 0 otherwise.
e existence of a neutral element
f®d=f
with y(t) = oo for t > 0, dy(t) = 0 otherwise.

e commutativity

f®g=g®f

e distributivity with respect to min

(fog)@h=(f@h)&(fdh)

e invariance to addition of a constant
For any K € R* we have

f[+K)®g=(f®g9) +K

Further one can show that (F, min, ®) is a dioid and ® is a linear operation on (R, min, +) =
(R, &, ®).

1.3 Laplace and Fourier Transform

A basic operation in system theory is the convolution of functions f and g, which for
t € R is defined as

(f®g)t) == / f(t—s)-g(s) ds

In the min-plus algebra the conventional addition is substituted by the min-operator
and the conventional multiplication by the conventional addition. Being vauge mathe-
matically, one can few the integral as an infinite sum:

/Rf(t— s)-g(s)ds Yy f(t—s)-g(s) = (ft—s) @ g(s))

seER seER

Interpreting the operations @ and ® in the Min-Plus Algebra yields

(f *9)(t) == min{f(t — s) + g(s)} (1.0)



In (1.0) we realize the min—plus convolution.

One important operation in classical system theory is the fourier transformation, which
makes the computation of the conventional convolution more pleasant.

Being more precise, we take into consideration the following results taken from [10]:

The Laplace Transformation for a function f is given by

= /_ : ft)e *tdt

for those s € C, for which the integral converges. The set
R(f) = {s € C| L))l < o0}

is referred to as region of convergence.
The Laplace transform is a linear operation, that is for s € R(f) N R(g) and a,b € C we
have

Lla-f+b-9)(s)=a-L(f)(s)+b-L(g)(s)

The conventional convolution of two functions f, g is given by
Fon=[ fr)-ge-r)ir

Now the Laplace transformation yields

L(f©g)(s) = L()(s) - L(g)(s)

The Fourier Transformation of a function f is defined as

= / h f(t)e ¥t dt

This is a special case of the Laplace Transformation; one simply has to take s = j - w.
We have for the Fourier Transform

Z(f®g)w) =7(f)w)-Z(9)(w)

The Fourier transform turns the complicated computation of the convolution into a mul-
tiplication of the Fourier transforms of f and ¢g. Hence we reduced the complexity of
computing the convolution, provided that we can compute #(f) and #(g) rather easily
and that there is an inverse .Z 1.

We are trying to find a transformation for the min—plus convolution, that posesses simi-
lar properties.
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2 Related Work

2.1 A Brief Literature Review

This paper was motivated mainly by the study of [2]. The min—plus convolution is intro-
duced there as an important tool in network calculus. In a few examples its computation
is illustrated in the above book.

The min—plus convolution is a natural tool in network calculus and is employed in many
ways. It is used in [2] e.g. to derive bounds on the throughput and delay for various
kinds of traffic (e.g. VBR and CBR); it also has its applications in the discussion and
description of traffic shapers.

[4] analyzes network calculus from a different point of view. The main consideration
there involves network calculus using filters.

In [7] one can find (to our knowledge) the most general treatment on the min—plus
algebra. Equations and systems of equations in the min—plus algebra are treated there,
as well as power series in one and two variables in a special algebra, based on the min—
plus algebra. We tried to follow some ideas by introducing and briefly discussing the
construction of a transformation k4, which (for appropriate choice of g) becomes a power
series in one respectively two variables. This construction can be found in section 3.10.
In [9] one can find a discussion on modeling discrete event time systems, e.g. how
equations are derived from Petri-nets and how their solution can be computed. In
particular, the ['— Transform of a series in the max-plus algebra is defined. We tried to
transfer some ideas, but it did not work for our purposes.

As opposed to [9] this paper does not discuss system theory or the solution of equations
in the min—plus algebra. It is solely devoted to the study of the (efficient) computation
of the min—plus convolution and the properties the convolution posesses.

2.2 Some Existing Results

In [2], chapter 3 one can find the following.
Concave, Convex and star—shaped functions
Let 0 <A< 1.
1. A function f: D C R* — R is convez if and only if for all z,y € D

fQz+ (1= Ay) <Af(z) + (1 -2 f(y) (2.0)
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2. A function f: D C R* — R is concave if and only if — f is convex.

3. A function f € F is star-shaped if and only if for all ¢ > 0 the function f(¢)/t is
wide—sense increasing.

For concave and convex functions the min—plus convolution has the following properties,
confirm [2], Theorem 3.1.6:
Let f,g € F.

o If f(0) = ¢(0) =0 then f ® g < inf{f,g}. Moreover, if f and g are star-shaped,
then f ® g = inf{f, g}.

e If f and g are convex then f® g is convex. In particular if f and g are convex and
piecewise linear, f ® g is obtained by putting end-to-end different linear pieces of
f and g, sorted by increasing slopes.

Remark 2.1 The above result seems promising, since in some cases one can find an
easy formula for computing the min—plus convolution. In network calculus one uses
certain classes of functions, in particular piecewise linear ones. It turns out that the
above results do not need to apply to piecewise linear functions.

1. All linear functions are convex! This is obvious, since for a linear function f we
have

f=m-xz+b
for some m, b € R and one easily checks the definition:

fAz+(1=XNy) = m-(Ax+(1=Ny)+b
= Am-z+b)+(1-XN(m-y+0)

But linear functions are not star-shaped in general: Take for example m,b > 0,

then ©
)
PR

This is not wide—sense increasing in ¢.

2. Piecewise linear functions do not have to be convex or concave. Consider for
example for U > T > 0

0 z < T
f(z) = m-(z-T) T < z < U
n-(x—U)+mU-T) U < x

If n > m, the function is convex. This can either be checked by definition (2.0)
or by another (equivalent) characterization of convexity introduced in the next

12



chapter. For n < m the function is neither convex nor concave.
Further we can investigate the quotient

0 r < 0
M = m — mTT T <z < U
z n— nU—m(U-T) U < =x

For example, if n > 0 and nU — m(U — T') < 0 this is not wide—sense increasing
in x and thus not star—shaped.

13
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3 Our ldeas and Approaches

The first ideas were devolped during the study of [7]. In particular we were interested
in the max—plus algebra and its diod—structure. We tried to map the ideas presented in
chapter 5 on ” Two—Dimensional Domain Description of Event Graphs ” to our situa-
tion, but that did not work well. In chapter 6 we then found out that inf-convolutions
are converted into pointwise conventional additions by the Fenchel-Transform, a tool
used in convex analysis. This led us to the study of [8]. Furthermore this approach
seemed promising, since for linear functions, which are a subclass of convex functions,
one already found methods for computing the min—plus convolution more efficiently.

3.1 Basics in Convex Analysis

Unless otherwise stated, the definitions, claims, propositions and proofs appearing in
this section are all taken out of chapter one in [§].

Definition 3.1 Let I be a nonempty interval of R. A function f : I — R is said to be
conver on I when

flaz+ (1 -a)y) <af(z)+ (1 -a)f(y)
for all pairs of points (z,y) in I and all a € (0,1).
It is said to be strictly convex when strict inequality holds, if z # y.
Definition 3.2 The epigraph of a function f: D — R is
epi f == {(z,r) |z € D,r > f(2)}

So the epigraph of f is "everything that lies above the graph of f”.
Now we can define convexity of a function f again in terms of the epigraph.

Definition 3.3 Let I be a nonempty interval of R. A function f : I — R is convex on
I if and only if epi f is a convex subset of R2.

Remark 3.4 Due to this definition we can easily check the convexity of a piecewise
linear function; we simply have to decide if epi f is convex. Therefore we recall:

A convex subset C' C R? is a set, such that, if the points z and y are in C, then the
segment joining x and y is also in C.

15



Claim 3.5 Let f and g be convex and set for all x € R
h(z) = inf{f(y) + 9(z —y) | y € R} = (f ® g)(=)
If there exist two real numbers sy and ry such that for all x € R
f(@) = s0x—10  g(x) > S0z — 1o
then h is convex.

Remark 3.6 For convex f,g € F, we can choose sy = ry = 0 in the claim, since we
have f(z) > 0 and g(z) > 0. So the min-plus convolution of convex f,g € F needs to
be convex.

Remark 3.7 We denote by
ConvR={f:R—R ‘ f is convex}
the set of all convex functions from the real numbers to the real numbers.

Definition 3.8 We say that f € Conv R is closed, or lower semi—continuous, if
liminf, ., f(z) > f(xo) Vo €R

The set of all closed convex functions is denoted by Conv R.
Geometrically this closedness property can be described as follows:

Proposition 3.9 The function f is closed if and only if one of the following conditions
hold:

1. epi f is a closed subset of R2.

2. the sublevel-sets
Se(f):={z eR| f(z) <r}

are closed intervals of R (possibly empty), for all » € R.

It is useful to know which operations preserve closedness. Therefore consider the follow-
ing three propositions.

Proposition 3.10 Let fi,..., f,, be m closed convex functions and %, ... %, be posi-
tive numbers. If there exists zy € R, such that f;(z¢) < oo for j = 1,...,m, then the

function
m
f= Z tifi
i=1

is in Conv R.
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Proposition 3.11 Let {f;};c; be a family of closed convex functions. If there exists
1o € R such that sup,c; fj(2¢) < oo then the function

fi=supf;
jed

is in Conv R.

For our purposes the most valuable proposition is the following one.

Proposition 3.12 Let f,g € ConvR. Then the function
h=f®g

is in Conv R.

3.2 Conjugate Functions
Definition 3.13 Let f be a function satisfying
1. f# 400
2. Im,b such that f(xz) > mz +bforallz € R
Then we define the conjugate function of f by
f*(s) =sup{sz — f(z) | « € dom f}
The transformation f — f* is know as the Fenchel correspondence or Fenchel-Transform.

Remark 3.14 For functions f € F the two conditions of the former definition hold
true:

e We have f(z) =0 for z < 0.
e Taking m = 0,b = 0 yields f(z) > 0.
Definition 3.15 We define the biconjugate function of f by
[ (z) = sup{sz — f*(s) | s € dom f*}
Proposition 3.16 Let f € ConvR. Then
1. the conjugate of f is a closed convex function, that is f* € Conv R.

2. the biconjugate of f is its closure, that is f** = clf.

So for a closed convex function f we have f = f**.
The next proposition could be the key for computing the min—plus convolution.

17



Proposition 3.17 Let fi, fo € Conv R, minorzed by a common affine function. Then

(i®f)'=fi+1fs

Proof The proof illustrates some properties of extremization. For s € R, we have

(f1® f2)*(s) = sup{sz— w:%gfrwz fi(z1) + fa(za)}

= sup {s(xl + SCQ) - fl(ml) - f2(m2)}

T=x1+T2

= sup{s(z; + x2) — fi(z1) — fo(z2)}

Z1,T2

= sup{sz; — fi(z1)} + sup{szy — fo(z2)}

and we recognize f;(s) + f5(s) in this last expression. O

So if f; and f5 are both closed convex functions, we know by proposition 3.12 that fi® fo
is closed convex and therefore we know f; @ fo = (f1 ® f2)**. Summarizing we have

L@ L= f)"=(ff+f) (3.0)

This suggests an alternative way to compute the min—plus convolution. There are two
basic question that have to be answered:

1. How hard is the above computation?
If the functions f; and f, are not too complicated this can be done relatively easy
as will be shown in an example.

2. Can this method be applied to a broader class of functions and if not, can it be
modified so that it is applicable to a broader class of functions.

The following is our work and not taken out of [8].

We will answer the first question. Applying the above results, one can for closed convex
functions compute the min—plus convolution relatively easy for good enough functions,
as is shown by the following example.

Example

Consider the rate latency function:

f(x):{ oo-T) s

vV A
NN

with 77> 0 and o > 0.
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Claim 3.18 One obtains for the conjugate

400 s < 0
ffs)=¢ s:T 0 < s < «
+00 s > «

Proof By definition we have

f*(s) =sup{sz — f(z) | 2 € R} =sup{{sz |z <T}U{sx —az+ ol |z >T}}
1. s < 0: Choose z, = —n, then s-x, — 400 as n — oo
2. s =0: Obviously f*(s) =0.
3. §>0:
a) sup{sz |z <T}=5-T
b) sup{sz — az + ol |z > T}

i. If s —a > 0, then take z,, = n for n > T. Then (s — a) - z, — 00 as
n — oo.

ii. If s — a <0, then the supremum is achieved for x = T, yielding
(s—a)T+aT =s5-T

O
Y f(zx) Y +o0
f*(s)
_ o L -
| v l N
T o

Figure 3.1: Rate Latency Curve and its Conjugate

Now we can compute f**(t) = sup{tx — f*(z) | x € dom f*}. We find

Proof We have

f*@) = sup{tz — f*(z) | = € dom f*}
= sup{tz —T -z ‘ 0<z<a}

19



1. Ift>T,thent —T >0, thussup{tz — T -2 | 0<z < o} = (t - T)e

2. IFt <T,thent—T <0, thus sup{tz —T-2 |0 <z <a}=0
Thus we have f** = f, if f is a rate latency curve.

Remark 3.19 Of course this is not surprising, since a rate latency curve is closed
convex. If we would have got a different result the computation would have been wrong.

As an immediate consequence of the above, we can investigate the following situation:
Let

0 z < T 0 z < T
fl(x):{ alz-=T) =z > Ti fQ(I):{ Blxa—Ty) z= > Tz

be two rate latency curves with 75 > 77 > 0 and S > «a > 0. Then we have for their
conjugates:

+00 s <
fils)=9 s-Th < 5 <«
+00 s >
and
+oo s <
f3(5) =9 s T < s < B
+oo s > f
So we have for the sum of these two conjugates:
+00 s <
i)+ f(s)=% s-(Ti+T) 0 < s < «
+00 s > «

Since fi ® fy is closed convex by Proposition 3.12, we have:

(f1® f2)(s) ((f1® f2)™) (s) (3.1)
= ((f1® f2)")"(s) (3.2)
= (i +/5)"(s) (3:3)
s—(T1+ 1))« s > T+ 1T,
= {Cr@mrmee s 2 T 34

Equation (3.2) follows from the definition of the double conjugate. Equation (3.3) uses
Proposition 3.17 and (3.4) follows by a computation similar to the one that was done
when computing f** above for the rate latency curve. Obviously this is a relatively easy
way to determine the min—plus convolution for two functions.

It remains to be seen if we can extend this sort of argument to a broader class of
functions.

20



3.3 Conjugate of Convex and Nonconvex Functions

The next aim was to understand the * operation more fully geometrically. For a rate
latency curve f we see what happens: the slope of f is the boarder of dom f* and the
right boarder of supp f becomes the slope of f*.

So we started computing the conjugate for diverse functions, trying to establish a more
general rule.

