
Always Best Served: On the behaviour of QoS- and QoE-based Algorithms for Web
Service Adaptation

Apostolos Papageorgiou, André Miede, Dieter Schuller, Stefan Schulte, Ralf Steinmetz

Technische Universität Darmstadt
Multimedia Communications Lab - KOM

Darmstadt, Germany
{apostolos.papageorgiou, andre.miede, dieter.schuller, stefan.schulte, ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—One of the primary issues in pervasive computing
is the adaptation of the communication to the needs of limited
devices. Web services are one of the technologies that present
both big challenges and big potentials when it comes to
their adapted usage in pervasive systems, because they carry
communication overhead in order to support interoperability
and platform-independence through self-description. In this
paper it is explained how Web service communication can be
adapted for limited devices and why it is important to choose
intelligently among a variety of adaptation mechanisms, based
on the system context. Further, two algorithms (one Quality
of Service-based and one Quality of Experience-based) for the
decision support of the mentioned problem are provided in
order to measure and discuss the impact that the peculiarities
of the problem have on their behaviour.

Keywords-Web Services; Pervasive Computing; QoS; QoE;

I. INTRODUCTION

Since the birth of pervasive computing, the adaptation
of the communication in order to enhance the Quality of
Service (QoS) of applications has been one of the biggest
concerns in the field [7]. Such adaptations can be performed
on different layers, e.g., on the communication channel layer,
such as in the much investigated “Always Best Connected”
(ABC) issue, or on the application layer, as it is done during
Web content adaptation. Another possibility appears on the
service layer, where the protocol (or the access method)
that is used to communicate with particular services is
adjusted to the system context. Limited devices have already
appeared as participants of Service-oriented Architectures
(SOA), mostly as simple Web service consumers.

Constraints such as limited bandwidth, CPU, memory, or
energy resources, in combination with the communication
overhead introduced by Web service standards (WSDL,
SOAP), can lead to unacceptable QoS. Despite technological
progress, the gap will continue to exist. The latest analyses of
future wireless technologies strengthen this argument. In the
book of Sesia et al. [10] about LTE (Long Term Evolution of
3G mobile networks), five categories of user equipment are
defined. According to it, devices of higher categories will be
able to use connection rates up to six times greater than those
of lower categories. Of course, the wired connections of the

future will be even faster than that. Furthermore, devices
less capable than smartphones, such as sensor nodes, will
be able to consume Web services. So, the big differences in
device capabilities and connection qualities will maintain the
need for adaptation, as the size of the data that is processed
and wirelessly transmitted is growing parallel to all other
technological developments [2].

For this reason, adaptation mechanisms for Web services
have appeared. An adaptation mechanism means the re-
offering of a Web service with a different protocol or access
method, e.g., Compressed SOAP, RMI, SOAP-over-UDP,
REST. In our recent survey [8], most important mechanisms
were analyzed. In the evolving Internet of Services (IoS),
the most obvious solution for adapting Web services without
access to the provider system is through the generation of
proxies in mediation layers [1]. Approaches for dynamic
service re-deployment (as in [6]) could be considered on
the provider side, but are not applicable without access to
the provider system. A research question that arises is how
the mediation layer decides which adaptation mechanism(s)
to use for each service. Two main general approaches exist
with respect to the triggering of the adaptation:

• QoS-based adaptation: the adaptation actions are initi-
ated based on objective values of technical parameters.

• QoE-based (Quality of Experience) adaptation: the
adaptation actions are initiated based on past user
decisions or user feedback.

The purpose of the work at hand is to investigate the ap-
plication and the limits of QoS and QoE in this Web service
adaptation scenario. The results should indicate which of the
two should be preferred, depending on the information that
is available to the mediation layer. Although this evaluation
is our main contribution, the description of the “Always
Best Served” problem and of the two algorithms (one QoS-
based and one QoE-based) for its solution consist further
contributions. Thus, we explore related work in Section
2 and describe our exact scenario in Section 3. The two
algorithms that we have developed are described in Section
4, while they are evaluated and discussed in Section 5.

rst
Textfeld
Apostolos Papageorgiou, André Miede, Dieter Schuller, Stefan Schulte, Ralf Steinmetz: Always Best Served: On the behaviour of QoS- and QoE-based Algorithms for Web Service Adaptation. In: Proceedings of the eighth IEEE International Workshop on Managing Ubiquitous Communications and Services (PerCom Workshops 2011 - MUCS), p. 71-76, March 2011, ISBN 978-1-61284-936-2.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

