
Bridging the Gaps towards Structured Mobile SOA

Apostolos Papageorgiou
Technische Universität Darmstadt

Multimedia Communications Lab-KOM
Merckstr. 25, 64283
Darmstadt, Germany

Apostolos.Papageorgiou@kom.tu-
darmstadt.de

Bastian Leferink
B2M Software AG

Technologiepark Karlsruhe
Emmy-Noether-Str. 9, 76131

Karlsruhe, Germany

b.leferink@b2m-
software.de

Julian Eckert
Technische Universität Darmstadt

Multimedia Communications Lab-KOM
Merckstr. 25, 64283
Darmstadt, Germany

Julian.Eckert@kom.tu-
darmstadt.de

Nicolas Repp

Technische Universität Darmstadt
Multimedia Communications Lab-KOM

Merckstr. 25, 64283
Darmstadt, Germany

Nicolas.Repp@kom.tu-
darmstadt.de

Ralf Steinmetz
Technische Universität Darmstadt

Multimedia Communications Lab-KOM
Merckstr. 25, 64283
Darmstadt, Germany

Ralf.Steinmetz@kom.tu-
darmstadt.de

ABSTRACT
As the principle of service-orientation is gaining ground in a
significant number of emerging solutions, the definition of
standards coupled with the appearance of new architectures bring
a new era in software development. New technologies enable the
usage and composition of services in mobile environments, such
as PDAs or common cell phones, thus paving the way for “mobile
SOA”. However, the lack of middleware and technical solutions
and the limitation of SOA appliance only within enterprise
systems have forced mobile SOA to remain primitive. Mobile
services are being rather used with mashup techniques.
In this paper, we investigate in three steps how to move from
“unregulated mobile service mashing-up” to “structured mobile
SOA”. First, we give a roadmap, analyzing critical mashup issues.
Then, as a proof of concept, we describe a novel application,
named “Services To Go!”, which, based on the proposed
roadmap, provides a mobile client with various capabilities, such
as map-based services, location-based services, routing services,
social networking services, and more. In the third and last step,
we use the “Services to Go!” experience to introduce a proposal
for bridging the gaps between current mashing-up and structured
mobile SOA.

Keywords

1. INTRODUCTION
A wide range of issues have to be investigated before mobile,
resource-constrained devices become part of promising and
efficient Service-Oriented Architectures (SOA). However, the
special features (mobility, localization) and the people-centric
usage of such devices in everyday life present totally new
perspectives in innovative application development.
It may have been because of some standards, specifications and
prototypes (as they are described in [15]) that mobile devices
became SOA-capable, but parallel research on the fields of
service mashups and location-based services is also important in
order to drive mobile SOA to the most compelling functionality
attainable. Concerning the aforementioned issues, [5] can give an
overview of aspects of service mashups that concern us, while [2]
covers important issues of location-based services and their future
in mobile application development.
Mashing-up is sometimes conceived as an alternative solution to
SOA. However, as argued in [14], Web 2.0 concepts such as
mashups can be perfectly converged with SOA concepts towards
the vision of an Internet of Services. The meaning of service
mashup as we understand it, and as implicitly defined in [5],
supports the understanding of it as a part of an SOA.
Section 2 refers to related work on the different issues that we are
concerned with and discusses our contributions. In Section 3 we
focus on mashup issues that are critical for mobile SOA and in
Section 4 we examine further issues that make mobile SOA
special, efficient, and promising. The Sections 3 and 4 together
comprise a roadmap for the usage of mashups in mobile SOA,
which in turn is the basis of the roadmap for identifying the gaps
towards structured mobile SOA. Based on these analyses, our
reference application is described in Section 5, with the
description being limited to the architecture, exploitation of
services and capabilities. Based on the insights gained in Sections
3, 4 and 5, Section 6 concretizes particular gaps in mobile SOA
enabling technologies and describes our vision and our first steps

rst
Textfeld
Apostolos Papageorgiou, Bastian Leferink, Julian Eckert, Nicolas Repp, Ralf Steinmetz:Bridging the Gaps towards Structured Mobile SOA. In: The 7th International Conference on Advances in Mobile Computing & Multimedia (MoMM2009), p. 288-294, ACM, December 2009. ISBN 978-1-60558-659-5.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

towards bridging them. We conclude our paper with a summary in
Section 7.