Burst delay function

The burst delay function is given by

0 t < T
%®:{+m t > T

Remark 3.20 6y(t) is the neutral element concerning the min—plus convolution.

We can compute the conjugate and derive
« ) s-T s
Or(s) = { +oo s

Proof By definition we have

AN
oo

05(s) =sup{s-z — or(s)}

z€R

1. s<0
We then take x, = —n,n € N and have dr(—n) = 0 for n large enough. So we
have §5.(s) = +o0.

2. s>0
The function s-z is strictly monotone 1ncreasmg in z in this case, so for x,, = T— =
we have ér(z,) = 0 and s -z, = s- T — s+; letting n tend to infinity yields the
assertion.

O

For the biconjugate we derive
07 = O

Proof By defintion we have
57 (t) = sup{t - x — 67(z) | = € dom(6})}
We have dom(6%) = Ry .

1. t—T>0
Take z, = n,n € N, then (¢t — T)z,, — 00 as n — c0.
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or(t)
i L T
t t
T | |
T
Figure 3.2: Burst Delay Curve and its Conjugate
2.t—-T<0
In this case set £ = 0 to get the supremum.
O

Obtaining this result is not surprising, since 7 is closed convex, as one can check easily
by looking at the epigraph of d7.

0o is the neutral element for the min—plus convolution, when considering only functions
f € F. Sowehave f @ 6g = f for f € F. So applying our formula for f € F we have

[r=(f®d)" =["+5 (1)
Claim 3.21 For f € F and t < 0 we have f*(t) = +o0

Proof Assume the claim would be false. Then we would find a ¢y < 0 such that
f*(to) = M < oo and because of the equality (1) M = M + 6§(ty) = oc. O

A Nonconvex Function

Consider
0 z < 0
r 0 < 2z £ 1
flz) = 1 1<z < 2
rz—1 2 < z
3y
f(x)
2_
1_
| T T 1 X
-3 -1 1 3

Figure 3.3: Nonconvex Function and its Convex Closure
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One easily verifies that this function is neither convex nor concave. But it is bounded
from below for example by the affine function g = 0, so f* exists.

One can already realize the convex closure of this function in the graph, which is indi-
cated with dots.

Claim 3.22
+00 s < 0
0 0 < s < 1
wrN = = 3
Fle=02s-1 1 <6 <1
+o00 1 < s

Proof Substituting in the definition yields

f(s) = %gw—fmﬂ
= max{A4,B,C,D}

where

:= sup{sz}
<0

= sup {(s— 1z}

0<z<L1
sup {sz — 1}
1<z<2

= sup{(s — 1)z + 1}

r>2

S O & »=
i

1. s <0
Take z, = —n,n € N, then A — 400 as n — o0.

2. 5=0
We have A =0, B=0,C =-1and D = —1.

3. >0
Here we have A = 0.

a) s> 1
In this case s —1 > 0 and so we take , = n,n € N; then D — oo as n — oc.

b) 0<s<1
In this case s —1 < 0,s0 D = (s —1)-2+ 1 = 2s — 1. Further we obtain
B =0and C'=2s—1. Since 2s —1 > 0 if and only if s > %, we have shown
the claim.

d
Notice that although f itself is not convex, f* is in this case!
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Claim 3.23

0 s < 0
f(s) = s 0 < s <2
s—1 2 <

Proof We apply the definition for f**

F*(s) = sup{sz— f'(x) | = € dom(f*)}
= sup {sz— f*(x)}

0<z<L1

= max{A4, B}
where A := sup{sz ‘ 0<z<1i}and B:=sup{(s—2)z+1 | i<z <1}

1. s<0
In this case A =0 and B = 3s.

2. s=0
Here we have A =0 and B = 0.

3. s >0 Now we get A =1s. Fors—2 <0 weget B=3(s—2)+1=1s. For
s—2>0wehave B=s—2+1=s—1. Wehave s —1> isif and only if s > 2
which proves the claim.

O
For closed convex functions f the inverse of the operation * is * itself, that is one can
reconstruct f from f* by simply taking the conjugate of f*. But the above example
shows that this can not be expected for arbitrary functions f. Recall, the reason why
we are interested in inverting the * operator is because of the relation

*

(i®f)'=fi+1fs

that is the * operator converts the min—plus convolution into the addition of two func-
tions. But for computing the min-plus convolution of f; and f; we have to be able to
invert the * operator, that is we are searching for a function &, such that x(f*) = f. For
closed convex f we can simply choose k(g) = ¢g* but it is not clear how this can be done
more general, that is for a broader class of functions.

3.4 Approaches to Construct Convex Functions

Our next idea thus involves constructing convex functions from nonconvex ones, although
there is no canonical way of doing this, as far as we know. But the functions under
consideration are very easy, actually they are piecewise linear, so maybe we can devise
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a method. An example might make the idea clearer.
Consider an affine function given by

0 ¢
%’b(t):{ ret+b

AVAWAN
o

Construct the function
Srs(t) = +oo T < 0
TS Z\ rt+b ot

Vv
o

1 1
Figure 3.4: Nonconvex Function to Convex Function

Then 7, is closed convex. Of course one could have transformed -, into

. b t < 0
%’b(t)_{r-t—f—b t >0

for getting another closed convex function. Notice that neither ¥, ; nor 4,;, are members
of the set F.
The advantage of the constructed closed convex functions is obvious, we have

5/:;) = ’?r,b and &:,2 = ’Ayr,b
But we have a big problem now. We can take a closed convex function f and for example
Arp and compute the min—plus convolution of those functions via

@9 =(f @%p)™ = (f" + %)

But we actually want to compute f®,3; so we would have to find some relation between
f ® Vr,b and f ® :YT,b-

Let a closed convex f be given, which is already a strong assumption. Following the
aforementioned approach and denoting for a function g the constructed closed convex
function by g we would have to find a general relation between f ® g and f ® g!
This seems to be quite hard and thus this approach is not considered any more by us.

25



3.5 Noninjectivity of the Conjugacy Operation

Let us look at the function v, again. We can compute the conjugate and the biconjugate
for this function, although we know that v, # 77}

Claim 3.24
—+00
’Y:,b(s) = 0 0
—+00 T

VANRVAN
»w W w
IN A
3 o

Proof By definition we have

Yrp(s) = sgﬂg{sw — Yrp(2)}

Setting A := sup,,{sr} and B :=sup, ,{(s — )z — b} we get
7:a(s) = max{4, B}

1. s<0
Since 7., € F we have v,4(s) = 400.

2. s=0
We have A =0 and since 7,0 > 0 we have B = —b.

3. >0
Here we have A = 0. For s —r > 0 we have B = +00. For s — r < 0 we have
B = —b. Since b > 0 we have in this case max{A, B} = 0.

O
Claim 3.25
() = 0 t <0
T T rer ot > 0
Proof The definition reads
Yin(t) = sup{tz — 7}, (z) | = € dom(v},)}
So this becomes
7;”,‘,(15) = sup{tz ‘ 0<z<r}
Ift <0, we set x =0 and for t > 0 we set x = 7. [l

Remark 3.26 One can realize a very bad behavior in the transformation * in this case,
since the information of b is completely lost in 7, , and it seems impossible to reconstruct
one particular 7, from a given ~;,. For fixed r > 0 the family of functions

Gr={ms|b>0}C F

has the same conjugate function, namely v; = 7;;.
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1Y Yr,b1 Yr,ba 1Y
b2 _ f)/’f',bs | r}/r*
r
by -
bs
| | | 1t | 1T
-3 -1 1 3 r
-1 _

Figure 3.5: Different Functions Having the Same Conjugate

The following picture illustrates the situation graphically: the three functions 7,;,,7 =
1,2, 3 have the same conjugate ;.

At least for this particular function this phenomenon can be fixed. Consider again the
transformation idea, in particular the function

. _ b t < 0
%’b(t)_{r-t—kb t >0

Computing the conjugate yields

+00 s < 0
Yrp(s) = —b 0 < s <7
—+00 r < s

Proof By definition we have

Yrp(s) = sup{sz — Yrp(2) }
z€R

Setting A := sup,<o{sz — b} and B := sup,.o{(s — )z — b} we get
724(s) = max{4, B}

1. s<0
In this case we choose x, = —n,n € N and then A — oo, as n — oc.

2. s=0
We have A = —b and since r,b > 0 we have B = —b.

3. >0
Here we have A = —b. For s — r > 0 we have B = +00. For s — r < 0 we have

B = —b.
0
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So here we don’t lose the information on b and at least the conjugate of each 4, is
unique. So we have at least the chance to find a unique retransformation, yielding -,
from the information of 4; .

The biconjugate of 4,4 is of course the function itself again; therefore we transformed
Yrp N0 Yy p, since 4,5 is a closed convex function.

These considerations make the transformation idea — in spite of the related problems —
interesting again.

3.6 Change From Convex to Concave Functions

Consider the function

0 r < a
f(z) = r—a a < z < a+1
m-(x—a)—m+1 a+1 < =z

with m > 1; that amounts to saying f should be convex. Then we obtain for the conjugate

+00 s < 0
OEE SR X S m
oo m < s
Proof We set
= sup{sz |z < a}
= sip{(s—l)x+a|a§x§a+1}
T
C = sup{(s—m)z+ma+m—1|a+1<z}
T

Then f*(s) = max{A, B, C}.

1. s<0
Here we have A = 400.

2. s=0
In thiscase A=0,B=0and C=-m-(a+1)+m-(a+1)—1=—1.

3. §>m
We then get C' = +oc.

4. 0<s<1
In this case we have s —1 < 0. So for Bwe get B=(s—1)-a+a = s"-aq,
and for A we have A = s-a. By the assumption m > 1 we get s —m < 0, so
we have C = (s—m)-(a+1)+ma+m—1=s-(a+1)— 1. Further we have
s-a>s-(a+1)—1if and only if s < 1.
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5. 1 <s<m
In this case we have s —1 > 0, so for B we have B = (s —1)-(a+ 1) +a =
s-(a+1)—1=Cand A=s-a.

O
Now one can ask what happens to the conjugate if we change the parameter m such
that f is not convex any more, but still remains in F, that is we choose 0 < m < 1.
For 0 < m < 1 the conjugate of f is given by

0
m

VANVAN
» » ®»
IN A

0
+oo  m
Proof We set

:= sup{sz ‘ z < a}
x

= sup{(s— 1)z +a|a<z<a+1}
x

= sup{(s—m)x+ma+m—1|a+1§x}

Then f*(s) = max{A, B,C}.

1. s<0
Here we have A = +00.

2. s=0
In thiscase A=0,B=0and C=-m-(a+1)+ m(a+1) —1=-1.

3. s>m
We then get C' = +oc.

4. 0<s<m
In this case we have by the assumption m <1 s—1< s—m < 0. So for B we
get B=(s—1)-a+a=s-a, and for A we have A = s-a. Since s —m < 0,
we have C = (s —m)-(a+1)+ma+m—1=s-(a+ 1) — 1. Further we have
s-a>s-(a+1)—1if and only if s < 1.

O
So as it seems one loses the information about the slope a + 1 which cannot be recon-
structed that easily. In the following picture ¢ := m-(a+1)—1 > @ if and only if m > 1.

If we take m = 0 the conjugate function becomes

+00 s < 0
f(s) = 0 s =0
+00 > 0
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1Y f(z) Cqy f*(s)
- m | a+1
a_
_ a
T | T T T 1 S
a at+l 1 m

Figure 3.6: Conjugate in the Convex Case, i.e. m > 1
+00
7y (@) €Ty f*(s)

a
T | x T 1 S
a a+l1 m

Figure 3.7: Conjugate in the Nonconvex Case, i.e. 0 <m < 1

So all information on the parameter a is completely lost and there is only little chance
to reconstruct f only from its conjugate!

But the function f with m = 0 is praxis—relevant since it describes a flow with a quota
and can thus not be discarded.

A possible solution is in this case to consider —f, but this still is not closed convex;
furthermore one has to have information on how this changes the min-—plus convolution,
that is how f ® g and —f ® g relate to one another.

Another conclusion can be drawn from this example: Continuity, a basic and usually
helpful quality of a function, does not influence the behavior of the operation *, since the
choice of the parameter m does not influence the continuity of f. Of course f is (strongly)
differentiable only in the case m = 1 and since (at least in R) diffentiability implies
continuity, this quality is also irrelevant to the behavior of the conjugacy operation!

We have already encountered that the * operator is not injective if its domain is F:
consider the discussion in the example of 7, . So there is no chance of getting a function

k:ran(*) = F, k(f)=f
For example |k(7;,)| > 1; with the notation used earlier we have for fixed r

K('Y:,b) = Gr.

So in general the values of x range through the powerset of F.
Let

C::{f:R—>R|f**:f}
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Then C is nonempty. Changing the domain of the operation * from F to F NC, we find
a unique inverse k, namely k = x.

3.7 Geometric Approach of Interpreting Conjugacy

In general one can realize in the linear case that changes to the slope (which is then
constant!) of the function f effect the domain of the conjugate f*, whereas changes in
the domain of f, such as moving the paramter a, translate in the slope of the conjugate
fr

For deriving further insight in this behavior we investigate for n € N the functions

0 z < 0
gn(‘x): $2n r > 0

These functions are all closed convex, as one can realize by drawing the graph, and
belong to F; so they are the best functions we can have for our transformation.

We want to compute the conjugate to see how the (now changing) slope is reflected in
the conjugate. By definition we have

9n(s) = sup{sz = ga(2)}

So for s < 0 we get g% (z) = +o00. For s > 0 we have to compute

max(0, sup{sz — 2°"})
x>0

By differentiation with respect to x and setting the result equal zero, we get
S \ Tt
Tmaz = <_> >0
2n
This has to be the maximum, since the second derivative is negative. Substituting .
we get for the value of

g;';(s) = S Tmaz ~ Timaa

So we have
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One observes that the slope of %" does not influence the domain of g (s), so the state-
ment:

”Slopes of a function f influence the domain of f*” is false in general , although it seems
to be valid for piecewise linear functions.

3.8 Nonlinearity of the Conjugacy Operation

Another desirable property of the transformation *

this property in general.

Proof We consider the operation * : (F,®, ®) — (G, ®,®), where & = min and ® = +,
since we are dealing with the min-plus convolution. The set G D ran(*) is endowed with
two operations @ and ®.

Let f,g € F, k € R be given. For a linear transformation M between F and G the
following has to hold:

is linearity. But * does not posess

ME® f) = kOM(f)
M(feg) = M(f)eM(g) (3.6)

For the operation * we have

(k® f)*(s) = sup{sz—(k+f(z))}

zeR

= sup{sz — f(z)} — k

reR
= k®f*(s)
if we set
a®b:=b—a

We also require

min(f,9)" = f*®g"
According to [8], we have
min(f, g)* = sup(f*, g")
So setting
f&g=sup(f,g")
we satisfy the linearity conditions. O

Choosing the operations @ or @ different results in the loss of the linearity of the
Fenchel-Transform.