II. RELATED WORK

Many researchers in the field of pervasive computing
are familiar with the ABC issue [5], [12]. The goal of
ABC is to let the device switch among many possible
access networks (e.g., WLAN, GSM, UMTS, Bluetooth, and
other variants from the 802.11 and 802.15 “families”, while
new technologies such as LTE are also coming into play).
The corresponding selection problem is often modelled and
handled as a knapsack problem (NP-hard) [4], while QoE-
based approaches have also appeared [3]. However, an issue
similar to ABC appears if we move up in the OSI model,
from the network to the transport and session layers. There,
adapted Web service access methods have to be examined
and selected, as described in the introduction. In accordance
with ABC, we introduce the term “Always Best Served”
(ABS) and describe it in Section 3. Despite similarities
to ABC, ABS appears on a different level (needs partly
different context), is less deterministic (conditions that match
each of the alternatives have not been researched in such
detail), and the technologies that make the issue arise had
been immature till now.

A relevant and detailed analysis of QoS- and QoE-
based optimizations for mobile technologies can be found
in [11], where general theoretical issues, as well as spe-
cialized algorithms for particular problems are examined.
Still, [11] examines the two approaches separately, does
not provide comparative analyses, and does not focus on
ABS-specific attributes, such as the characteristics of Web
services. Furthermore, decision-making algorithms depend
on the scenario. [11] presents solutions for problems such
as routing or mobile network (re-)configuration, but the ABS
issue has differences, e.g., concerning the context structure
and the types of knowledge incompleteness that may appear.
For example, ABC-algorithms (but also routing algorithms)
take decisions for a given user/session, thus they are less
concerned with missing information about the networks and
devices of other users.

III. THE “ALWAYS BEST SERVED” SCENARIO

The new scenario (ABS) is described in the following.
First the background and then a more detailed technical
description and a visualization are provided.

A. Definitions, Assumptions, Research Question

A big set of Web services offered by different providers
through service marketplaces and a big set of client devices
with different features co-exist in the IoS. A mediation
layer is an extension of the service marketplace that can
apply different adaptation mechanisms in order to offer
the existing services through new interfaces, with different
protocols or access methods. An adaptation mechanism can
be abstractly defined as the generation of a proxy that runs
on the mediation layer. The protocols or access methods
refer to the different ways with which the provider and

the client device can communicate. Some examples have
been mentioned in the introduction. The enforcement of
the adaptation mechanisms (i.e., the generation of proxies)
results in the existence of different alternatives for the
consumption of the same Web service, among which the
clients can choose. Two questions arise: a) How does the
mediation layer decide which proxies to generate? b) How
do the devices decide which proxy to use (if any)? We
examine the issue from the mediation layer point-of-view, so
we focus only on question a. Furthermore, decisions of the
devices (question b) are slightly simpler and need therefore
less decision support, because the decision depends mostly
on the current situation and does not necessarily need to
consider information from other calls or other users.

A basic assumption for this decision support is that
the mediation layer has limited capacity and/or is con-
cerned with security. Otherwise it could generate all possible
proxies. This assumption can be understood on the basis
of example adaptation mechanisms: In order to re-offer a
particular service with, for example, RMI or SOAP-over-
UDP, the mediation layer has to deploy new modules in the
RMI registry or in its Web container, respectively. Every
new proxy needs some resources and inevitably means the
opening of new interfaces/ports on the mediation layer. So,
it is obvious that not every possible proxy can be generated
for the infinite number of services that are to be found in
the IoS. Ideally, the decision support appears in the form
of a scoring algorithm that determines how adequate an
adaptation mechanism (i.e., its corresponding proxy) would
be for each known service under the current conditions. Be-
cause the quality of such an algorithm cannot be objectively
evaluated, we formulate a more specific research question,
which will be answered in our evaluation: “How do two
important scoring algorithms, namely one QoS-based and
one QoE-based, behave in the context of ABS?”.