2. RELATED WORK AND OUR
CONTRIBUTION
A good description of what a Web service mashup is and how it
differs from Web service compositions can be found in [5].
According to it, service mashups differ in that they alleviate the
burden of service composition with strict regulations and patterns
and they are therefore more easily implemented by less
specialized developers. Interesting mashup modeling approaches
and execution platforms are investigated in the mentioned paper,
as well as in [4]. A contribution of our current paper to such
research work is the identification of mashup issues that are
critical when it comes to mobile SOA, and the formulation of a
corresponding roadmap.
Concerning mobile SOA, [15] gives an overview of developments
that are necessary in order to enable Web Service consumption in
mobile environments. To this end, we offer a roadmap application
and an example of usage of the corresponding J2ME
specifications (JSR-172) mentioned in [15] and [8]. Lightweight
mobile SOA architectures [8] have become more and more
important, with keeping traffic and hardware costs to a minimum
being a critical issue. We contribute by describing key aspects of
our fully-functional, efficient, map-based, multiple-service mobile
application, which requires less than 300 kilobytes of memory.
Still, our main contribution is the identification of gaps in the
mobile SOA world and our proposal for bridging them in a way
that we can smoothly move from the mashing-up of mobile
services to really structured mobile SOA, without losing the
advantages of current techniques. The details of this vision
become clearer in the last sections. The conclusions made from
this research work led to the kick-off of a new research project,
goal of which is to further investigate the identified gaps and
design/implement solutions for them. More related work
concerning such gaps will be referenced in Section 6.

3. SERVICE MASHUP TECHNIQUES
The term Service Mashup is normally used to indicate the result
of the gathering of a set of services, when this result has been
achieved after the application of a variety of design and
implementation decisions and techniques. Mashups do not imply
the existence of standard protocols or procedures, as Service
Compositions [12] do. Still, the research on relevant design
procedures, implementation architectures or even tools (as in [4]
and [5]) can help transform mashing-up into a powerful,
structured approach.
Critical issues of service mashups are presented now in such an
order and in such a way, so that they can form:

• A roadmap for mobile SOA application development,
(together with the issues of Section 4) and most importantly

• A basis for the identification of gaps that new mobile SOA
middleware should fill in order to support or enable more
structured mobile SOA development.

3.1 Principles and Design
Although service-orientation offers the possibility to flexibly add,
replace, or subtract services at any time, a different and careful

design phase is still very necessary. In addition to traditional
application design tasks, special consideration of the steps for the
design of the service mashup, as well as of some basic SOA
design principles are needed.
As basic SOA design principles, we refer to tasks such as trade-
off valuations and agreements with service providers, guidelines
for the creation of new services, selection of a governance
approach and more. Having applied a careful design process in
our reference application, we keep it here short and do not go into
details of each phase. The selection of a careful design process
among the numerous proposed approaches must match the
application needs. Showing the way, [9] and [12] offer interesting
analyses of SOA design and governance.
As service mashup design steps, we refer to a chain of decisions
such as the following, where each step must be well considered
before heading for the next.

• Identify an abstract set of necessary services

• Find, examine, evaluate and test existing services that can be
used to serve the application purposes.

• Select services that can be used, either independently or as
parts for the composition of new services.

• Identify which new services and which compositions of new
or existing services must be implemented.

• Identify and design all service relations, possibly by creating
a mashup diagram or picture.

• Make sure that all needs of the initially abstract set are now
fulfilled and when they are, proceed to implementing the
designed mashup.

The goal of the overall procedure is to lead to the optimal co-
application of the techniques that will be described in 3.2, 3.3 and
3.4.

3.2 New and Existing Services
Re-use of existing services is one of the most important benefits
of the service-oriented paradigm. It is supposed to reduce the
workload of software development to the composition of existing
implementations. However, the vision is far from being achieved,
especially when it comes to mobile SOA, and application-specific
services must almost always be developed.
Coarsely categorizing, we can separate the services that we had to
implement into those that fulfill new tasks and those that are
related to existing services, by serving their composition, by
being combined with them, or even enhancing them.