3.9 Splitting Into Convex Functions

Since the Fenchel-Transformation works quite well for convex functions we try to split
non—convex functions into convex components; although this approach will probably not
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work in general, for piecewise linear functions it might present a suitable alternative.

Let 71 <T5,a < B € R, be given and consider the following function

0
gty =4 B-(t-T)
O[(t—Tl)

t <
T, <t

<
t >

where 15 = /37’;:73'?1 denotes the intersection of the two functions

0 T)
fT1(t):{ OA'(t—Tl) t Tl

Then we have ¢(t) = min{ f7, (¢), fr, ()}

IV INA

1Y
1 fn (t)/:ﬁ (t
1 « 153

| I 1t
T, T,T,

0 t < T
sz(t): { 5(t—T2) t Z Tz
| 9(t)
I I |
Ty Ty, Tj

Figure 3.8: Splitting Into Convex functions

Now define

n(g(t)) = n(min{fr, (1), f,(t)}) := min{ /7, (¢), /7, ()}
For the conjugates of fr,(t) and fr,(t) we have

+00
) =9 t-Th
+00
and
+00
() =9 t- T
+00
Since we assumed B > « and T} < T, we get
+00
)t
g =19 ;.1
+00

t

VIA A
o~
IN
e

o
VIN A
~
VAN
=

t 0
0 t
o t

IAIN

o
B

V AINA

t B

Notice that all four parameters are contained in the image of g under 7. If we had
transformed the function g using the * operator, we would have lost some information.

Recall that usually we have

9(t)" = min{fr,(t), fr,(1)}* = sup{f7, (?), f1, (1)}
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The loss of information can be prevented with the transformation 7.

We actually want to compute the min—plus convolution of the two functions fr, (¢) and
fr,(t). We have shown in (3.1) to (3.4)

<m®ﬁm@={“_m+gnﬂ i,

Now one has to answer the question whether one can find a general way for obtaining
the min—plus convolution from the knowledge of 7n; at least there is a fair chance, since
we have all four parameters available.

The definition of 7 presents a potential problem; if we can not write the function g as
the minimum of two other functions, then 7 is undefined.

We think we would have to think of a way how to define, for example n(f ® g). But
then we are back at the original problem of finding a transformation so that n(f ® g) =
n(f) ® n(g), where ® is some operation that is easy to compute.

Furthermore from a mathematical point of view all these approaches are not beautiful
because there seems to be no unifying theory behind the problem. There are too many
special cases in which the approaches we have tried do not work.

3.10 A More General Approach

One can look again at the Laplace-Transformation; we are trying to find a similar
transformation simplifying the computation of the min—plus convolution. Recall that
the Laplace—Transformation for a given function f reads

= /_ : ft)e *tdt

The conventional conwvolution of two functions f, g is given by
Foo)= [ 1) -glt=r)dr

Now the Laplace transformation yields

L(f®g)(s) = L(f)(s)- L(g)(s)
We would like to devise a similar transform with a similar quality for the min—plus
convolution.

Investigating the situation heuristically (that is, not mathematically exact), we can
derive the following

£()(s) =‘Kmﬂﬂf“ﬁ
> ft)e

Q

t=—o0
= Do
t=—0o0
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This consideration yields the following approach:

ro(f)(s) = €D () © g(s,1)

t=—00
Of course there are various parameters to be specified:

e The @ has to be filled with a meaning.

e The ® has to be filled with a meaning.

e The suitable choice of the function g¢(s,t) is of utmost importance.

One can realize that this general approach includes (more or less) the Fenchel-Transformation,
if one chooses in particular

g(s,t) == s-t
a®b = b—a

ED ‘= sup

We then have
kg(f)(s) = sup{s-t— f(t)}

tEZ

If we let ¢ range through R instead of Z this is precisely the definition of the conjugate
of f.

Maybe if we choose the function g different from the above for nonconvex functions we
could get a transformation that posesses the quality that we want to have.

From a mathematical point of view this approach should be preferred because it contains
the original conjugacy operation as a special case and we try to extend a known theory.

Let us investigate some properties of the above defined x, we would like to have. First
of all we can look at how the transformation influences the min—plus convolution. Let
therefore f,h € F be given

r(f@h)(s) = D) © g(s,1)
= (69 ft) @ g(s,t)> ® (G} h(t) © g(s,t)) (3.7)

= kg(f)(5) @) Kg(h)(s)
1. If one chooses for the operator @ the usual +, for example, then one has the

problem of having to compute an infinite sum, which usually is not an easy task.
In this case choosing ® or ¢ in a way that the sum is finite is desirable.
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2. In order for (3.7) to hold the operator ® probably has to satisfy an equation of
the form

since (f @ h)(t) = ming<j<;{f(j) + h(t — j)} and in equation (3.7) h(t — j) does
not occur any more.

3. Probably the choice of ® should involve the function min, since this appears in the
min-plus convolution and in order to make (3.7) hold we should not lose the min

completely. On the other hand the operation () should be easy to compute, so
this is somewhat contradictory to choosing an operation involving the minimum.

4. With this approach we probably can use some ideas presented in [8], for example
one could try to find eigenfunctions, that is special functions g.



4 Computing the Min—Plus
Convolution

The following computations were made to investigate the behavior of the min—plus con-
volution with nonconvex (but practically relevant) functions. It will become clear why
one is interested in a more general theory of computing the min—plus convolution, since
the computations involved are rather tedious and somewhat technical.

The aim is to be able to develop a technique that enables us to forecast the affine func-
tions encountered in the proofs of the assertions below beforehand. One will see that
these affine functions depend solely on the parameters of the piecewise linear functions;
the min—plus convolution at a given point ¢ is just the minimum of these affine functions
evaluated at .

So if one can predict these affine functions reliably, one can easily compute the min—plus
convolution, either by hand or with a computer.

4.1 Rate Latency Curve and a Nonconvex Function
With 2 Slopes

We take into account the following special two functions

Figure 4.1: Rate Latency Curve and Nonconvex Function
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Figure 4.2: Min—plus Convolution of RLC and Nonconvex Function

The functions’ formal definition is:

T < 2
f(x)_{Q-(x—Q) z > 2
and
0 z < 0
g9(z) = 3.2 0 < z <1
z—-1)+3 1 < z
We can compute their min—plus convolution. We get
0 t < 2
(frg)t)=q 2-(t-2) 2 <t < 4
t 4 < t

We do not provide a proof of this particular claim here, since a more general formula will
be proven below. The interested reader can simply check the assumption by substituting

f and ¢ in the definition for f * g.

The parameter 3, i.e. the slope of g on the interval [0, 1], does not appear in this last
expression, so maybe the min—plus convolution does not depend on all parameters. This
would be very helpful since one could ”forget” respectively ”lose” some information in

a transform without any harm!
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4.2 RLC and Nonconvex Piecewise Linear Function
With 2 Slopes

Motivated by this observation the following more rigid and general considerations were
taken. We investigate the min—plus convolution of the parameterized families of function
f and g. Their graphs and the corresponding min—plus convolutions are depicted on the
next page.

The functions’ formal definition is:

and
0 z < A
g(x) = a-(zr—A) A < z < B
b-(x—B)+a-(B—A) B < x

In the following we assume a > b (else the function g would be convex and then we
could apply previous results) and A < B. As indicated above we are only interested in
the case A, T > 0.

We want to compute the following quantity for all ¢ € R:

(f+9)(t) = inf {1t~ 5)+ ()}

that is the min—plus convolution of f and g. Since f,g : R — RJ, we clearly have
f+g>0.

Below we will show, that we get the following expressions for the min—plus convolution,
assuming 7, A > 0, A < B and a > b:

1. Casea>b>m

0 t < T+A
(f*g)(t):{m-(t—(T+A)) T+A <t
2. Caseb<a<m
0 t < T+A
(f*xg)(t) = a-(t—(T+ A) T+A <t < T+B
b-(t—(T+B))+a-(B—A) T+B <t
3. Caseb<m<a
0 t < T+A
(fxg)(t) = m-(t—-(T+A) T+A <t < T+D
b-(t—(T+B))+a-(B—A) T+D < t

where D is defined as
A-(m—a)+ B(a—0b)

D =
m—>b
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Figure 4.3: RLC and Nonconvex Piecewise Linear (NPL) Function

Figure 4.4:

Figure 4.5:

Figure 4.6:
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Min-plus Convolution of RLC and Nonconvex Piecewise Linear Function



Remark 4.1 Notice that the interval boundaries, on which f % g is piecewise linear,
depend on the parameters in a nontrivial fashion. Hence it seems highly unlikely that
one can find a general transform that in certain cases ”loses” the right parameters in
order to compute the correct min—plus convolution.

Remark 4.2 The proofs in this section have a certain structure. In a first step, which
will be referred as STEP I below, we divide the computation of f(t — s) + g(s) in a
certain way, making it more tractable. We will get expressions (essentially piecewise
linear functions) we can work with easier in the second step, which will be referred to
as STEP II. In STEP II we compute the min—plus convolution, which is the pointwise
minimum of the piecewise linear functions derived in STEP I. This minimum heavily
depends on the relations holding for the parameters a,b and m, so we will have to
distinguish various cases. In our computation of the min-plus convolution for other
functions we will proceed in a very similar manner.

Remark 4.3 At the end of STEP I we basically have all the information we need to
compute the min—plus convolution. The rather tedious computations in STEP II can be
done by a computer, since they simply involve computing the minimum at every point
t > 0 of a finite set of piecewise linear functions. So if we find a way to predict these
functions reliably, we would have an easy way to compute the min—plus convolution by
means of a computer program! This is in particular of interest for the application in a
network, since running such a program on a router would enable us e.g. to give worst
case estimates on delays, thus ensuring a better QoS.

Proof
STEP 1

We wish to compute

(F+9)(0) = ink {£(t =) +9(s)}

As already mentioned, we have f x g > 0 in our case. We will compute f x g in steps.
We note that t —s < T ifft s >t —T.

Step 1: t —T < A

We have
(Fro)®) = inf {7(t—5)+9()}
= min{__inf {f(t—5)+g()}, _inf_{f(t—5)+9()}}
= min{ogggf_T{f (t—s)+g(s)}, ,_inf St{g(S)}}
= min{_inf {f(t=5)+9(s)},0)
=0
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Step 2: A<t—-T<B

42

As before we have

(F+)(®) = min{_inf_{f(t=5)+9g()},_inf_{o(s)}}

t—T<s<t

In the following we set

I':= inf {f(t—s)+g(s)}

0<s<t—T

and
@:= Inf {g(s)}
So clearly
(f * g)(¢) = min{l', O}

Since g is monotone increasing, we have Q = g(t —T) = a(t — (T + A)).
The computation of I' is subdivided further:

[' = min{7y;, 7}

with
y= I {f(t—s)+9(s)}
and
ver= nf  {f(t—s)+9(s)}
So we get
no o= Jnf {m-(t—s—T)}

= m-(t—(T+A4)

since —s is monotone decreasing. Further we compute

v =, dof {m-(t—s—T)+a(s—A)}
= Aggrg_T{(a —m)-s+m-(t—T)—aA}

We have to consider two different cases:

a > m Since a —m > 0, we have to choose s as small as possible, so we get

Y2=(@—m)-A+m-(t—-T)—aA=m-(t — (T + A))

a < m Since a —m < 0, we have to choose s as large as possible, so we get

vo=(@=m) - ¢t=T)+m-t—-T)—ad=a-(t— (T + A))



Thus we have I' = mina, m - (t — (T'+ A)). Recalling €2, we have for
T+A<t<T+B

(f *9)(t) = min{a, m} - (t — (T + A))

Step 3: t—T > B
We again have

(f x9)(t) =min{ inf {f(t—s)+g(s)}, inf {g(s)}}

0<s<t—T t—T<s<t

Again we set
[:= inf {f(t—s)+g(s)}

0<s<t—T

and
Q:= inf {g(s)}

t-T<s<t

So clearly
(f * g)(t) = min{T’, 2}

Since g is monotone increasing, we have Q = ¢g(t—T) = b-(t— (T +B))+a-(B—A).

The computation of I' is subdivided further:

I'= min{q/l, Y2, 73}

with
7= ok {f(E =) +9(s)}
Yo 1= A;EiB{f(t —s)+g(s)}
and
veo=p dnf (=) +g(s)}
So we get
no = Jof {m-(t—s-T)}

= m-(t—(T+A)
since —s is monotone decreasing. Further we compute

o= inf {a=m)-s+m-(t~T) - aa)

We have to consider two different cases:

a > m Since a —m > 0, we have to choose s as small as possible, so we get

Y2=(@—m)-A+m-t—-T)—aA=m-(t— (T + A))
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a < m Since a —m < 0, we have to choose s as large as possible, so we get
Y2=(@—m)-B+m-(t—-T)—aA=m-(t—(T'+B))+a-(B—-A)

For 3 we obtain

o= dnf {f(t—s)+g(s)}
= inf {m-(t—s—T)+b-(s—B)+a-(B+A)
= dul (=) s (1= T) = b5+ (B - )

We have to consider two different cases:
b > m Since b —m > 0, we have to choose s as small as possible, so we get

v3 = (b—m)-B+m-(t—T)—bB+a(B— A)
= m-(t—(T+B))+a-(B—A)

b < m Since a — m < 0, we have to choose s as large as possible, so we get
3 = (b—=m)-t=T)4+m-(t—T)—bB+a(B—-A)
= b-(t—(T+B))+a-(B-A)

So
vs = min{b,m} - (t — (T + B))+a-(B—-A)

STEP II

Now we have to collect the results and decide, what the minimum is depending on
the parameters.

First we consider b > m. Note that by our assumption this implies a > m. We

have
Nn=re=m-({t—(T+A)

and
y3=m-(t—(T'+B))+a-(B—-A)

Solving the inequality

<3
yields
Mmo< 7
m-(t—(T+A) < m-(t—(T+B))+a-(B-A)
m-(B—A) < a-(B-A)
m < a



since by assumption B > A. So we have
F=y=m-(t—-(T+A)
Recall, (f *¢)(t) = min{I', Q}, so we have to check the inequality ' < Q. We have
m-(t—(T+A4) < b-(t—(T+B))+a-(B-A)

(m—>b)-t < =b-(T+B)+m-(T+A)+a(B—A)
(m—=2b)-t < (m—0b)-T+mA—-bB+a(B-—A)
P> T+A-(m—a)+B-(b—a)

m—>b
where we have used b > m. We set
A-(m—a)+B-(b—a)

D =
m—=>

For b = m we have

(m—1b) - (m—=20)-T+mA—-bB+a(B-—A)

t <
0 < (a—m)-(B-A)
and since a > m (and B > A) this is always satisfied!