B. Scenario and Architecture

In the context of a project for the IoS, we are developing
the Mobility Mediation Layer (MML). As abstractly shown
in Fig.1a, the goal of the MML is to provide limited or
mobile clients with an interface to services which are hosted
on various external providers and are made available through
global service marketplaces, while mediating the service
consumption by performing various adaptation mechanisms.
Although the MML has further capabilities (e.g., automatic
context enrichment), we focus here on the overhead reduc-
tion through the generation of proxies, as previously de-
scribed. An example where a service (S1) can be consumed
either directly or through one of two different proxies is
shown in Fig.1b. To implement this, the MML uses our
“Web Service Proxy Generator”, a software which performs
automatic code enrichments and deployment actions upon
the code generated by the execution of “wsimport” for the
target service.

(a) MML Overview.

(b) Web service proxies in the MML core.

TABLE I. ASPECTS THAT COMPRISE THE TECHNICAL SETTING DURING THE USAGE OF A MOBILE WEB SERVICE

TABLE II. ANALYSIS OF APPROACHES FOR ADAPTED WEB SERVICE CONSUMPTION ACCORDING TO THE SETTINGS THAT MAKE THEM BENEFICIAL

A similar logic, easily traceable through a careful
analysis of Table II, was followed for the remaining
approaches. In addition, the performance enhancement
expected by the authors/developers of the approach is given
in the last column. This is expressed in comparison to
standard SOAP calls and varies a lot even for the same
approach, as it is exactly this value that depends on the other
aspects. Other approaches exist, e.g. REST-based. However,
some of them were excluded from the results because of lack
of reliable and well-documented published material.

At first sight, no strict grouping seems to be possible
based only on the values of the aspects, so the presented
analysis remains our main contribution. But instead of
categories that are strictly based on “beneficial
circumstances”, we list five “weakly” defined groups, which
are obtained based on the ideas behind the approaches. Up to
an extent, approaches of the same group are expected to offer
benefits under similar circumstances. The following
distinguishable ideas were found in the studied approaches:

 Reduction of redundancies in a stream of Web
service calls ([8], [11], [17]).

 Replacement of SOAP calls with alternative RPC
Mechanisms ([1], [5]).

 Reduction of the amount of data transmitted during a
Web service call, while leaving the rest of the Web
service stack untouched ([2], [8], [7], [14], [16]).

 Introduction of a message queuing infrastructure that
queues SOAP messages for retrieval when the
device connection is ready for it [3].

 Ignorance of transmission failures, probably for non-
critical service calls ([9], [13]).

V. CURRENT EXPERIMENTS AND OUTLOOK

A couple of the examined approaches have been
experimentally validated and further examined. Experiments
were done with implementations that correspond to the
approaches of [5] and [16]. We measured the data overhead

Component Aspect Values
User data size to SOAP message size ratio small, medium, large
SOAP message size small: ≤100b, medium: ≤1kb, large: >1kb
Caching possible No, Session, User, Everyone
Statefulness Yes, no
Processing time small: ≤1s, medium: ≤1minute, high: >1minute

Service

Connection-Setup direction ConsumerProvider, ProviderConsumer
Service call frequency small: ≤1 per 10minutes, medium: ≤100 per 10minutes, high: >100 per 10 minutesApplication Service call dependence small, medium, high
CPU Power small: mobile sensor, medium: smartphone, large: laptopDevice
Available Memory small, medium, large
Bandwidth small: ≤50kb/s, medium: ≤1mb/s, high: >1mb/s
Latency small: ≤10ms, medium: ≤50ms, high: >50ms
Packet loss None: ≤0.01%,small: ≤5%, medium: ≤15%, high: >15%
Stability small, medium, high
Disconnected periods Yes, no

Device Network Connection

Directionality of connection establishment DeviceInternet, no

Component Device Network Connection Device Service Application

 Aspect

Approach

B
andw

idth

Latency

Packet loss

Stability

D
iscon nected

peroids

C
PU

 Pow
er

D
ata size /

SO
A

P size

SO
A

P m
essage

size

Processing
tim

e

Service call
frequency

Service call
dependence

Expected response
tim

e Im
provem

ent
over

SO
A

P/H
TTP/TC

P

[9],[13] SOAP-over-UDP ≥m ≤s ≤m ≤s ≤s 8-10x

[17] Compression ≤s ≥m ≥m 1x-1.5x
[8],[16] … … … … … … … … … … … … 1x-1.5x
[7] … … … … … … … … … … … … 1.3x
[8] SOAP-over-TCP with persistent connection ≥m ≥h ≥m ≥h 2x-5x
[3] SOAP-over-SMTP/POP3 ≤m y ≥h -
[2] Wireless SOAP ≤m ≤s ≥m 3x-5x
[5] JAVA RMI ≥m ≥m ≤s >10x
[11] HHFR ≤m ≤m ≥m 1.5x-10x
[1] MundoCore RMC ≤m 3x-5x
[14] Fast Web Services ≤m ≤m ≥m 2x-10x

(c) Characteristics of the possible adaptation mechanisms. The com-
plete table can be found in [8]

Figure 1. Important aspects of the “Always Best Served” scenario.