3.3 Service Compositions
The technique of service composition is more or less known and it
is considered as one of the most important characteristics of SOA.
Service compositions are part of the mashup but, as the “black
box” principle (i.e. the loose coupling rule) is applied recursively,
composite services can be depicted as entities inside a mashup.
Then, they should also be separately depicted by means of the
modules that compose them. At this point, it must be stated that
compliance to the “black box” principle is unfortunately not
always guaranteed. Experience has proved that it is not always
easy to achieve, and that non-compliance to it can have disastrous
consequences in the flexibility of a service-oriented architecture.

For example, a typical service composition in our reference
application will be the usage of a routing information service
(provided by [17]), a public transport information service
(provided by [13]), and a city information service (provided by
our application server thanks to data from many different sources)
to compose a service which in turn takes advantage of location
and time data (cf. Section 4) in order to offer intelligent routing or
suggestions.

3.4 Service Wrapping
This is a less standard technique but has an upgraded importance
in service-oriented systems. This happens because service-
oriented systems often benefit from the existence of services that
are older and may not comply with the newest needs or standards.
Service wrapping may affect either single services or even more
commonly composite services, and is engaged mostly because of
one of two reasons:

• Protocol wrapping is the effort to either provide existing
software as a (web) service or to take an existing service and
provide it with a different protocol, e.g., SOAP from HTTP.

• Functionality wrapping takes place when existing services or
compositions of services fit our needs but not in an optimal
way or not with the exact functionality that we need.

 Where and why the above described techniques can be applied
and in what context they have been applied for the needs of our
application may become clearer during the description of our
system in Section 5.

4. ENHANCING SERVICES IN MOBILE
ENVIRONMENTS
As mentioned in the introduction and indicated with an example
in 3.3, mobile applications can take advantage of the nature of
their hosting devices in order to use some powerful features. The
term people-centric computing, more analytically dealt with in
[1], is more often used in the context of sensor network
applications to mean the exploitation of data that spring from the
human user. This way, the application can serve needs that are
really narrowly related to its user. Because of the nature of
modern mobile applications, we believe that they can have many
features that make them people-centric, if they are effectively
exploited. The capabilities offered by such features, which will
be discussed in this section, are in a way similar to the capabilities
offered by sensed data. Thus, they could be further enhanced by
the existence of sensed data, providing a complete people-
centricity. But for now, the involvement of sensed data in our
solution remains a subject of future work.
Summing up the mentioned features, mobile devices accompany
the user and contain data that are to be used personally
(personalization). They follow and possibly record the actions of
the user or events in his/her environment (context-awareness) and
they also provide location data (localization). [1] is also a good
study of such features. In the following, we explain how they can
be exploited giving examples on how they are part of our
reference application.

4.1 Personalization
The term personalization is mainly used to refer to the ability of
the user to set preferences in applications. When it comes to

mobile environments, it has an even wider meaning and a close
relation to personal data as well as ambient- and context-
awareness, as [1] also explains. In cases that the application
includes services that take advantage of personal data and
location data, personalization is not only a matter of user
preferences, but mainly a matter of privacy.
Typical examples in our application are options like
activation/deactivation of location services, tracking services,
social networking services, and services that use other personal
data (e.g. calendar). In addition to user preferences, we also
regard as personalization the relationship of the application with
user’s personal actions. For example, our application enables
services such as direct calling or message sending to phones of
contacts or places (hotels, restaurants etc.). Further thoughts
include services for booking etc.

4.2 Context-awareness
Mobile applications can track user actions and environmental
states in a different, more enhanced way than traditional
applications can do. This can enhance the functionality of web
services consumed within a mobile environment. For example, a
routing web service can obviously be enhanced by location
information of the consumer, while an information web service
can be enhanced by taking into account previous choices, actions
or preferences of the user. Such techniques, along with a route
tracking service, are typical examples of context-awareness
within our application. Such solutions can lead to improved or
even intelligent services, stemming from the enhancement of
common Web services - new or existing.
Web services that could take advantage of (or be enhanced by)
sensed data should also be considered in this category, although
our application leaves this as an open issue for future work. The
vision of mobile devices as the companions of humans, especially
of elderly people, has already initiated much research work. With
approaches such as ours, Web services will play an important role
towards fulfilling this vision e.g., for transferring sensed data
through the web and performing remote calculations or
information retrieval triggered by the sensed data.