Now another question has to be answered, namely for which choices of the param-
eters do we have D < B? Recall, in this step we assume ¢t > T + B.

A-(m—a)+B-(b—a)

m-—2b s B
A-(m—a)+B-(b—a) > B-(m-b)
a-(B—A) > m-(B-A)

a > m

So we have in this case t + D < ¢t + B and hence (f * ¢)(t) = min{I',Q} =T

Now we assume b < m and still we have ¢t > T + B. We have to discuss two
different situations:

1.b<a<m
In this case we have
no= me(t— (T +4)
Yo m-(t—(T+B))+a-(B—A)
v3 = b-(t—(T+B))+a-(B-A)

Clearly, 73 < v5. So we check the relation of v; and ~s.

3 < mn

b-(t—(T+B))+a-(B-A) < m-(t—(T+A)
0 < (m=b)-t+b-(T+B)—m-(T+ A)
0 < (m—=b)-(t—T)+bB—mA
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Since B > A, we can estimate
(m—=0)-t—T)+bB—mA>(m—-0b)-t—T—-A)>(m—0)-(B—A)>0

Hence I' = y3 = €.

2.b<m<a
In this case we have

n o= m-({t—(T+A4)
w2 = m-(=(T+A4)
v = b-(t—(T+B))+a-(B—A)

We note that €2 = 3, so we only have to discuss when v; < 3. But we did
that already, we obtained

71 V3

T+D

IAINA

So we have

(Fro@ =minroy=r={ L < THD

IV IA

Collecting all the information gathered during the proof yields the assumption.

O
Since we want to be able to predict the piecewise affine functions occuring in the com-
putations, we collect them:

n1 = min{a,m}- (t — (T + A))
ne = min{b,m}-(t— (T + B))+a-(B—A)

Now we will try to write the min—plus convolution in one formula, expressed in terms of
affine functions. We can express (f * g)(t) as

(f *9)(t) = min{X, Y}

with
X := max{0, min{a,m} - (t — (T + A))} = max{0,7,}

and
Y := max{0, min{b,m} - (t — (I'+ B))+a- (B — A)} = max{0,72}

It remains to be seen if one can extend these results to more general cases, e.g. more
different slopes of the function g.
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4.3 RLC and Nonconvex Piecewise Linear Function
With 3 Slopes

We investigate the min—plus convolution of the parameterized families of functions f
and g. Their graphs and the corresponding min—plus convolutions are depicted below.
The functions’ formal definition is:

0 =z < T
f(x)_{m-(ac—T) z > T
and
0 r < A
_ a-(x—A) A < z < B
9(x) = b-(x—B)+a-(B-A) B < z < D
c-(x—D)+b-(D-B)+a-(B-—A) D < z

In the following we assume a > b > c and A < B < D. As indicated above we are only
interested in the case A,T > 0.
We want to compute for all ¢ € R the following quantity:

(F+9)(t) = inf {7t~ 5)+ 9(5))

that is the min-plus convolution of f and g. Since f,g : R — R}, we clearly have
f+g>0.

In the following we will show, that we get the following expressions for the min—plus
convolution, assuming 7, A >0, A< Band a>b > c:

1. Casea>b>c>m

_ 0 t < T+ A
(f*g)(t)_{m-(t—(T-i-A)) T+A < t
2. Casea>b>m>c
0 t < T+A
m-(t—(T+A)) T+A <t < T+H+0

(fxg)t) = c-(t— (T + D))
+b-(D-B)+a-(B-A) T+0 <t
with D-(b—c)+A'(m_a)+B'(a_b)

m—c

O =

3. Casea>m>b>c
We define O as in Case 2. One can show D < O iff

0<b-(D-B)+a-(B—A)—m-(D—A),
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further set
B-(b—a)+ A(a—m)

M .=
b—m

and show M < D iff
0>b-(D-B)+a-(B-—A)—m-(D—-A)

So we have either M < D and thus O < D or we have M > D and O > D. So O
and M always lie on the same side of D.
So let M,0O < D, then we obtain

0 t < T+A
m-(t—(T+A)) T+A <t < T+M
(fxg)t)=¢ b-t—(T+B)+a-(B-—A) T+M < t < T+D
c-(t—(T+ D))
+b-(D—B)+a-(B—A) T+D < t
Now let M, O > D; this yields
0 t < TH+A
B m-t—(T+A) T+A <t < T+0
(f+9)(t) = ¢ (t— (T + D))
+b-(D-B)+a-(B-A) T+0 < t
4. Casem>a>b>c
0 t < TH+A
a-(t—(T+A4) T+A <t < T+B
(fx9)t)=< b-t—(T+B))+a-(B—-A) T+B <t < T+D
c-(t—(T+D))
+b-(D—B)+a-(B-—A4) T+D <t
N 7 9(z) -
i f(z) i b
_ m da
T - AB Dp "

Figure 4.7: RLC and Nonconvex Piecewise Linear Function With 3 Slopes



f*xg Case 1

|
T+A

Figure 4.8: Min—plus Convolution of RLC and NPL Function Case 1

f*xg Case 2 and Case 3 II

l T |t
T+ A T+0

Figure 4.9: Min—plus Convolution of RLC and NPL Function Case 2 and 3 11

fx*g Case 31

| I I 1
T+A T+M T+ D

Figure 4.10: Min—plus Convolution of RLC and NPL Function Case 3 I

f*xg Case 4

Figure 4.11:

| I I A
T+A T+B T+D

Min-plus Convolution of RLC and NPL Function Case 4
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Proof We wish to compute

(fxg)(t) = inf {f(t—s)+g(s)}

0<s<t

As already mentioned, we have f * ¢ > 0 in our case. We will compute f % g in

steps. We note that t —s < T iff s >t —T.

STEP 1
Step 1: t —T < A
We have
(Fra)t) = inf {F(t—5)+9(s)}

= minf ol A=)+ 90},
= min{, ol /=9 +9(9)
- min{ogilglfiT{f(t =) T},
=0

Step 2: A<t—-T<B

Linf_{(t=s)+9(s)}}
L)}

inf
t—T<s<t

0}

nf_{f(t=)+9(s)})

(fxg)(t) = inf {f(t—s)+g(s)}
= n;ir;{0<§I<1LT{ ft—s)+g(s)},
= min{__inf {f(t—s)+g(s)),
= min{ inf {f(t—s)+g(s)},
= min{_inf {f(t—s)+g(s)},
We set
[:= inf {f(t—s)+g(s)}

0<s<t—T
This can be further subdivided, if we set

Moo= OsiggA{f(t—S)Jrg(S)}
Y2 =, dnf {f(t—s)+g(s)}

Obviously it holds I' = min{vy, 7 }.

~v1 and 7y, can be computed easily, since on the corresponding sets we know
(by construction) which part of f and g is valid.

71:0<i£1£A{m-(t—s—T)+0}:m-(t—(A-I—T))

For ~, we have to distinguish two cases:



a>m

Yo= inf {m-(t—s—T)+a(s—A)}=m-(t—(A+T))

 A<s<t-T
a<m
Y2 :Aglslg—T{m' (t—s—T)+a(s—A)}r=a-(t—(A+T))
So we have

I' = min{vy, y2} = min{a, m} - (t — (T'+ A))
Recall, (f * g)(t) = min{[,a - (t — (T + A))}, so we get in this case

(f * 9)(t) = min{a, m} - (t — (T + A))

Step 8: B<t—T <D
Again, we have by the monotonicity of g

(fxg)@) = min{ inf {f(t—s)+g(s)},9(t—-T)}

0<s<t-T

= min{ inf {f(t—s)+g(s)},b-t—(T+B))+a-(B—A)}

0<s<t—T

Again we set
[:= inf {f(t—s)+g(s)}

0<s<t—T

This can be further subdivided, setting

"= Ogig;fA{f(t—S)Jrg(S)}
Yo = A;rslgB{f(t—SHg(S)}
vo= pdnf {f(t—s)+g(s)}

Obviously it holds I' = min{~v1, ¥o, y3}.

71, 72 and 3 can be computed easily, since on the corresponding sets we know
(by construction) which part of f and g is valid.

We have again

71:0<i£1£A{m-(t—s—T)+0}=m-(t—(A+T))

For 7, and 3 we have to distinguish 2 cases, which is not surprising.
We investigate 3 in a similar manner.

v = dnf {f(t—s)+9(s)}
= inf {m{t—s—-T)+a(s—A)}

A<s<B

re=m-(t—(T+A4)
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a<m
Yo=m-(t—(T+B))+a-(B-A)

We now can rewrite 7, in order to get a formula, that covers both cases:
m-(t—(T+A)=m-(t—(T+B))+m(B—A)
So we can write
Yo=m-(t— (T + B)) +min{m,a} - (B — A)

We investigate 73 in a similar manner.

7= BSisI%ft—T{f(t_S)—i_g(S)}
= _nf {m(t—s—T)+bs—B)+a(B-A)}
b>m
ys=m-(t—(T+B))+a-(B—A)
b<m
v3=b-(t— (T +B))+a-(B—A)
So we have

vs = min{b,m}(t — (T'+ B)) +a-(B— A)

In order to compute I' = min{~;, 72,73} it is important, how the parameters
relate to each other! Recall that we always assume a > b. We consider three
different cases:

a) a > b>m We have

Mm o= m-(t-(A+T))
Y2 = m-(t—(A+T))
3 = m-(t—(T+B))+a-(B-A)

So we have to decide, for which ¢ we have v, = v, < 3.

m-(t—(A+T)) m-(t—(T'+B))+a-(B—-A)
m-(A—B)+a-(B—-A)

(B~ A)-(a—m)

VANVANR VAN

Since B > A by assumption, we have I' = 7, in this case!
Recall,

(fxg)t) =min{[,b- (t— (T +B))+a-(B—-A)}



So we must decide for which ¢ we have

m-(t—(A+T)) < b-(t—(T+B))+a-(B—A)
(m—=2>b)-t < T-(m—>0)+B(a—b)+ A(m —a)
B(a —b) + A(m — a)

1
m—>b

v

T+

where we have made use of m — b < 0. For m = b we have
0<B(la—0b)+A(b—a)

which is also true in this case. We set

B(b—a)+ A(a —m)

M =
b—m

We are still in the case B < t—T < D, so we have B+ T < T and
t <T+ D. So we have to decide, whether M < B and if not, whether
M < D for certain parameters. We have in particular b > m

B(b—a) + A(a —m)

b—m = B
Bb—a)+Ala—m) < B(b—m)
Bm—a)+A(a—m) <

(A=B)la—m) < 0

which is true for this parameter set. We require a > m for this inequality
to hold!
We have M < B, thus T+ M <T + B <t and we get

(fxg)@t)=T=m-(t-(A+T))
a > m > b We have

no= m-(t—(A+T))
Y2 = m-(t—(A+1T))
v3 = b-(t—(T+B))+a-(B-A)

So we have to decide, for which ¢ we have v; = v, < 73. But now we
have b < m, hence m — b > 0.

m-(t—(A+T))
(m—10)-t

b-(t—(T+B)+a-(B—A)
T-(m—0b)+B(a—0b)+A(m — a)
B(a —b) + A(m — a)

m—b

IAINA
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For m = b we still have
0<B(a—b)+A(b—a)
which is also true in this case. We set
B(b—a)+ A(a —m)
b—m

We have to decide, whether M < B and if not, whether M < D for
certain parameters. We have in particular b < m

B(b—a)+ A(a —m)

M =

b—m = B
B(b—a)+ A(la—m) > B(b—m)
Bim—a)+ Aa—m) >
(A—B)(a—m) > 0

which is false for this parameter set. So we have M > B. So we have to
check M < D:

B(b—a)+ A(a —m)

b—m = D
B(b—a)+ A(la—m) > D(b—m)
b(B—D)4+a(A-B)+m(D—-A) > 0

It is not immediately clear if this relation holds for all parameter sets.
Thus it should be checked individually.
Since 3 = g(t — T') in this case, we have for B < M < D

m-(t—(A+T)) T+B < t < T+M
(f*g)(t):{b-(t—(T+B))—|—a-(B—A) T+M < t < T+D

If instead B < D < M we simply obtain
(fxg)t)= m-(t—(A+T)) T+B < t < T+D
m > a > b We have
no= me (= (T+A4)
Yo = m-t—(T+B))+a-(B-A)
73 = b-(t—(T+B))+a-(B—-A)
Clearly we have 7, > 3. So we have to decide for which ¢t we have
7 < s
m-(t—(T+A))
(m—10)-t

b-(t— (T +B))+a-(B—A)
T-(m—0b)+B(a—0b)+A(m — a)
B(a —b) + A(m — a)

m—>b

IA TN
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Again we set
B(b—a)+ A(a —m)
b—m
We have to decide, whether M < B and if not, whether M < D for
certain parameters. We have in particular b < m

B(b—a) + A(a —m)

M =

b—m s B
B(b—a)+Ala—m) > B(b—m)

B(m—a)+A(a—m) > 0

(A-B)la—m) = 0

m)
which is true in this case. So we have M < B.
So we have

(fxg)t)= b-(t—(T+B))+a-(B—A) T+B < t < T+D
Step 4: D<t-T
Again, we have by the monotonicity of g
(f*9)(t) = min{ inf {f(t—s)+g(s)} 9(t—=T)}

= min{ogggtf_T{f (t=s)+g(s)},
c-(t—(T+D))+bD—-B)+a-(B—A)}

Again we set

I':= inf {f(t—s)+g(s)}

0<s<t—-T

This can be further subdivided, setting

o= Jinf {m-(t—s—-T)+g(s)}
Ve = inf {m-(t—s-T)+g(s)}
Y o= ol {m-(t—s—T)+g(s)}
Vo= Ao {m-(t—s-T)+g(s)}

Obviously it holds T" = min{~v1, v, 3, Y4 }-

Y1, Y2, Y3 and 4 can be computed easily, since on the corresponding sets we
know (by construction) which part of f and ¢ is valid.

We have

71:0<1151£A{m (t—s—-T)4+0}=m-(t—(A+T))

and
v2=m-(t— (T + B)) +min{m,a} - (B — A)

95



o6

as seen in Step 3. For 73 and 4 we have to distinguish 2 cases, which is not
surprising.
We investigate 73

B o= (4= 5= T) 4 (s = B) +a- (5 4)
b>m

y3=m-({t—(T+B))+a-(B-A)
b<m

y3=m-(t—(T+D))+b-(D—B)+a-(B—A)
We now can rewrite 73 in order to get a formula, that covers both cases:
m-(t—(T+B))=m-(t—(T+D))+m(D - B)
S0 we can write
v3=m-(t— (T + D))+ min{m,b} - (D — B) +a-(B— A)
We investigate 7, in a similar manner.