The question may arise: “Why not generate the same
type of proxy for all services?”. The answer is that there is
no “best adaptation mechanism”, which would fit all cases.
After a detailed study, we found out that different access
methods should be preferred under different conditions.
These conditions concern the network, the client device, the
service itself, and more. We analyzed the possible access
methods according to the conditions under which they are
expected to achieve their maximum benefit and provided
the results in [8]. Fig.1c shows an excerpt of this result. For
example, as seen in the table at the bottom, a compression
proxy is adequate when the bandwidth is small(s), the
CPU power of the device is medium(m) or high(h), and
the message sizes of the Web service are also medium
or high. The lines of this table already look like rules
for the generation of proxies, but they are far from being
deterministic deterministic for the decision process, as other
factors may come into play, such as weighting, different
goals or utility functions, user feedback etc. Thus, different
algorithms can be built on that foundation.

IV. DECISION SUPPORT ALGORITHMS FOR THE ABS

A view of the monitored system context is shown in
Table I. Every row is the record (or log) of one particular
service call. This corresponds with the realistic monitoring

Table I
MONITORED SYSTEM CONTEXT FROM PAST WEB SERVICE CALLS

Connection Dev. App. Service

R
ec

or
d

B
an

dw
id

th
(q

1
)

L
at

en
cy

(q
2

)

Pa
ck

et
L

os
s

(q
3

)

St
ab

ili
ty

(q
4

)

C
PU

Po
w

er
(q

5
)

C
al

l
fr

eq
ue

nc
y

(q
6

)

C
al

l
de

pe
nd

en
ce

(q
7

)

M
es

sa
ge

si
ze

(q
8

)

O
ve

rh
ea

d
ra

tio
(q

9
)

Pr
oc

es
si

ng
tim

e
(q

1
0

)

C
ho

se
n

pr
ox

y
(q

1
1

)

r1 u m s u u u s s s m p4
r2 u u h u h u m s m h p1
...

...
...

...
...

...
...

...
...

...
...

...

capabilities of modern service-oriented systems. The rep-
resentation of the monitored data is not critical (u stands
here for unknown, while s, m, and h have been already
explained). The last column (q11) indicates which access
method (proxy) has been chosen by the user for this call.

So, as their definitions imply (see Introduction), a QoS-
based approach would rate each proxy by comparing its
“ideal technical conditions” (Fig.1c) with the monitored
service usage pattern, while a QoE-based approach would do
the work by analyzing the relationships between the value
of q11 and the values of the other attributes. The latter
analysis would indicate “how users decide”. The details
of the algorithms may affect the results, but the main
differences in the evaluation results will be a consequence
of the conceptual difference between QoS and QoE.

A. The QoS-based Algorithm

As it is usually the case in QoS-optimization theory, the
proposed QoS-based algorithm uses a utility function for the
scoring of the different options. Our utility function is based
on vector distances. Every service call record (row of Table
I) is represented as a vector. The “distance” between this
vector and each “proxy reference vector” (row of Fig.1c)
is measured. The latter represents the optimal service calls
for the proxy and comes from the analysis of [8], which is
summarized in a table, as shown in Fig.1c. This decision
was driven by the fact that both service call records and
proxy records are already in a vector-like form with ordered
symbols (s, m, h) as values. This makes their distance-based
comparison simple and meaningful.

Thus, a utility function npi(rj) (n : P × R → R, where
P is the set of proxies and R is the set or records) attaches
a score to every proxy pi for the record ri. The function
performs a comparison for every element of the vector. For
example, an h value of an attribute where the condition is
≥ m gives a positive difference of +1, while an s value gives
a negative difference of -1. These differences might also be
“weighted”. As this is done for each service call record of
the examined service, the results are aggregated to a total
score of each proxy for the service.