4.3 Localization
Location-based services are considered separately because of
their great importance and the vast research effort placed on them
by the community, although they could be included in the
context-awareness issue. Numerous studies ([2], [16]) deal with
location-based services and platforms for their exploitation, while
relevant applications have already appeared in scientific
approaches and commercial products.
Another reason for special consideration is the high level of
privacy that is normally dictated by the existence of such services.
The best example of all, which is also present in our application,
is the people-tracking case. Our application uses location data to
enhance a social networking service, showing the current location
of contacts on a map (if they have activated the corresponding
service). Still, location data can enhance Web services in a more
seamless and less concerning way. Automated calls of routing or
information Web services and automated tips based on the user’s
current location are such cases.

5. OUR REFERENCE MOBILE SOA
APPLICATION
This section presents our reference application and puts it all
together, by showing how the discussed issues and techniques are
applied in mobile environments with existing technologies and
currently feasible architectures. We present a high-quality mobile
client requiring very few kilobytes that exploits mashups made
out of a variety of services. The “Services To Go!” client is an
application that was designed to consume service mashups of
heterogeneous services in order to provide the user with location-
based, context-driven capabilities. Accordingly, the client
includes numerous – though homogeneous – user interfaces that
show these capabilities and constitute a multi-purpose companion
application. Working on all these features is important for gaining
insights that lead to the proposals of the next section.
Most of the functionalities are based on third party services that
provide information ranging from map data [10] and routing
details [17] to city information and restaurant reviews from a city
magazine, as well as a social networking service. Depending on
the desired functionalities and the available protocols, the services
are either directly consumed or wrapped from our server,
according to the techniques described in Sections 3.3 and 3.4.
Specific application-oriented services are implemented and hosted
exclusively on our server (cf. Section 3.2). Before we list the
main categories of the exploited Web services (cf. Section 5.2)
and present some more details about the client (cf. Section 5.3),
we give a quick overview of the architecture in Section 5.1. In its
generalized form, this can be seen as a roadmap architectural
approach for mobile SOA solutions that are based on existing
middleware and technologies.

5.1 Services To Go! Overview & Architecture
As emphasized in [15], the latest specifications defined for Java
Microedition (J2ME) – namely the JSR-172 specification (J2ME
API for Web Services) – lay the foundations for service-
orientation in mobile applications. Exploiting JSR-172
capabilities along with capabilities of JSR-179 (J2ME Location
API), we have pursued the enhancements described in Section 4.
We have tested solutions both on devices that implement these
specifications as well as on other devices. Of course, as stated in
[15], the further enabling of service-orientation for mobile
applications is a hot research issue and subject of future work.
Figure 1 is a coarse representation of the architecture. Our client
is based on J2ME and uses the specifications mentioned earlier, as
well as a mobile device database system (Record Management
Store - RMS) and the device’s Personal Information Management
(PIM) system. At the bottom right, we see the connections to our
Application Server, to the Birdseye Server (provider of the social
networking service) and to the Third-Party Service Providers. We
distinguish the Birdseye Server in order to introduce the notion of
internal and external services. Although the Birdseye Service is
not oriented to the purposes of our application, it is characterized
as internal. This means that it lies inside the domain of the
project, in the sense that the access to it reaches further than
simple service consumption. The distinction between internal and
external services plays an important role when it comes to the
procedures of mashup design ([4], [5]) and SOA Governance [9].
Components of minor importance for the understanding of the
architecture are not depicted.

Figure 1. “Services To Go!” architectural overview

5.2 Web Services
Altogether, we can distinguish 3 different categories of services
involved in our client:

• Navigation Services (Routing, Public Transport etc.)

• Information Services (Hotel, Restaurant, Sightseeing, Tours,
Stations etc.)

• Social Networking Service (Birdseye)
In the following, we comment on them shortly, trying to give
insight into how the techniques and ideas presented in previous
sections can be exploited.