Yo = D<isrift7T{m-(t—s—T)+c(s—D)+b-(D—B)+a-(B—A)}

c>m
ya=m-t—(T+B))+b-(D—B)+a-(B-A)

c<m
Yy=c-(t—=(T+D))+b-(D-B)+a-(B-A)

So we have
v4 =min{e,m}-(t — (T+D))+b-(D—B)+a-(B—A)

In order to compute I' = min{~;, ¥2,v3, 74} it is important, how the param-
eters relate to each other! Recall that we always assume a > b > ¢. We
consider four different cases:

a)a>b>c>m

We have
" m-(t— (T + A))
Y2 = m-(t—(T+A4)
v3 = m-(t—(T+ D))+ min{m,b}- (D —B)+a-(B—A)
Yo = m-(t—(T+D)+b-(D—-B)+a-(B—-A)

Obviously we have 3 < 74. So we have to decide when v, < 3.

m-(t — (T + A))
0

m-(t—(T+B))+a-(B—A)

<
< (B-4) (a—m)



This holds true in this case. So we have I' = ~;. Further we have
gt—T)=c-(t—(T+D))+b(D—B)+a-(B—A)> s So

(f *9)(t) = min{T, g(t = T)} =m - (t = (T + A))

a>b>m>c
We have

7w = m-(t—(T+A

( )
Yo = m-(t—(T+A

(

t

)
)
v3 = m-(t—(T+ D))+ min{m,b} - (D —B)+a-(B—A)
Yo = ¢c-(t—(T+D)+b-(D—B)+a-(B—-A)

Like in a) one shows v; < 3.
We investigate when 3 < ;4.

m- (t— (T + D)) c-(t— (T + D))
+m-(D—B)+a-(B—A) +b-(D—B)+a-(B-A)
(m—c)t < (T+D)(m—c)+ (b—m)(D — B)

IA

t < T+D+(b_m)(D_B)
m—c
We set, ; D_B
N b=m(D=B)
m—c

We have to decide when v; < 4.

m-(t—(T+A) < c-(t—(T+D))+b-(D—B)+a-(B— A)
(m—c)-t < Tim—c)+D(b—-c)+B(a—>b)+ A(m —a)
¢ < T+D(b—c)+B(a—b)+A(m—a)

m—c
where we have used m > ¢. We set
Db —c¢)+ B(a—0b)+ A(m — a)
m—c

We have to decide when D < O, since then '+ D < t < T + O is
another valid subcase.

O =

D(b—c)+ B(a—0b)+ A(m — a)

m—c

S
IN

Dm—c¢) < D(b—c)+ B(a—0b)+Alm —a)
0 < a(B—A)+bD—-B)+m(A—-D)
0 > b(B—D)+a(B—A)+m(D— A) (4.1)

o7



Note, that we have encountered this condition before, in Step 3 b), with
different inequality sign. We wanted to decide, whether M < D and this
condition was sufficient to guarantee this. So we have either M < D and
then O < D or M > D and then D < O.

One can show D + N < O in this case, since m > ¢; in particular this
implies D < O.

(b —m)(D — B) < D(b—c¢)+ B(a—0b)+ A(m — a)

D m—c - m—c
Dim—c¢)+(b—m)(D—B) < D(b—c¢)+ B(a—b)+ A(m —a)
0 < B(a—m)+ A(m —a)
0 < (a—m)(B—4)

Since N > 0, this means that one should be able to estimate (4.1) in this
case, showing it to hold.
Since 71 < 3, we have for T+ D <T+ D+ N<T+ O

m-(t— (T +A)) T+D < t<T+D+N
. m-(t—-(T+A) T+D+N <t <T+O0
()= ¢t~ (T + D)) om
+b-(D-B)+a-(B-A) T+0 <t
c)a>m>b>c
We have

v = m-(t—(T+A)

Y2 = m-(t—(T+A)

v = m-{t—(T+D))+b-(D—-B)+a-(B—A)

)
v = c-(t—(T+D)+b-(D—B)+a-(B—A)

Obviously we have v, < 3. As in b) we have

TS M
m-(t—(T+A4) < ¢-t—(T+D))+b-(D—B)+a-(B—-A)
(m—c¢)-t < T(m—c¢)+D(b—c)+ B(a—0b)+ A(m — a)
t < T+0
We set
O::D(b—c)—i-B(a—b)—f-A(m—a)

m—c
As in b we have to decide D < O, so we have to check for each parameter
set the inequality

b(B—D)+a(B—A) +m(D—A) <0



Recall, that we defined M and that either M, O < D or M,0 > D. We
can write

m-t—(T+A) T+D < t < T+0
(f+9)(t) {c-(t(T+D))
+b-(D-B)+a-(B-A4) T+0 < t

If O < D, then {t‘T+D§t§T+O}=(B, so we just have

(fxg)t) = c-(t=(T+D)+b-(D-B)+a-(B-A) T+D <t

m>a>b>c
We have
nmo= m-(t—(T+A4)
v = m-(t—(T+B))+a-(B—A)
v3 = m-(t—(T+D))+b-(D—B)+a-(B—A)
Y = c(t—T+D)+b-(D—-B)+a-(B—-A)

We can rewrite v;:

v = m-(t—(T+B))+a-(B—A)
= m-t—(T+A)+(ea—m)-(B-A)

Clearly, since a < m, we have v, < 7;; obviously, 74 < 7y3. So we have to
discuss v2 < ;4.

m-(t—(T+B))+a-(B-A) < +b_(gf;)(£:.?g_m
(m—c)-t < Tm—c¢)—cD+mB+b-(D— B)
P o< T+B(m—b)+D(b—c)

m—c

We set,
B(m —b)+ D(b—c)

m—=c

P .=

We have to decide, if P < D.
B(m —b)+ D(b—c)

m—c =D
B(m—=b)+D(b-c¢) < D(m-c)
(B-D)(m—1b) < 0

This is satisfied, since m > b and B > D. We conclude

(fxg)t)= ¢-(t—(T+D))+b-(D—B)+a-(B—A) T+D <t

29
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We obtain the claim by collecting all the results from the corresponding cases in
each step. [l

Now we can again collect all the piecewise linear functions appearing in the proof.

m() = m-(@t—(T+A))

ne(t) = min{a,m}- (t — (T + A))

ns(t) = m-(t— (T + B)) +min{a,m} - (B — A)

na(t) = min{b,m}(t— (T + B))+a-(B— A)

ns(t) = m-({t— (T + D))+ min{b,m} - (D—B)+a-(B—A)

ns(t) = min{c,m} -t —(T+D))+b-(D—B)+a-(B—-A)
We have

(f * g)(t) = min{n: (£) ", m2(6) ", s (6) ™, ma(8) ™, ms (£) ™, me () T}

where h(t)™ = max{0, h(t)}. There seems to be a pattern that allows us to con-
struct these piecewise linear functions from the original functions f and g.



1 o IR
_ - — m
T+ A ' T+A T+0 '!
(f + 9)(0) | (f * 9)(1)
b ‘ )
m n m
T+A T+M T+D T A T+o 't

(f = 9)()
b

a

T+A T+B T+D 1t

Figure 4.12: Graphs of (f * g) in the Various Cases Scaled Better
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4.4 Two Nonconvex Piecewise Linear Functions With
2 Slopes

We investigate the min—plus convolution of the parameterized families of functions f
and g. Their graphs are depicted below.

f(z) 9(x)

T U v A B v

Figure 4.13: Two Nonconvex Piecewise Linear Functions

The functions’ formal definition is:

0 z < T
flz) = m-(x=T) T < z < U
n(x-U)+m(U-T) U < x
and
0 r < A
g(x) = a-(z—A) x < B
x

A <
b-(x—A)+a(B-—A) B <
<

In the following we assume m >n and a > b, as wellas 0 <T < U and 0 < A < B. We

want to compute for all £ € R the following quantity:

(f+9)(t) = inf {7t~ 5)+ 9(5))

that is the min—plus convolution of f and g. It turns out that for the min—plus convolu-
tion of these two functions the relation of B — A and U — T will be very important for
some parameter sets, so we distinguish two subcases for each parameter set.

Without loss of generality we may assume a > m, since if a < m we simply interchange
the roles of g and f, renaming the corresponding parameters!

We will derive the following formulas for the min—plus convolution:

a>b>m>n B—-—A>U-T

0 t
(fx9)t) = mt—(T+A) T+A < t
n-(t—(A+0)+m(U-T) U+A < t

T+A
U+ A

IAIN
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a>b>m>n B-—A<U-T

0 t <
(f*g)(t)—{ m(t—(T+A4) T+A < t <
n-t—(A+0)+mU-T) U+A < t
a>m>b>n B—-—A>U-T
0 t <
(f*g)(t)—{ mt—(T+A4) T+A < t <
n-t—(A+0)+mU-T) U+A < t
a>m>b>n B—A<U-T
(a—=b)(B—A)+(b—m)(U-T)<0
We set
g B(a—bzn-f-_/z(m—a)
Vo Tim—=0b)+U(n—m)+ B(a—b)+ A(n — a)
T n—b
0 t <
m-(t—(T+A4) T+A4 < t <
(f*g)(t){b-(t(T-l—B))-i—a-(BA) T+S < t <
n-{t—(A+0U))+mU-T) Vo<t
a>m>b>n B—-A<U-T
(a=b)(B—A)+b-—m)(U-T)>0
0 t <
(f*g)(t):{ m-(t—(T+A) T+A < t <
n-t—(A+U0)+m(U-T) A+U < t

T+A
U+A

T+ A
U+ A

T+ A
T+S

T+ A
A+U
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a>m>n>b B—-—A>U-T
We set
M::T(m—b)—|—B(a—bil+_12(n—a)—|—U(n—m)
t <
(t—(T+A)) T+A <t <
(f*g)(t){ (t—(A+U)) mU-T) U+A < t <
b-(t—(T+B)+a(B—4) M < t
a>m>n>b B—A<U-T
(a=b)(B-A)+b-—m)(U-T)<0
0 t <
(f*g)(t)={ m-(t—(T+A4) T+A < t <
b-(t—(T+B)+a-(B—A) T+8 < t
a>m>n>b B—-—A<U-T
(a—b)(B—A)+b—m)(U-T)>0
We set
5 .= B(a—bzn-i—_fz(m—a)
Vo Tim—=0b)+U(n—m)+ B(a—b)+ A(n — a)
o n—=b
t <
B (t—(T+A)) T+A < t <
U*90=0 0t (as0)smu-T) A+U <t <
b-(t—(T+B))+a-(B—A) Vo<t
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Proof
STEP 1

We wish to compute

(F+9)(t) = inf {7t~ 5)+ 9(5))

As already mentioned, we have f x g > 0 in our case. We will compute f % g in steps.
We note that t —s < T iff s >t —T.

Step 1: t—T < A
We have

(fx9)@) = inf {f(t—s)+g(s)}

0<s<t

= min{ inf {f(t—s)+g(s)}, inf {S(t—s)+9g(s)}}
= min{ inf {f(t—s)+g(s)}, Inf {g(s)}}
= min{ _inf {f(t —s)+g(s)},0}
= 0 o
Step 2: A<t—T<B
(fxg)(t) = nf {f(t—s)+9(s)}
— min{__inf (£t~ + 9}, _nf_{/(t=5)+9(=)}}
= win{_inf {£(t=5)+9(5)}  inf {f(t=5)+9(5)}, inf_{9()}}
= min{f(t—A), inof {f({t—s)+g(s)}g(t-T)}
= min{f(t —4), inf {f({t—s)+g(s)ha (=T +A)}
where we have used the monotonicity of both f and g.
We have
m-(t—(T+A) T+A t < U+A

ININA
o~

f(t_A):{n.(t_(A+U))+m-(U—T) U+A
We set
[:= inf {f(t—s)+g(s)}

A<Ls<t—T

Then, clearly

(f x9)(t) = min{f(t — A),a-(t - (T + A)),T'}
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In order to compute this quantity we have to decide, if t — s = U is possible, since
at this point f changes its behavior. ¢ — s = U is equivalent to s =t — U. So we

set
no= Asisrg_U{f(t—s)—i-g(S)}
=gl U9 a)

For this to make sense, we require A <t —U, ie. A+U <t. Since T < U we
have A+ T < A+ U. But the other restriction on ¢ in this case is ¢t < T + B. So
we require A+ U <T+B,orU—-T<B— A.

A+ U <T + B In this case we have

no=  nf {f{t-s)+9(s)}
— B e V) U T) el )

We have the following subcases

a) a>n
Then a — n > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = A, yielding

n=n-t—-A+U))+mU-T)

b) a<n
Then ¢ — n < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — U, yielding

Yi=a-(t—(A+U)+m(U ~-T))

So we have
v =min{a,n} - (t—(A+U))+m({U -T)

For ~, we proceed in a similar manner.