The aggregation is performed as follows: Let Rsk ⊆ R
be the set of service call records of service sk and Nsk,pi

be
the set of the results of the application of the utility function
npi(r) with r ∈ Rsk . Let

N+
sk,pi

:= {x|x ∈ Nsk,pi ∧ x > 0} and
N−sk,pi

:= {x|x ∈ Nsk,pi ∧ x ≤ 0}

then ρ+ :=
|N+

sk,pi
|

|Nsk,pi
| is the quota of calls that would result

in a positive score for this proxy.
Let γ := [0..1] be the minimum acceptable threshold

for the positive score quota. On the basis of γ, weights
w+(γ, ρ+) and w−(γ, ρ+) are calculated for the aggregation
(formulas are omitted), so that the final scoring function is

f(pi, sk) := w+(γ, ρ+)
∑

N+
sk,pi

+ w−(γ, ρ+)
∑

N−sk,pi

, whereby f ends up giving scores in the range {-2,3}.
Although the generation of the proxy pi that maximizes f for
a given sk might be reasonable, the algorithm can be used
for decision support, so that the final decision may be taken
by an administrator and does not have to be automatically
enforced. The same holds for the QoE-based algorithm.

B. The QoE-based Algorithm

Because users have their own subjective selection criteria,
a different indicator of the “proxies’ suitability” is needed. In
QoE-based approaches, this indicator is based on user feed-
back, which can be explicit or implicit. Our algorithm uses
past user decisions (i.e., user choices of proxies) as implicit
feedback and calculates the mentioned “proxy suitability
indicator” as its probability to be selected by the users in the
future, if all proxies for this service existed. As the algorithm
that calculates this probability should use part of the data in
order to “learn” past user behaviour and part of it in order
to set evidence about the service that is examined each time,
machine learning was an obvious choice. In particular, we
developed an algorithm based on a Bayesian Network (BN),
because BNs match our problem for two main reasons: First,
they do not only classify cases (as simple decision trees
do, for example), but they compute exact probabilities, as
needed for a detailed proxy scoring. Second, they are an
appropriate approach for setting evidences, which we have
to do for every examined service.

The idea is to let the algorithm learn about a given service
by examining the past user behaviour upon “similar” ser-
vices which had been offered with all proxies. Two services
s1 and s2 are similar if qi(s1) = qi(s2),∀i ∈ {8, 9, 10} (see
Table I). We include in the BN the variables that are likely
to determine the user selection, i.e., the variables that are
most probably known to the user, e.g., {q1, q5, q6, q7, q11}.
Summarizing in simple steps, the following is done in order
to score each proxy for a given service:
• STEP 1: A logical BN structure is manually built,

showing which attributes affect the user decision.

• STEP 2: The records of similar services are analyzed to
find out how users decide (generation of the Conditional
Probability Tables of the BN).

• STEP 3: The records of the examined service are
analyzed to find out how the service is likely to be
used in the future (Evidence in the BN).

• STEP 4: Once the above has been calculated, the BN
is used to infere the probability of each proxy to be
used for the examined service during the next calls.
This probability is the score of the proxy.

V. EXPERIMENTS AND DISCUSSION

The two described algorithms have been used for initial
experiments towards investigating the features and the limits
of the two approaches. A direct, one-to-one comparison of
the results of the two approaches would be both impossible
and meaningless, because different outputs should be de-
fined as optimal in the two cases. Instead, our idea for a
meaningful evaluation was to use as reference-outputs the
results of each of the algorithms in the case of complete
knowledge/input. Then, each algorithm is examined concern-
ing its behaviour (in terms of deviation to the reference-
output) in different cases of incomplete knowledge. This
idea mirrors the needs of most solutions in the field, as
monitoring systems would rarely be able to provide the
adaptation layer with all the useful information that we
took into consideration in our analysis. Thus, the purpose
of the experiments is neither to prove that the presented
algorithms are optimal, nor to determine which is better, but
rather to investigate their behavior. The results will then give
hints about how the suitability of each approach in an own
system/domain should be judged.

A. Evaluation Set

This subsection describes how the evaluation set has been
initially built (before inserting any unknown values).

Sizes: We used a set of 4 possible proxies (from those
analyzed in [8]) and a set of 12 services with different
attributes (q8-q10). For half of the services, proxies are al-
ready provided, while the rest were the targets of adaptation.
Different sizes were tested for the set of service call records.