5.2.1 Navigation/Routing Services
Our Routing Service uses the wrapping and composition
techniques in order to merge pedestrian routes with public
transport connections. At the same time, it incorporates a context-
driven logic in order to provide up-to-date and smart proposals
and alternatives. While the current GPS position of the client is
the only information stored on the device, requests for navigation
services are sent based on geo-coordinates and handled as
follows: The Application Server asks a third-party service [17] for
geo-location information (country, city, street, number,
descriptions, etc.). Then, context-based decisions are made
combining this information with data that are either available or
provided by other services, e.g., distance to nearest stations, and
user preferences (personalization). If they have to be included, the
corresponding (time-aware) public transport connections are
sought through another provider [13], while pedestrian routing
details are then offered again by a different provider [17].

5.2.2 Information Services
Information services can either be used in combination with other
services (as described earlier), or they can directly serve user
needs. Whatever the type of information and whoever the
provider is, consistent representations and common attributes are
used for their storage within the client. So, homogeneous (i.e.
regardless of their type), user-friendly actions can be performed
upon them, for example with the help of the map-based GUI (cf.
Section 5.3).

5.2.3 Social Networking Services
The involvement of social networking services in mobile
companions is a hot issue and our reference application was
among the first applications to offer this novel capability and
promote the research on this field. The Birdseye Server is
currently under development by SAP Research. This server
provides a Web API for geo-position tracking, message exchange,
and contact position tracking. Every time XML-based messages
for location updates, contact location requests or message
submission/reception are exchanged with the Birdseye Server,
status values (amount of unread messages etc.) are updated in the
device memory, so that the social networking utility can be up-to-
date and personalized. Additional types of requests are possible,
for example, our contacts positions by a geo-range and/or activity
within a given amount of time. Of course, for reasons of privacy
and personalization, all localization features can be very easily
turned off. Again, we will see in the next Section how these
aspects can be brought further.

5.3 Client Implementation and Interfaces
Typical examples of the interfaces, indicating the location-based
and context-driven nature, are the map screen and the next steps
screen. The next steps interface allows for selecting services
filtered by context values, like the current position or past user
actions. Movement tracking and message utilities are two more
key features.

5.3.1 Map-based Interface
The map is the basic interface of the client when it comes to
exploitation of services from the end user. All main actions,
known from existing navigating- and information-systems, are
available using this interface. Namely, current location of the user
(and of its contacts, if desired) is shown there. Any objects
retrieved from heterogeneous services appear homogeneously on
the map, while various user actions and functions like “route to”,
“call”, “show details”, etc., are available regardless of the object’s
type or “origin” (see also 5.2.2). Our map source is
OpenStreetMap [10]. A sample screenshot can be seen in Figure
2.
However, our mobile SOA approach carries some great
advantages in comparison to integrated navigators or personal
companion applications:

• All data and information (including the maps) are retrieved
from services and are not locally stored. This means very
little need for memory and up-to-date information

• There is no single-purpose logic, which would limit
extensibility. Our application already integrates many
different types of services and it can easily integrate many
more. Moreover, service updates or changes may not affect
the client software.

5.3.2 Next Steps
The next steps interface provides the user with context-based
options and proposals. While the location data are being updated,
it is seamlessly being detected if the user is in “known” places,
which can be predefined or user-tracked. Special rules then
determine which options (i.e., services) will be proposed to the
user each time.

Figure 2. Sample screenshot of the Map-based interface

5.3.3 Messages
Services To Go! can send and receive messages of the social
networking utility not only from within the Map-based interface,
but also with a classical message interface.

5.3.4 Tracking
When the tracking utility is activated, positions and upcoming
routing events are tracked. A use case is the combination of a
tracking utility with routing services. The tracking utility can
provide the user with alerts and reminders, for example, when
entering a specific geographic zone or is running late for an event.

6. FACILITATING MOBILE SOA
After many recent “success stories” and detailed analyses in
research and industry, service-oriented architectures have already
proved to offer flexibility, scalability and reusability, due to the
independency, interoperability and loose-coupling of the services
[6].
Furthermore, the current state of the SOA world indicates that its
evolution will lead to the so-called “Internet of Services” (IoS)
with the help of service marketplaces. In this scenario, extended
functionalities and capabilities of the supporting layers will let
services be more accurately searched among all providers,
automatically chosen with respect to quality and “matching
degree”, and more easily and flexibly bound to the clients.