= e )
- thisgith{m(t —s=T)+a(s - A)}

We have the following subcases

a) a>m
Then a — m > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s =t — U, yielding

Yo=a-{t—(A+U))+mU-T)
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b) a <m
Then a — m < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — T, yielding

T=a-(t=(A+T))
Sincea-(t—(A+T))=a-(t—(A+U))+a(U —T), we have
Yo=a-(t—(A+U))+min{a,m}- (U -T)

So we have
[ = min{vi, 72}

A+ U >T + B In this case the expression for ; does not make sense. Thus we only consider

T
o 0 o)
=, Jnf {m(t—s = T)+a(s - 4)}

We have the following subcases

a) a>m
Then a —m > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = A, yielding

re=m-(t—(A+T))

b) a<m
Then ¢ — m < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — T, yielding

n=a-(t—-(A+T))

So we have
' =min{a,m} - (t— (A+T))

Step 3: B<t—T

(f*9)(t) = inf {f(t—s)+g(s)}
= min{_inf (/(t—9)+ ()}, jnf_(/(0—9)+0()})
= win{ inf {f(t—5)+g(s)}, inf {f(t—s)+g(s)} inf_{g(s)}}
= min{f(t—A), inf {f(t—s)+g()}Lot-T)}
= min{f(t—4), inf {f(t—s)+g(s)},
inf {f(t—s)+g(s)},b-(t— (T+B))+a-(B— A}

B<s<t—T
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where we have used the monotonicity of both f and g.
We have

F(t— A) = m-(t—(T+A) T+A
C\n-t—-(A+U)+m-(U-T) U+A

IAINA
o~

Obviously we can also write
ft—A)=min{m-(t—(T+A),n-t—(A+U))+m-(U-T)}

We set
I = infB{f(t —s)+g(s)}

A<s<
and
Fpi= inf {f(t—s)+g(s)}

B<s<t—T

Then, clearly
(f *9)(t) = min{f(t — A),b- (t = (T + B)) +a- (B—A),I', 'z}

Note, that by U > T we have —U < —7T and thus t — U < ¢t — 7. In order to
compute I'y and I's, we have to consider the following two possibilities: t —U < B
and t — U > B, since at t — s = U f changes its behavior.

t — U < B In this case we have to split up I'; into v; and ~s:

no= Asislslg—U{f(t — )+l

= nf {n-(t—s-U)+mU -T)+a(s - A)}
2= t—UiISIESB{f(t B 8) T g(s)}

- t—UiISIESB{m (t=s=T)+als = A}

We have to compute v; and 7, as above. We will start with ~;.

a >n Then a —n > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = A, yielding

m=n-t—(A+U))+mU-T)

a <n Then a —n < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — U, yielding

n=a-t—=A+U))+mU-T)

So we have
vy = min{a,n}-(t — (A+U))+mU —-T)

Similarly we get for v,
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a>m a—m > 0 and in order to minimize the linear function we have to take
the lower bound, i.e. s =1t — U, yielding

Yo=a-t—(A+U))+mU —-1T)

a<m a—m < 0 and in order to minimize the linear function we have to take
the upper bound, i.e. s = B, yielding

Yo=m-(t—(T+B))+a(B—-A)

Further we have

Py = dnf {f(t—s)+9(s)}
= _inf {m-(t—s—T)+b(s— B)+a(B—A)}

As usual, we have two different cases:
b>m Then b — m > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = B, yielding
Fy=m-(t—(T+B))+a(B—-A)

b <m Then b — m < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — 1T, yielding

Fo=0b-(t—(T+B))+a(B—-A)
So we have
[y = min{b,m} - (t — (T + B)) + a(B — A)

We have to determine the minimum of 74, o, I's in order to compute the min—
plus convolution. This will be done below, since this heavily depends on the
choices of the parameters relative to each other.

t — U > B We have for I';

ro= (-8 + 0(s)
= AirslgB{n(t—s—U)-I—m(U—T)—i—a(s—A)}

As usual, we have two different cases:

a >n Then ¢ —n > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = A, yielding

Li=n-t-(A+0U))+m(U-T)

a <n Then a —n < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s = B, yielding

F'i=n-(t—-(B+U))+mU-T)+a(B - A)

69



70

So we have
Iy=n-(t—(B+U))+min{a,n}(B—A)+m({U —T)

In this case we have to split up I'y into 7, and ns:

mo= duf {f(t—s)+9(s)}

- B<isIg_U{n (t=s=U)+mU —T) +b(s — B) +a(B - A)}
n = Bgi!éft_T{f (t—s)+g(s)}

- thi<151£t7T{m ) (t -5 T) + b(s - B) + CL(B - A)}

We have to compute 7; and 7, as above. We will start with 7;.

b>mn Then b — n > 0 and in order to minimize the linear function we have to
take the lower bound, i.e. s = B, yielding

m=n-{t—(B+U))+m{lU-T)+a(B - A)

b<n Then b —n < 0 and in order to minimize the linear function we have to
take the upper bound, i.e. s =t — U, yielding

m=>b-(t—(B+U)+mU—-T)+a(B— A)
So we have
m =min{b,n}-(t— (B+U))+m{lU —T)+ a(B — A)

Similarly we get for 7o

b>m b—m > 0 and in order to minimize the linear function we have to take
the lower bound, i.e. s =t — U, yielding

n=>b-(t—(B+U))+m({U—-T)+a(B— A)

b<m b—m < 0 and in order to minimize the linear function we have to take
the upper bound, i.e. s =t — T, yielding

ne=>b-(t—(B+T))+a(B—A)

We have to determine the minimum of I'y, 71, 7, in order to compute the min—
plus convolution. This will be done below, since this heavily depends on the
choices of the parameters relative to each other.

Basically we now have everything to compute the min—plus convolution as the
pointwise minimum of the affine functions appearing in the above calculations.



STEP II

Now we just have to collect the appropriate pieces of information. Therefore we will
distinguish ” various ” cases.

t<T+ A We have
(f*g)(t)=0

T+ A<t<T+ B We have
(f*9)(t) =min{f(t — A), n(t),72(t),a- (t — (T'+ A))}
with

U+A
T+B

IAINA
IAIN

n-t—(A+0)+m-(U-T) U+A
1nit) = n-t—(A+0U))+mU-=T)
Tt) = a-t—(A+U))+mU-T)

{ m-(t—(T+A) T+A

Obviously we have vo(t) > v1(t) by a > n. First we have to decide for T+ A <
t<U+ A f(t—A) <7(b).

m-(t— (T + A)

) n-(t—(A+0U))+mU-T)
(m—mn)-t
t

—n-(A+U)+m(U + A)
A+U

VAN VARV

Looking at the definition of f(¢ — A), we realize that this computation was super-
fluous, Now we consider f(t — A) <a-(t— (T + A)) for T+ A<t <U+ A.

m-(t—(T+A4) < a-@t—(T+A4)

m

VAN

a

which holds in this case. Finally we have to consider f(t — A) < a- (¢t — (T + A))
forU+A<t<T+B.

n-t—(A+0)+mU-T) < a-(t—(T+A))
(n—a)-t < Aln—a)—T(a—m)+U(n—m)
Un—m)—T(a—m)

n—a

t

v

A+

since a > n. We set
Un—m)—T(a—m)

n—a

P .=
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I'+B<t<U+B

72

We have to answer the question, if P < U, since then A+ P < A+ U.
Un—m)—T(a—m)

n—a

Un—m)—T(a—m)
(U-=T)(a—m)
Since U > T and a > m this is satisfied. So we have

_ m-(t—(T+A) T+A
(f*g)(t)_{n-(t—(A—{—U))—i—m-(U—T) U+ A

U

U(n — a)
0

AVARLY,

U+ A
T+ B

IAIA
ININA

We have
(f*9)(t) =min{f(t — A),b- (¢t — (T + B)) +a- (B — A), 71,7, 2}

with
ft—A) = n-t—(A+U))+mU-T)
o= n-t—(A+U)+mU-T)
Yo = a-(t—(A+U))+mU-T)
'y = m-(t—(T+B))+a(B—-A)

Clearly, v < v and 'y <b-(t—(T+ B))+a-(B—A
m(t) < Ta(t)

n-(t—(A+0U)+mU-T) < m-(t—(T+B))+a(B—-A)
(n—m)-t < A(n—a)+ Bla—m)+U(n—m)
P> U+A(n—a7)l—|_—i(a—m)
We set 4 B
0. Aln=a)+ Ba—m)

n—m
We are interested, if () > B, since then ¢t > U+ Q > U+ B and hence not relevant.

A(n —a)+ B(a—m)

n—m B
A(n—a)+ B(a—m) < B(n—m)
(B—A)-(a=n) < 0

This is false, since a > n. So we have to decide, if U+ Q < B+ T.
A(n —a)+ B(a —m)

U+ —— < B+T
Un—-m)+An—a)+Bla—m) > (B+T)(n—m)
nU+A—-B-T)+m(T-U)+a(B—-A4) > 0
(a—n)(B—A)4+(n—m)(U-T) > 0 (4.2)



U+B<t

Now we use a > n and B— A > U — T to obtain

(a—=n)(B=A)+n-mU-T) > (a—=n)(U-T)+(n—-—m)({U-T)
= (a-m)(U-T)

Since a > m we have shown (4.2). That is,

(frg)t)=n-(—-(A+V))+mlU-T)

We have
(f *g)(t) = min{f(t = A),b- (t = (T'+ B)) + a- (B = A),I't,m,m2}
with
fE—4A) = n-t—(A+U)+mU-T)
I'' = n-t—(A+0)+mU-T)
m = n-t—(B+U)+mU-T)+a(B—-A)
n = b-t—(B+U)+mU-T)+a(B—-A)

Clearly we have n; < n,. We have to decide, for which ¢ I'; < 7, holds.

n-t—(A+0)+mU-T) < n-(t—(B+U))+mU-=T)+a(B-A)
0 < n(A-B)+a(B-A)
0 < (a—n)(B—A)

which is true in this case. We finally look at n- (t — (A+ U)) + m(U — T) <
b-(t—(T+B))+a-(B—A).

n-t—A+U)+mU-T) < b-(t—(T+B))+a-(B-A)
(n—0b)-t < An—a)+Bla—b)+U(n—m)+T(m—1>b)
P> An—a)+Bla—0)+U(n—m)+T(m—0b)

n—>ob

Setting
An—a)+Bla—b)+U(n—m)+T(m —0b)
n—=b

R =
we have to decide, if R < U + B.
An—a)+ Bla—b)+U(n—m)+T(m—b)

— < U+B
Aln—a)+Bla-b)+U(n—-—m)+T(m—->0) > (U+ B)(n—10)
m(T -U)+n(A-B)+a(B-—A)+bU-T) > 0
(a—n)(B=—A)+b-m)(U-T) > 0 (4.3)
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We can show (4.3), since B— A>U —T and a —n > 0. We get

(@—n)(B-A)+b-m)(U—-T) > (a—n)(U—-T)+b—m)U —T)
= (a=m)+(b—-n)(U-T)
> 0

since we have a > m and b > n! This yields

(fxg)t)=n-(t—-(A+U))+mU -T)

Now we collect the results in one final expression, obtaining

0 t < T+A
(f*g)(t)={ mit—(T+A) T+A <t < U+A
n-t—(A+0)+m(U-T) U+A < t

a>b>m>n B—-—A<U-T
t<T+ A We have
(f*xg)(t)=0
T+ A<t<T+ B We have
(f*9)(t) =min{f(t— A),L'(t),a- (t - (T +A))}
with

m-(t— (T + A))
m-(t— (T + A))

flt—A)
L(t)

Since a > m ['(t) < a- (t — (T + A)) holds. So we have
(fxg)t)=m-(t— (T +A))
T+ B<t<U-+B We have
(f *g)(t) =min{f(t = A),b- (t = (T + B)) + a- (B — A), 71,7, 2}

with

m-(t—(T+A4) T+A

t < U+A
ft=4) = {n.(t_(A—l-U))-i-m-(U—T) U+ A

t

IAIA

1 = n-(t—(A+U)+mU-T)
Yo = a-t—(A+0)+mU-T)
'y = m-(t—(T+B))+a(B-—A)
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Since A < B, we have T+ A < T + B and further U + A < U + B. So f
changes in this case. Since a > n, we have 7, < 7,. As above one computes
m-(t—(T+A)<n-t—-—(A+U)+m - (U-T)if t<A+U.

Now let B+T <t < A+U. Here we have f(t—A) < ;. We check if f(t—A) < Ts.

m-(t—(T+A) < m-(t—(T+B))+a(B-A)
0 < m(A—B)+a(B—-A)
0 < (B-—A)(a—m)

which is true in this case. We also check f(t—A) <b-(t—(T'+ B))+a-(B—A).

m-(t— (T + A))
(m—10)-t

b-(t—(T'+B))+a-(B—A)
T(m—0b)+ B(a—b)+ A(m — a)
B(a —b)+ A(m — a)

m—b

IAINA

t

v

T+

We set
5. B(a—b) + A(m —a)

m—>b
and want to know if S < B, since then T+ S < T + B.

B(a—b) + A(m —a)

m—b s B
B(a—b)+A(m—a) > B(m—b)
(a—m)(B-4) = 0

This is true, so we have
(fxg)t)=m-(t—(T+A) B+T<t<A+U

Now we investigate the case A+U <t < B+U. Here we have f(t—A) = y,. We
have to check if v, < T's.

n-(t—(A+U)+mU-T) < m-(t—(T+B))+a(B—A)
t > U+Q
with

Q= A(n—aiti(a—m)

We already showed above, that U + @Q < U + B. So we have to decide, if U + A <
U+Q,ie. A<Q.

A(n —a) + B(a—m)

4 < n—m
0 > A(m—a)+ B(a—m)
0 > (B—A)(a—m)
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which is false. Hence it is left to check if vy < b- (¢t — (T'+ B))+a- (B — A). But
clearly we have

m-(t—(T+DB))+a-(B-—A)<b-(t—(T+B))+a-(B-A)
and thus

(frg)t)=n-(t—(A+U)+mU—-T) U+A<t<U+B

We have
(fxg)t) =min{f(t—A),b-t—(T+B))+a-(B—A),['1,m,n}
with
ft—A) = n-t—-—(A+U)+m-(U-T)
' = n-t—(A+0)+mU-T)
m = n-t—(B+U)+m{U-T)+a(B—-A)
e = b-(t—(B+U))+mU-T)+a(B-A)

We have 71 < 1o. We have to decide when I'; < 7.

n-(t—(A+0)+m(U-T) < n-(t—(B+U)+m({U-T)+a(B—A)
0 < a(B—A)+n(A-B)
0 < (B—A4)(a—n)

This holds true for this parameter set. It remains to consider I'y < b- (¢t — (T +
B))+a-(B—A).

n-(t—(A+U))+mU —T) (t—(T+B))+a-(B—A)
i

AVARVAN

b-
R
with

An—a)+ B(a—b)+U(n—m)+T(m —b)

R := p—

we have to decide, if R < U + B.
A(n—a)+ B(a—0)+U(n—m)+T(m—0b)

S < U+B
An—a)+Bla—-b)+Umn—-—m)+T(m—->0) > (U+ B)(n—0b)
m(T—-U)+n(A=B)+a(B—A)+b(U-T) > 0
(a—n)(B-—A)+b-—m)(U-T) > 0 (4.4)

We can show (4.4); since B— A< U —T and b —m > 0. We get
(a—n)(B—A)+(b—-—m)(U-T) (a—n)(B—A)+ (b—m)(B - A)

((a—=m) +(b—n))(B - A)

0

v v



Hence we have

(fxg)t)=n-t—(A+U)+mU-T) U+b<T

Collecting the above results we have for this case

0 t < TH+A
(f*g)(t):{ mit—(T'+A4) T+A <t < U+A
n-(t—(A+0)+m(U-T) U+A < t

This is exactly the same transform as in the first case!

t<T+ A We have
(fxg)t)=0

T+ A<t<T+ B We have
(f*9)(t) =min{f(t — A), n(t),72(t),a- (t — (T'+ A))}
with

U+ A

{ m-(t—(T+A) T+A
n-(t—( T+ B

ft=4) = A+U)+m-U-T) U+A
i) = n-t—(A+U)+mU-T)
Yit) = a-t—(A+U))+m{U-T)

IAINA
IAINA

The whole argumentation now is analogous to the one in the case a > b > m > n,
since for the ¢ in question we have only used U > T, ¢« > m and a > n. So we have

m-(t—(T+A) T+A <t < U+A
(f*g)(t):{n-(t—(A+U))+m-(U—T) U+A <t < T+B

I'+ B<t<U-+B We have

(f xg)(t) = min{f(t — A),b- (¢t = (T'+ B)) + a- (B = A), 1,7, I}

with
ft—A) n-t—(A+0U)+mU-T
7 = n-(t—(A+U0)+mU-T
Yo = a-(t—(A+U))+m{U-T
Iy = b-(t—(T+B))+a(B-A)

7
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Note that now I'y is different from the one encountered in the case a > b > m > n.
Clearly, we have v; < 4, since a > n. So it remains to consider

n-t—(A+0)+mU-T)
(n—»0)-t

b-(t—(T'+B))+a(B—A)

An—a)+ Bla—b)+T(m—1>b)+U(n—m)

An—a)+B(a—b)+T(m—0b)+U(n—m)
n—>b

IN A

t

v

where we used b > n. Setting

An—a)+Bla—b)+T(m—0b)+U(n—m)

K =
n—>ob

we have to decide, if K <T + B.