Content and Correlations: The values of the parameters
q1-q11 being random, apart from the following correlations:
First, q1-q4 get worse values with a higher probability if q5 is
small or medium, mirroring the fact that more powerful de-
vices often use better network connections, e.g., because of
WLAN-capabilities. Second, records of a particular service
have a higher probability to get values that are similar to
the values of the past calls of the same service. This reflects
the fact that a service has a specific target group, i.e., a set
of clients or client apps that use it.

User decisions: As mentioned, some of the services were
offered without available proxies. For these, of course, no
proxy was chosen by the user. For the rest, the chosen

Figure 2. Experimental results: Deviation of the scoring outputs for two different data set sizes and three different cases of incomplete knowledge

proxy was partly random, with the constraint that the users’
choice had a probability of 80% to satisfy simple QoS-
criteria, i.e., the users met a “pretty good” choice with a
probability of 80%. This was a reasonable choice because
of two reasons: First, it is indicated as an expected value by
studies related to users’ decision accuracy in similar fields,
such as [9]. It should also be considered that the choices
in our scenario are rather made by developers, or, at least,
technology-aware users, depending on how and when the
access method is chosen at the mobile side. Second, QoE
should anyway be immediately rejected at the first place
if users’ choices are random or completely QoS-unaware.
Thus, the QoE approach does not make much sense for much
smaller levels of “QoS-awareness” of the users. However,
this number may affect some results but is not critical for
our further discussion, either.

The same evaluation set has been used for both algo-
rithms. The obtained results (proxy scores) will be the
baseline. These results are used as reference in order to
examine the behaviour of the algorithms when inserting
unknown values. For the scenarios with incomplete data,
information has been only removed (and never added or
changed).

B. Metrics and Setup

Both algorithms give a scoring vector for each service.
This vector contains the score of each proxy for this ser-
vice under the given conditions. For example, the QoS-
based algorithm returned for the case of 5000 service call
records with complete knowledge the vector {-0.76;-0.36;-
0.57;0.45} for service s3, thus pointing at p4 as the most
suitable proxy. After inserting u-values for the parameters

q1-q4 in our data set (reflecting a “weak” monitoring of
network connections), the algorithm returned {-0.85;-0.60;-
0.63;0.29}. The Euclidean distance of these 2 vectors is used
to express the deviation caused by the incompleteness of
knowledge. As known, if xi and yi are the elements of two
n-sized vectors, this distance is

√∑n
i=1(xi − yi)2, which

gives 0.31 for the given example. Other metrics should be
considered in the future.

In the selected results, we use two different sizes of the
service call record set (1000 and 5000), which, combined
with our two algorithms, give four different cases, corre-
sponding with the four plots of Fig.2. For each of them,
there are three different scenarios of incomplete knowledge,
reflecting different cases of real monitoring systems:

• Network-incompleteness: ca. 25% of the knowledge
about the network (q1-q4) is randomly set as unknown.

• Client-incompleteness: ca. 25% of the knowledge about
the client devices and applications (q5-q7) is randomly
set as unknown.

• Feedback-incompleteness: ca. 25% of the knowledge
about user decisions (q11) is randomly set as unknown.

The percentage of missing knowledge (25%) was chosen so
that a non-trivial deviation is caused. Variations of this factor
are also a subject of future work.

Thus, there are four outputs in each case (the complete
plus the three incomplete scenarios). The deviation of the
complete case from itself is, of course, not depicted, as
it is naturally zero. This is the baseline, and it is the
distance of the other scenarios from this baseline that are
of interest. Further, the Feedback-incompleteness scenario is
not depicted for the QoS-algorithm, because its deviation is

also zero (this algorithm does not care about user decisions).
The deviations for the rest of the scenarios are shown in
Fig.2 and discussed in the following. The six examined
services appear on the x-axis, one next to the other.

C. Lessons Learned

As one could expect because of the definitions of the
algorithms, the QoS-based approach presents bigger devi-
ations in the case of the Network-incompleteness, while for
the QoE-based algorithm the harm is bigger in the case of
client-incompleteness. This is related to the nature of the
problem because the proxies usually have more constraints
for the network-related characteristics than for the other
parameters. Contrary, clients are affected more strongly by
device- or application-related parameters. The Feedback-
incompleteness is a special case that affects only the QoE-
based algorithm. The deviation is in this case much bigger
than in any other case, although the missing information is
quantitatively much less (only some missing values of q11).