6.1 Identified Gaps
All these advantageous features and capabilities (of the current
state, as well as of the IoS) are also wished for mobile SOA.
However, a “trip” along the roadmap and the applied scenario that
we presented in the previous sections, shows that existing
technologies cannot save the developers from the following
obstacles on their way towards structured, fully-capable mobile
SOA:

• Services have to be manually bound to mobile clients,
requiring varying effort with respect to the protocols that are
supported at both client- and provider-side. Developers of
mobile apps have to bother a lot about the communication
protocols of the used services and often implement
complicated parsing of the used message formats, because
the libraries for service consumption at the client side are

primitive. Even for Web Services, the most common
enabling technology, their consumption from mobile clients
is much more difficult than from workstations, as there are
no standard packages, e.g. in J2ME, to facilitate this further.
Even worse, many devices do not implement required JSRs
for Web Services, making it much more difficult and
possibly bandwidth consuming to communicate with the
providers. A study of [15] can support the understanding of
this particular issue. Another consequence of this manual
binding is that, in practice, mobile services cannot be
replaced by equivalent services once they have been bound.
In “Services To Go!” we had to wrap many services (see
Sec. 3.4) and then manually bind them, requiring great
effort. We also had to reject certain devices, because of
missing capabilities.

• Enhanced context-awareness for mobile applications cannot
be guaranteed and implemented without complex or
application-driven structures or modules. In our example, the
social networking utility (Birdseye) and its interfaces had to
be extended, and they can still offer limited context-
awareness. For the capturing and the exchange of other
context-information, much manual work was required. Such
“heavy” modules, which often reduce scalability, have to be
implemented in almost all solutions (e.g. [7]) that want to
support enhanced context-awareness, i.e. mutli-user time-
and location-based personalized information.

• The lack of ESB-capabilities (Enterprise Service Bus) and
the importance of “value-added services” on mobile
applications dictate new solutions for workflow handling.
The modeling and the consumption of workflows (with
possibly dynamic service selection) is currently not possible
and even if the ongoing research on workflow engines for
mobile devices [11] has the desired results, a lot needs to be
done in order to have workflows that are being resolved
optimally for mobile applications and are getting
automatically enriched with context-information (“value-
addition”). We have described how composition or mashing-
up is now manually performed, still directly addressing fixed
service providers and requiring additional effort for
providing the resulting composition or mashup with an
interface compatible with the mobile client.

6.2 The Mobility Mediation Layer
Although some research initiatives (e.g. [11], [15]) may lead to
results that support mobile SOA, we are still far from letting
developers easily exploit all SOA capabilities, as well as the
Internet of Services, within their mobile applications. We present
the Mobility Mediation Layer (MML), believing it is the most
complete conceptual approach for supporting the participation of
mobile clients in the Internet of Services.
The MML and its complementing environment is not simply a
middleware to which a mobile application has to be bound. It is
itself service-oriented and the services it offers aim to accompany
and complement the existing solutions of SOA middleware and
service marketplaces in order to make the latter exploitable in
mobile environments and enriched with guaranteed context-
awareness. In the following, we briefly describe its main parts,
which are depicted on Figure 3.

Figure 3. Concept of the Mobility Mediation Layer

The MML defines new specifications for its mobile interface, i.e.
for the way it can be used from mobile clients so that the latter
can flexibly “ask for” workflows or services that will be
dynamically composed by accessing service marketplaces. This
access will be provided by IoS/Marketplace Connectors. With
respect to personalized features and other application-related data
that will be available from many users and applications thanks to
the Persistence Services, the dynamically selected services (or
composed workflows) will be potentially enriched by being
combined with Context Services. Context Adapters will be
deciding when and how to perform this “intelligent” enrichment.
Further aspects of these parts become clear in the following,
where we describe how the problems of 6.1 can be overcome.

6.3 Bridging the Gaps
With respect to the identified gaps, we explain how the proposed
layer faces the respective problems.