An—a)+Bla—b)+T(m—-0)+U(n—m) > (T+ B)(n—1b)
a(B—A)+m(T-U)+n(A+U-T-B) > 0
(a—n)(B—A)+(n-m)(U-T) > (4.5)

Since a > n and B — A > (U — T) we can further estimate (4.5)

(a—=n)(B=A)+(n—m)(U-T) (a—m)(U-T)

0

AV

since ¢ > m and U > T, thus showing K < T 4+ B. So we have

(fxg)t)=n-(t—-(A+U)+mU-T)

We have
(f*9)(t) =min{f(t — A),b- (¢t — (T + B)) +a- (B —A),I'1,m,n}
with
fE—A4) = n-t—A+U)+mU-T)
' = n-(t—(A+U)+mU -T)
M n-(t—(B+U)+mU-=T)+a(B—-A)
n = b-(t—(T+B))+a(B—-A)

Note that only 7 changed comparing to the case a > b > m > n. We have to
decide, for which ¢ I'; < n; holds.

n-t—(A+0)+mU-T) < n-(t—(B+U))+mU-=T)+a(B-A)
0 < n(A—B)+a(B-A4)
0 < (a—n)(B—A)



which is true in this case. We finally look at

n-t—A+U)+mU-T) < b-(t—(T+B))+a-(B-A)
(n=0b)-t < Aln—a)+Bla—b)+U(n—m)+T(m—1>)
P> An—a)+Bla—0)+U(n—m)+T(m—0b)

n—=b

Setting
An—a)+Bla—b)+U(n—m)+T(m —0b)
n—=>bt

R :=

we have to decide, if R < U + B.

An—a)+ Bla—b)+U(n—m)+T(m—b)

— < U+B
An—a)+Bla—-b)+Um—-—m)+T(m—->b) > (U+ B)(n—0b)
m(T -U)+n(A-B)+a(B-—A)+bU-T) > 0
(a—n)(B=—A)+b-—m)U-T) > 0 (4.6)

We can show (4.6), since B— A>U —T and a —n > 0. We get

(a—n)(B-A)+b-m)(U-T) > (a—n)({U-T)+b—-m)(U-T)
= ((@=m)+(b-n)U-T)
> 0

since we have a > m and b > n! This yields
(fxg))=n-C—-(A+U))+mU-T)

Now we collect the results in one final expression, obtaining

0 t
(f*g)(t)={ mt—(T+A) T+A < t
n-t—(A+U)+m(U-T) U+A < t

T+ A
U+ A

IAINA

a>m>b>n B—A<U-T

t<T+ A We have
(f*g)(t)=0

T+ A<t<T+ B We have
(f % g)(t) =min{f(t — A),['(t),a- (- (T + A))}

79



IT'+B<t<U+B

80

with
ft—A) = m-(t—(T+A4)
I't) = m-(t—(T+A))
Since a > m I'(t) < a- (t — (T + A)) holds. So we have
(f*g)(t) =m-(t—(T+A))
We have
(f *9)(t) = min{f(t = A),b- (t = (T'+ B)) + a- (B = A),m,72, I}
with
_ m-(t—(T+A) T+A
fle=4) = {n(ﬁ4A+UD+m(U—T) U+A
o= n-(t-(A+U))+m{U -T)
Yo = a-(t—(A+0))+mU-T)
'y = b-(t—(T+B))+a(B-A)

t < U+ A
t

INIA

Note that only I'y changed comparing to the situation for a > b > m > n.

Since A < B, we have T+ A < T + B and further U + A < U + B. So f
changes in this case. Since a > n, we have 7, < 7,. As above one computes
m-(t—(T+A)<n-t-—A+U)+m-U-T)ift <A+ U.

Now let B+7T <t < A+U. Here we have f(t—A) < ;. We check if f(t—A) < T%s.

m-(t—(T+A))
(m—10)-t

b-(t— (T +B)+a-(B—A)
T(m —b)+ B(a —b) + A(m — a)
B(a—b)+ A(m — a)

m—b

<
<

t

IN

T+

We set
B(a —b) + A(m — a)

m—b
and want to know if S > B, since then T4+ S > T + B.

B(a —b) + A(m — a)

S =

m—b = B
B(a—b)+A(m—a) > B(m—b)
(a=m)(B-4) > 0

This is true since a > m and B > A. We now have to decide if T+ S < A+ U.
Tim—-b+Bla-b+Am—-a) < (A+U)(m—10)

a(B—A)+b(-T—-B+U+A)+m(T—-U)

(a—b)(B—A)+(b—m)(U-T)

VANVAN

0 (4.7)



Since b—m < 0 and a — b > 0, we can not estimate this in general. We choose for
example U =T =k(B—A), k>1,a=4,b=1and m = 3. Then (4.7) becomes

(B — A)(3 — 2k)

Since B > A, we get different signs for appropriate choice of k. So we have the
follwing subcases:

i)

(a—b)(B-A)+b-—m)(U-T)<0
i)

(a=b(B—-A)+b—m)(U-T)>0

For A+ U <t < U+ B we have to decide, if
n-(t—A+U)+mlU-T) < b-(t—(T'+DB))+a(B-A)
(n—=0b)-t < T(m—>0)+U(n—m)+ B(a—>b)+ A(n—a)

Tm—=b)+U(n—m)+ B(a—b)+ A(n — a)
n—>b

-
v

We set
T(m—b)+U(n—m)+ B(a—b)+ A(n —a)

V=
n—=b

We have to decide, if V < A+ U.
T(m—=b)+U(n—m)+ Bla—10b)+ A(n — a)
a(B-—A)+b(-T+U+A—-B)+m(T-U)

(a—b)(B—A)+ (a—m)(U-T)

This holds true, since A > B,U > T,a > b and a > m.

We are also interested if V < T + S

Tim—=0b)+U(n—m)+ B(a—b)+ A(n —a)

(A+U)(n—1b)

AVARAVARLVS
o

n—=b -
T B(a — b7)n+_f;(m —a)
(T(m—=0b)+U(n—m)+ Bla—b)+ A(n—a))(m—>) >
(T'(m—b)+ B(a—b) + A(m — a))(n — b)

T(m—0b)(m—n)+U(n—m)(m—>0)+Bla—b)(m—n
+A((n = a)(m —b) = (m —a)(n —b)
(U-T)(n—m)(m—">)+ B(a—0b)(m—n)+ A(a —b)(n —m
(U—-T)(n—m)(m—>b)+ (B — A)(a—b)(m—n

)
(n—m) (U =T)(m—b)+ (B~ A) (b~
U - ﬂ@lb)(B A) b~
( (

B—A)a—b)+{U-T)b—m

Q
~—
e N e N N N N

IV IAN IV IV IV IV
o oo o o o

Q
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This is exactly (4.7) with the opposite inequality sign. So if we have T4+S < A+U
then we get automatically 7+ S <V < A+ U!
So if (4.7) holds, the min—plus convolution reads

m-(t—(T+A) T+B <t < T+S
(fxg)t)=< b-(t—(T+DB))+a-(B-—A) T+S <t <V
n-(t—(A+0U))+m{U-T) V <t < U+B
If (4.7) is false, we get instead
B m-(t—(T+A) T+B < t < A+U
(f*g)(t)_{n-(t—(A—|—U))+m(U—T) A+U < t < U+B

Remark

Remark 4.4 It follows from this behavior that it is possibly impossible to esti-
mate the number of slopes occuring in the min-plus convolution beforehand. It
heavily depends on the parameters. It is not clear if one can find a general formula
like (4.7) in order to decide the number of slopes in the result.

We have

(f *9)(t) = min{f(t — A),b- (t = (T'+ B)) + a- (B = A),I't, m1, 7}

with
fE—A) = n-t—(A+U)+m-(U-1T)
' = n-t—(A+0)+mU-T)
m = n-(t—(B+U)+m({U-T)+a(B—-A)
n = b-(t—(B+T))+a(B—-A)

Note that only 7y changed comparing to the casea >b>m>n, B—A<U—-T.
We can rewrite I'y

n-t—(A+0)+mU-T)=n-(t—(B+U))+mU—-T)+n(B—-A)

Since a > n and B > A we immediately realize I'1 < 7;. So we have to decide for
which ¢ we have [y (t) < no(t).

n-t—(A+U0)+m(U-T) < b-t—(B+T))+a(B-A)

We have already done this in for A+ U <t < U + B; we have I';(t) < n(¢) iff
t > V. Recall, V < A+ U and since A+ U < U + B we have independent of (4.7)

(fx9)t)= n-(t—(A+U)+m(U-T) U+B < t



So we collect the results:

a>m>b>n B—-—A<U-T
(a—b)(B-—A)+b—m)(U-T)<0

0 t < T+A
_ m-(t—(T+A) T+A < t < T+S
U*)O=9 4.t T+B)+a-(B-4) T+5 <t <V
n-t—(A+0U))+mU-T) Vo<t
with
g B(a—bzn-f-_/z(m—a)
Vo T(m—b)+U(n—m)+ B(a—b)+A(n— a)
o n—>b
a>m>b>n B-A<U-T
(a=b)(B—-A)+b-—m)(U-T)>0
0 t < TH+A
(f*g)(t):{ m-(t—(T+A4) T+A <t < A+4U
n-t—(A+0)+m(U-T) A+U < t

a>m>n>b B—-—A>U-T

t<T+ A We have
(fxg)) =0

T+ A<t<T+ B We have
(f*9)(t) = min{f(t — A),71(?),72(t),a- (t = (T + A))}
with

U+ A
T+ B

m-(t—(T+A) T+A

ft=4) = {n.(t_(A+U))+m-(U—T) U+A
n) = n-@t—(A+0)+mU-T)
Yt) = a-t—(A+U))+mU-T)

IAIN
IAINA

The whole argumentation now is analogous to the one in the case a > b > m > n,
since for the ¢ in question we have only used U > T, ¢« > m and a > n. So we have

m-(t—(T+A4) T+A <t < U+A
(f*g)(t):{n-(t—(A+U))+m-(U—T) U+A < t < T+B
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I'+ B<t<U-+B We have
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(f *+9)(t) = min{f(t = A),b- (t = (T'+ B)) + a- (B = A),;m,7, I}

with
fE—A4) = n-t—A+U)+mU-T
v = n-(t—(A+U)+mU-T
Yo = a-(t—(A+U))+m({U-T
Iy = b-(t—(T+B))+a(B—-A)

Since a > n, we have y; < 5. So we have to decide, if y; < T's.

n-(t—(A+U)+mU-T) < b-(t—(T+B))+a(B—-A)
(n=b)-t < T(m—>b)+B(a—b)+ A(n—a)+U(n—m)
¢ < T(m—b)+ B(a—0b)+ A(n —a)+ U(n —m)

n—=b
where we used n > b. We set

T(m —b)+ B(a—0b)+ A(n —a)+U(n —m)

M =
n—>o

First we have to estimate whether 7'+ B < M.

(T'+B)(n—b) < T(m—-b)+Bla—b)+An—a)+U(n—m)
0 < a(B=-A)+m(T-U)+n(A-—B+U-T)
0 < (B=A)a—n)+U-T)(n—m)

Since B—A>U—T and a —n > 0 we get

(B=A)(a—n)+ (U-T)(n—m) U-T)(a—n+n—m)

(U =T)(a—-m)

v

This last expression is nonnegative, thus we have 7'+ B < M. Now we want to
decide if U+ B < M.

(U+B)(n—b) < T(m—>b)+B(a—>b)+An—a)+U(n—m)
0 < a(B-A)+bU-T)+m(T-U)+n(A—- B)
< (a—n)(B—A)+(b—m)(U-T) (4.8)
We have

(@a—n)(B—A)+ (b—m)(U—-T) (a—n)U-T)+(b-—m)(U-T)

(@a—n+b—m)(U-T)

v



Here we again encounter the problem, that this can not be shown to be nonnegative
in general. Take for example b = 1,n = 2, m = 4,a = 4.1. Further, with this choice
and (B—A)=k(U—-T), k > 1, (4.8) becomes

(U — T)(2.1k — 3)

Since U > T, we get different signs for adequate choices of the parameter k. Hence
we will have to distinguish in each case another set of cases, namely

(a—n)(B—A)+(b—m)({U—-T)>0

(f*xg)t)= n-t—(A+U)+m-U-T) T+B <t < U+B

i)
(a—n)(B—A)+0b-m)(U-T)<0
We get
n-t—(A+0)+mU-T) T+B < < M
(f*g)(t):{ b-(t — (T + B)) +a(B — A) M <t < U+B

Note that in the case a > m >b>n,B— A > U — T we derived instead of (4.8):
(a=n)(B=A)+(n—m)(U-T)>0

Now, since b < n we get b — m instead of n — m and thus can not estimate the
expression like we did before:

(a—n)(B=A)+n-m)(U-T) > (a—n+n—m)({U-T)
= @-mU-T) >0

U+ B <t We have
(f %9)(t) = min{f(t = 4),b- (¢ — (T + B)) +a- (B - A), T, m,m}
with
ft—A) = n-t—-(A+0))
Ty = n-(t—(A+0))

m = b-(t-(B+U))
o= b-(t-(B+T))

+m(U —T)
+m(U —T)
+ (U T) +a(B - A)
+a(B - 4)