Two further interesting observations are related to the
“deviation per service” and to the effect of the data set size.
As can be seen, The deviation for the QoE-based algorithm
may present slightly bigger differences between different
services even inside the results of the same experiment (see,
for example, s5 and s6 for QoE with 1000 records in Fig.2).
This means that the deviation which should be expected
for a service in a given scenario of incomplete knowledge
may be slightly more difficult to predict in the case of
QoE. Regarding the size of the data set, it is obvious that
the deviations of the QoE-based algorithm get significantly
smaller for bigger data sets. The QoS-based approach, on
the other hand, is less dependent on the data set size.

The results would be affected by changes in the formula-
tion of the problem or by the evaluation settings. However,
the discussed insights would remain valid and they can
serve as a roadmap, showing which aspects should be taken
into account when deciding which approach to follow for a
particular scenario of mobile Web service adaptation.

VI. SUMMARY AND OUTLOOK

Decision support is an important part of every adaptation
process. In this paper, it was examined for the case of
mobile Web service adaptation for limited devices. The
new problem has been introduced as “Always Best Served”
(ABS). QoS and QoE were described as the two main
research trends for approaching such decision support issues.
In accordance to them, two algorithms for the support of
ABS were described, evaluated, and discussed.

Parallel to this work, we are conducting research for
the enablement of new adaptation mechanisms inside the
MML. Thus, our future work is directed towards two main
goals: The first goal is the development of new ways to
adapt the service consumption, and the implementation of
the corresponding proxy generators. The second goal is the

optimization of the decision support algorithms presented in
this paper, based on further problem-specific observations.

VII. ACKNOWLEDGEMENTS

This work was funded in part by means of the Ger-
man Federal Ministry of Economy and Technology under
the promotional reference “01MQ09016” (“Green Mobility”
Project). The authors take the responsibility for the contents.
Many thanks to Liang Han and Jeremias Blendin.

REFERENCES

[1] M. Adacal and A. Bener. Mobile Web Services: A
New Agent-based Framework. IEEE Internet Computing,
10(3):58–65, 2006.

[2] C. Canali, M. Colajanni, and R. Lancellotti. Performance
Evolution of Mobile Web-based Services. IEEE Internet
Computing, 13(2):60–68, 2009.

[3] K. Demestichas, A. Koutsorodi, E. Adamopoulou, and
M. Theologou. Modelling User preferences and Configuring
Services in B3G Devices. Wireless Networks, 14(5):699–713,
2008.

[4] V. Gazis, N. Alonistioti, and L. Merakos. Toward a
Generic Always best Connected Capability in Integrated
WLAN/UMTS Cellular Mobile Networks. IEEE Wireless
Communications, 12(3):20–29, 2005.

[5] E. Gustafsson and A. Jonnson. Always Best Connected. IEEE
Wireless Communications, 10(1):49–55, 2003.

[6] M. Hillenbrand, P. Müller, and K. Mihajloski. A Software
Deployment Service for Autonomous Computing Environ-
ments. In Proceedings of the International Conference on
Intelligent Agents, Web Technology and Internet Commerce
(IAWTIC 2004), 2004.

[7] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS-aware
Middleware for Ubiquitous and Heterogeneous Environments.
IEEE Communications Magazine, 39(11):140–148, 2001.

[8] A. Papageorgiou, J. Blendin, A. Miede, J. Eckert, and
R. Steinmetz. Study and Comparison of Adaptation Mecha-
nisms for Performance Enhancements of Mobile Web Service
Consumption. In IEEE World Congress on Services (SER-
VICES ’10), pages 667–670. IEEE, 2010.

[9] P. Pu, P. Viappiani, and B. Faltings. Increasing User Decision
Accuracy Using Suggestions. In The 24th ACM Conference
on Human Factors in Computing Systems (CHI ’06), pages
121–130. ACM, 2006.

[10] S. Sesia, I. Toufik, and M. Baker. LTE, The UMTS Long Term
Evolution: From Theory to Practice. John Wiley Publications,
UK, 2009.

[11] D. Soldani, M. Li, and R. Cuny. QoS and QoE Management
in UMTS Cellular Systems. John Wiley Publications, UK,
2006.

[12] C. Yiping and Y. Yuhang. A New 4G Architecture Providing
Multimode Terminals Always Best Connected Services. IEEE
Wireless Communications, 14(2):36–41, 2007.