• For the consumption of services that either have during
development unknown providers/endpoints (i.e. have to be
dynamically bound), or are offered with protocols
incompatible with the mobile client, or should be wrapped
(see sec. 3.4) or dynamically enriched with context, the
MML offers a new mobile interface. Corresponding J2ME
libraries that simplify the usage of this interface will reside
on the client-side. The development of these libraries will
accompany the specification of the MML’s mobile interface.
Unlike the existing standards for messaging in SOA
communication, these specifications will be designed
particularly for mobile clients, giving a new opportunity to
allow for lightweight communication, which is important for
resource-constrained devices. So, for mobile applications on
devices that do not support the JSRs for Web Service
consumption and for mobile applications that cannot or do
not want to bind particular services, the mentioned
capabilities of the MML will allow for an easy development
that lets MML undertake the difficult tasks. This does not
mean, of course, that an MML should mediate every
interaction of the application with the used services.

• As we also mentioned for the case of Birdseye, the handling
of enhanced context-information is difficult and even after
its implementation, it can cost a lot in terms of inter-

application communication. The support of context services
as depicted in Fig. 3 has a vision that is in accordance with
the IoS. Context-information like the location of things or
people, events reported by users of various applications etc.,
will be available through independent services, which will in
turn be easily accessible through the MML. So, the
developer will be able to create context-aware mobile
applications without caring much about the handling of the
context (simple usage of existing context services) or even
without bothering at all (automatic enrichment of mediated
services with context-information).

• To avoid the selection of fixed service providers at design-
time and to allow for easy workflow-handling, the MML will
include workflow descriptions in the specification of its
mobile interface and the client-side libraries will ease the
programming of such workflows. So, the capability of
workflow execution will not be transferred to the mobile
device, but it will rather remain a “server-side” task. Still,
the consumption of workflows at the mobile side will be
eased by the mentioned specifications and libraries, while
the workflow execution will take place at an environment
such as this of the MML, so that every step of it will have
extra capabilities, like the access to persistence services,
context services and other MML mechanisms.

All in all, the MML can be seen as an extension or accompanying
concept of the platforms that will comprise the basis for the IoS.
As the MML is currently under specification and development,
evaluations of its mechanisms are subject of future work. The
contribution of this work is limited to presenting the results of the
project that led to this new proposal and to a new project, funded
by the German Federal Ministry of Economy and Technology,
aiming to extend the vision of the Internet of Services.

7. SUMMARY
We performed a detailed study to find ways to bridge the gaps
towards a more structured form of mobile SOA, which can exploit
all the capabilities of the future Internet of Services. More
specifically, we referred to the new specifications that are being
developed to support mobile SOA, we handled the issues that
distinguish current mobile SOA applications, we explained how
these can be transformed from impediments to enhancing
features, we presented a (novel) reference mobile application that
integrates various services and SOA features based on existing
technologies and we closed the work with our conclusions and
our corresponding proposals for new solutions. A first insight into
these new solutions was given, while their exact specification and
evaluation is subject of future work.

8. ACKNOWLEDGMENTS
The project was funded by means of the German Federal Ministry
of Economy and Technology under the promotional reference
“01MQ07012”. The authors take the responsibility for the
contents. We would also like to thank all of our service providers,
and in particular SAP AG and YellowMap AG for their support.

9. REFERENCES
[1] Arbanowski, S., Ballon, P., David, K., Droegehorn, O.,
Eertink, H., Kellerer, W., van Kranenburg, H., Raatikainen, K.,
Popescu-Zeletin, R. “I-centric Communications: Personalization,