We can rewrite 7, and obtain

b-(t—(B+T))+a(B—A)=b-(t— (B+U))+bU —T)+a(B— A)
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Since b < m we have 7, < 7;. So we have to decide, for which ¢ we have I';(t) <
n2(t). We have already computed this above. There are two cases: If (4.8) holds,
then U + B < M and we get

n-t—(A+0)+m(U-T) U+B <t < M
(f*g)(t)Z{ b-(t— (T + B))+a(B - A) M <t
If (4.8) is wrong, then m < U + B and we get
(fxg)t)=b-t—T+B)+a(B-—A) U+B <t
So we collect the results:
a>m>n>b B—-—A>U-T
(a—n)(B—A)+(b—m)(U-T)>0
0 t < THA
_ m-t—(T+A4) T+A <t < U+A
F)B =3 p b= (A+U) +m-U-T) U+A < t < M
b-(t—(T+ B))+a(B—-A) M <t
with
M::T(m—b)+B(a—bzﬂb—|—_12(n—a)+U(n—m)
a>m>n>b B-—A>U-T
(a—n)(B—A)+(b-—m)(U-T)<0
0 t < TH+A
_ m-t—(T+A4) T+A <t < U+A
FrOO=1 A+ U)+mU-T) U+A < t < M
b-(t—(T+ B))+a(B—-A) M <t

with
T(m —b) + B(a—b)+ A(n —a) +U(n —m)

M =
n—=b

Surprisingly one gets the same expression for the min—plus convolution! So the sign of
(a—n)(B—A)+(b—m)(U —T) plays only a role in deciding if M <T+Bor M > T+ B.
So we have the following result result

a>m>n>b B—-—A>U-T

0 t < T+A
B m-(t—(T+4) T+A <t < U+A
F)O =0 p = (A+U)+mU-T) U+A < t < M
b-(t—(T+B)+a(B-—A) M < t
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with
T(m —b) + B(a—0b)+ A(n —a)+ U(n —m)

M =
n—>ob

a>m>n>b B—-—A<U-T

t<T+ A We have
(f*g)(t)=0

T+ A<t<T+ B We have
(f*9)(t) =min{f(t—A),L'(t),a-(t— (T+A))}
with

Jt=4) = m-(t— (T +4)
() = m-(t— (T +A)
Since a > m ['(t) < a- (t — (T + A)) holds. So we have
(f % 9)(t) = m - (t = (T + A))
'+ B<t<U-+ B We have
(f # 9)(t) = min{f(t = A),b- (t = (T + B)) + a- (B — A), 71,7, T}
with

ft—A) =

v = n-(t—(A+0))+mU-T)
Yo = a-(t—(A+0))+mU-T)
I'y = b-(t—(T+B))+a(B—-A)
Since A < B, we have T+ A < T + B and further U + A < U + B. So f
changes in this case. Since a > n, we have 7; < 7. As above one computes
m-(t—(T+A))<n-t—A+U)+m-(U-T)ift<A+U.
Now let B+7T <t < A+U. Here we have f(t—A) < ;. We check if f(t—A) <T,.

m-(t—(T+A)) b-(t—(T+B))+a-(B—-A)

(m—"0)-t T(m —b)+ B(a—b) + A(m — a)
B(a—b) + A(m —a)
m—=b

t < U+ A

{ m-(t—(T+A) T+A
n-(t—( t

A+U)+m-(U-T) U+A

IAIA

IA TN

t

IN

T+
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We set
B(a —b) + A(m — a)

m—>b
and want to know if S > B, since then T4+ S > T + B.

B(a—b) + A(m —a)

S =

m—b 2 B
B(a—b)+A(m—a) > B(m—b)
(a—m)(B-4) = 0

This is true since a > m and B > A. We now have to decide if T+ S < A+ U.

T(m—b)+Bla—b)+Am—a) < (A+U)(m—>b)
a(B—A) +b(-T—-B+U+A)+m(T-U) < 0
(a=b)(B-—A)+b-—m)(U-T) < 0 (4.9)

Since b—m < 0 and a — b > 0, we can not estimate this in general. We choose for
example U =T =k(B—A), k>1,a=4,b=1and m = 3. Then (4.9) becomes

(B — A)(3 — 2k)

Since B > A, we get different signs for appropriate choice of k. So we have the
follwing subcases:

i)
(a=b)(B—-A)+0b—m)(U-T)<0

)
(a—b)(B—A)+(b-—m)U—-T)>0

For A+ U <t < U+ B we have to decide, if

n-(t—(A+U)+mU-T) < b-(t—(T+B))+a(B-A)
(n—=0b)-t < T(m—>0)+U(n—m)+ Bla—>b)+ A(n—a)
P < T(m —b) +U(n —m) + B(a—b) + A(n — a)

n—=b

Note that in contrast to the case a > m > b > n, B— A < U — T the inequality
sign does not change since now n — b > 0! We set

Tm—-b)+U(n—m)+ B(a—0b)+ A(n —a)

V= p—

We are interested if V < U + B.

Tm—b)+U(n—m)+Bla—b)+An—a) < (U+ B)(n—-"0)
a(B—A)+b(U—-T)+m(T-U)+n(A—B) < 0
(a—n)(B-—A)+b-m)(U-T) < 0



We have to decide, if V < A+ U.

Tim—-b+Un—-—m)+Bla—b)+An—-a) < (A+U)(n—0>)
a(B—A)+b(-T+U+A-B)+m(T-U) < 0
(a—b)(B-—A)+0Ob-m)(U-T) < 0

This is again the condition (4.9).
We are also interested if V < T + S.

T(m—b)+U(n—m)+ B(a—b) +A(n—a)
n—>b

(m — a)

N

T+B(a—b)+

(T(m—0b)+U(n—m)+ B(a—b)+ A(n—a))(m—1>
(T(m—-b)+B(a—b)+ A

(=)

3

Av|
AN

m — a))(n — b)

T(m—"0b)(m—n)+U(n—m)(m—>)+ Bla—0b)(m—n)
+A((n —a)(m —b) = (m—a)(n—b)) < 0
(U-=T)n—m)(m—>0b)+B(a—b)(m—n)+ Ala—b)(n—m) < 0
(U =T)(n—m)(m—b)+ (B - A)(a—b)(m—n) <0
(n—m)(U-T)(m—=b)+(B-A)b—-a)) < 0
(U =T)(m—b) + (B A)b—a) = 0
(B-A)(a—-b)+U-T)b—m) < 0
This is exactly (4.9).
So if (4.9) holds, we have V <T + S < A+ U.
the min—plus convolution reads
B m-(t—(T+A) T+B <t < T+S
(f*g)(t)_{b-(t—(T+B))+a-(B—A) T+S < t < U+B
If (4.9) is false, we get instead for A+ U <T+S<V <U+ B.
m-(t—(T+A4) T+B <t < A+4+U
(f*g)(t){ n-t—(A+U0)+mU-T) A+U < t <V
b-(t—(T+B))+a-(B-A) V <t < U+B
If (4.9) is false, we get for A+ U <T+S<U+B<V.
B m-t—(T+A4) T+B <t < A+4+U
(f*g)(t)_{n-(t—(A+U))+m(U—T) A+U < t < U+B

Note that we can not estimate in general, if V < U + B.
If we choose b=1,m=4,a=5and (U—-T)=k(B— A), k > 1, then we have

(a=n)(B—A)+(b-—m)(U-T)=(B—-A)(5—n—3k)

Choosing for example £ = 1.1 and n = 1.1, this is positive, whereas e.g. the choice
k =2 and n = 1.5 yields a negative number.
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U + B <t We have
(f*xg)t) =min{f(t—A),b-t—(T+B))+a-(B—A),['1,m,n}
with
fE—A) = n-t—(A+U))+m (U T)
Iy = n-t=—(A+0)+mU-T)
m = b-(t—(B+U))+mU-T)+a(B-A)
e = b-(t—(B+T))+a(B—-A)
We can rewrite 7y
b-(t—(B+T)+a(B—A)=b-(t—(B+U))+bU—-T)+ a(B— A)

Since b < m and U > T we immediately realize 17, < n;. So we have to decide for
which ¢ we have 'y (t) < ().

n(t—(A+U)+mU—-T) < b-(t—(B+T))+a(B— A)

We have already done this for A+ U <t < U+ B; we have I'; (t) < no(t) iff t < V.
If V < U + B, then we have

(fxg)(t)=b-(t—(B+T)+a(B~4) U+B < t
else we get

n-t—(A+0)+m(U-T) U+B <t <V
(f*g)(t)={ b-(t—(B+T))+a(B—A) Vo<t

So we collect the results:

We set
g B(a—bzn—%_/z(m—a)
Vo T(m—0b)+U(n—m)+ B(a—b)+ A(n — a)
o n—=b
a>m>n>b B-A<U-T
(a—b)(B—A)+(b—m)(U—T)§O
t < T+A
(f*g)(t)—{ (t—(T+A)) T+A <t < T+S
b-(t—(T—|—B)) a-(B—A) T+S < t
a>m>n>b B-A<U-T
(@a=b)(B=A) +(b—m) U =T) >0
0 t < T+A
m-(t—(T+A T+A <t < A4U
(Fx9)(t) = n-(t—(A—i-U))(—i-m((U—J)“; AYU <t < V
b-(t—(T+B))+a-(B—A) Vo o<t
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4.5 Realizing the pattern

In this section, we describe the pattern found after carefully looking at the results from

the previous calculations.

We want to compute the min—plus—convolution of the following two functions f and g,

where A; > A; and B; > B; if i > j:

(0 t
ao'(t—Ao) A() < t
_< ao'(Al—A0)+al'(t—A1) AO S t
Qg - (A1 - Ao) +aq - (A2 - Al) + ...+ a1 (t - Anfl) An,1 S i
\ao-(Al—A0)+a1-(AQ—A1)+...+an-(t—An) An S 14
(0 t
bo - (t — Bo) By < t
bo - (Bi — By) + by - (t — By) By < t

bo-(By— Bp) +b1-(By—By)+...4+by1-(t—Bn1) Bn
b+ (By — By) + by - (By— B1)+...+b,- (t— By) B,

IAIN

\

VASIVANIPAN IA IAIA IA

IN

By
By
By

By,

We assume that the functions f and g are concave from Ag respectively By onwards, i.e.
we have a; < a; and b; < b; for j < ¢. In other words, we assume a, < ap,—1 < ... < a;

and b, < b, 1 < ... < b;. Furthermore we assume Ay < B, without loss of generality.

Proposition 4.5 The min-plus—convolution of f and g is given by

(£ +9)(®) = inf {f(t=5) +9(s)} = min{ (¢ = By), g(t — A0)}

Proof (f x g)(t) =0 for t < Ay + By (e.g. Kirchner or other papers...).
Let t > Ay + By and assume that

f(t—Bo) > g(t — Ao)

Let = be such that Ag + By + x < t. Then we have the following inequalities:

flt = Bo) = f(Ao) _  f(Ao+7)— f(Ao)

t— By — Ag - z
gt — Ag) —g(t — Ay — ) < g(t — Ay) — g(By)
x - t— By — Ag
f(t — Bo) — f(Ao) S g(t — Ay) — g(By)
t—By— A, =  t— B, A

Inequality (3) simply restates our assumption f(t — By) > g(t — Ayp).

(4.10)

(4.11)

(4.12)

Inequality (1) and (2) hold, since f respectively g are concave. We will give a proof

91



below.
We can write down a series of inequalities:

gt —Ag) —g(t — Ay — ) < g(t — Ay) — g(By)
T - t— By — Ap

f(t = Bo) = f(Ao)
t— By — Ao

f(Ag+ ) = f(Ao)

<

<

Mulitplying by = > 0 and rearranging we obtain
g(t = Ao) + f(Ao) < f(Ao+ ) + g(t — Ao — z)

Setting y := Ay + z and recalling f(Ap) = 0 we have

(1) gt —A40) < f(y) +9(t—1y)

Proof of inequality (1)

We have t > Ay + By. For x > 0 with t > Ag+ By + x we have Ay < Ag+x <t — By,
hence Ay + x can be written as unique convex combination of the points Ag and t — B,.
Therefore we need to solve the following:

A0+x:a-A0+(1—a)-(t—B0)

A simple computation yields

A0+I—t+Bo X
o= =1-—<1
Ao—t+B0 t—AO—BO
Hence we have .
l-a=————

Now we use that f is concave. Recall, that a function 7 is concave on [a, b], if for every
a € [0, 1] the following inequality holds:

a-na)+(1—-a) nb) <nle at(1-a)-b
Setting a = Ay and b =t — By, we obtain

f(Ag+1x) > af(Ao)+ (1 —a)f(t— By)

= f(Ao) - ﬁ - f(Ao) + ﬁf@ - By) (4.13)
= J(A0)+ ;=g =g (FE = Bo) = f(Ad) (4.14)

Rearraging yields inequality (1).
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Proof of inequality (2)

We have t > Ay + By. For x > 0 with ¢t > Ag+ By+2x we have By <t— Ag—z <t— Ay,
hence t — Ay — = can be written as unique convex combination of the points By and
t — Ay. Therefore we need to solve the following:

t—Ay—z=a-By+(1—a)-(t— Ay
A simple computation yields

o= —T = i <1
- By+Ay—t t—Ay— By —

Now we use that g is concave. Recall, that a function 7 is concave on [a, b], if for every
a € [0, 1] the following inequality holds:

a-n(a)+ (1 —-a)-nb) <nla-a+(1-a)-b)
Setting a = By and b =t — Ay, we obtain

gt —Ay—z) > ag(By)+ (1—a)g(t— Ay

= t—Ab:i—Bo -9(Bo) + (1 - ﬁ) -g(t — Ao) (4.15)
= gt = A0)+ ;= — 5 (9(B) = g(t = A0)) (4.16)

So we have
gt —Ag—x) — gt — Ao) > 9(Bo) — g(t — Ay)
e - t—AO _BO

Multiplying by —1 yields inequality (2).
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5 Conclusion

In this paper we considered possibilities to make the computation of the min—plus con-
volution easier. Our first ideas were to try to apply known results and techniques from
convex analysis. The Fenchel-Transformation seemed to be a very promising tool. The
computation of the Fenchel-Transformation is relatively easy and has a certain geomet-
rical interpretation. By applying the Fenchel-Transformation the computation of the
min—plus convolution is reduced to a pointwise addition. Also, we immediately have the
inverse transformation; we simply have to apply the Fenchel-Transformation again. But
in the course of our studies we found that it is not straightforward to extend the results
we obtained for convex functions to nonconvex ones.

Our first idea, decomposing a nonconvex function into its convex parts and apply the
Fenchel-Transformation on the convex parts did not work, since the Fenchel-Transfor-
mation was not compatible with the decomposition operation. Furthermore we showed
that the Fenchel-Transformation as a mapping from the min—plus algebra to the min—
plus algebra is nonlinear; so we started to look for a linear transformation. We were
not able to devise one, we could only develop ideas and desireable properties of such a
transformation.

In the last chapter we computed the min—plus convolution explicitly for certain rather
easy nonconvex functions. We aimed at understanding the influence of the parameters
of the functions on the convolution. We found a pattern which lead to a general equation
to calculate the min—plus convolution of such functions.
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