Ambient Awareness, and Adaptability for Future Mobile
Services”. IEEE Communications Magazine, vol. 42, issue 9,
September 2004, pp. 63-69.
[2] Bellavista, P., Kupper, A., Helal, S. “Location-based Services:
Back to the Future”. IEEE Pervasive Computing, vol. 7, issue 2,
April/June 2008, pp. 85-89.
[3] Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz,
R. “Heuristics for QoS-aware Web Service Composition”. IEEE
International Conference on Web Services (ICWS) 2006, July
2006, pp. 72-82.
[4] Blake, M.B., Nowlan, M.F. “Predicting Service Mashup
Candidates Using Enhanced Syntactical Message Management”.
IEEE International Conference on Services Computing (ICSC)
2008, July 2008, pp. 229-236.
[5] Braga, D., Ceri, S., Daniel F., Martinenghi, D. “Mashing up
Search Services”. IEEE Internet Computing, vol. 12, issue 5,
September/October 2008, pp. 16-23.
[6] Erl, T. “Service-Oriented Architecture: Concepts, Technology,
and Design”. Prentice Hall PTR, August 2005, ISBN: 0-13-
185858-0.
[7] Hofer T., Schwinger W., Pichler M., Leonhartsberger G.,
Altmann J. “Context-Awareness on Mobile Devices - the
Hydrogen Approach”. International Hawaiian Conference on
System Science, 2003.
[8] Kim, Y.S., Lee, K.H. “A Light-weight Framework for Hosting
Web Services on Mobile Devices”. European Conference on Web
Services (ECOWS) 2007, November 2007, pp. 255-263.
[9] Niemann, M., Eckert, J., Repp, N., Steinmetz, R. “Towards a
Generic Governance Model for Service-oriented Architectures”.
Americas Conference on Information Systems (AMCIS) 2008,
Association for Information Systems, Toronto, ON, Canada,
August 2008.
[10] OpenStreetMap Project, www.openstreetmap.org
[11] Pajunen, L., Chande, S. “Developing Workflow Engine for
Mobile Devices”. 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC) 2007, pp.279-286.
[12] Papazoglou, M.P., van den Heuvel, W.J. “Service oriented
architectures: approaches, technologies and research issues”. The
International Journal on Very Large Data Bases (VLDB), 16(3),
2007, pp. 389–415.
[13] Rhein-Main-Verkehrsverbund (RMV), www.rmv.de
[14] Schroth, C., Janner, T. “Web 2.0 and SOA: Converging
Concepts Enabling the Internet of Services”. IT Professional, vol.
9, no. 3, May/June 2007, pp. 36-41.
[15] Tergujeff, R., Haajanen, J., Leppanen, J., Toivonen, S.
“Mobile SOA: Service Orientation on Lightweight Mobile
Devices”. IEEE International Conference on Web Services
(ICWS) 2007, July 2007, pp. 1224-1225.
[16] Xia, Y., Bae, H.Y. “General Platform of Location based
Services in Ubiquitous Environment”. International Conference
on Multimedia and Ubiquitous Engineering (MUA) 2007, April
2007, pp. 791-795.
[17] YellowMap AG, Karlsruhe, www.yellowmap.com

http://www.kom.tu-darmstadt.de/en/people/staff/michael-niemann/?no_cache=1
http://www.kom.tu-darmstadt.de/en/people/staff/julian-eckert/?no_cache=1
http://www.kom.tu-darmstadt.de/en/people/staff/nicolas-repp/?no_cache=1
http://www.kom.tu-darmstadt.de/en/publications/publications-details/publications/NER%2B08-1/?no_cache=1
http://www.kom.tu-darmstadt.de/en/publications/publications-details/publications/NER%2B08-1/?no_cache=1

	1. INTRODUCTION
	2. RELATED WORK AND OUR CONTRIBUTION
	3. SERVICE MASHUP TECHNIQUES
	3.1 Principles and Design
	3.2 New and Existing Services
	3.3 Service Compositions
	3.4 Service Wrapping

	4. ENHANCING SERVICES IN MOBILE ENVIRONMENTS
	4.1 Personalization
	4.2 Context-awareness
	4.3 Localization

	5. OUR REFERENCE MOBILE SOA APPLICATION
	5.1 Services To Go! Overview & Architecture
	5.2 Web Services
	5.2.1 Navigation/Routing Services
	5.2.2 Information Services
	5.2.3 Social Networking Services

	5.3 Client Implementation and Interfaces
	5.3.1 Map-based Interface
	5.3.2 Next Steps
	5.3.3 Messages
	5.3.4 Tracking

	6. FACILITATING MOBILE SOA
	6.1 Identified Gaps
	6.2 The Mobility Mediation Layer
	6.3 Bridging the Gaps

	7. SUMMARY
	8. ACKNOWLEDGMENTS
	9. REFERENCES

