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Abstract

Providing deterministic Quality of Service (QoS) in packet-switched
networks like the Internet, which allows non-critical traffic as well, re-
mains an open research issue. It has been shown [17] how optimal
network service curves for bandwidth/delay decoupled scheduling dis-
ciplines are found. In this paper, we show how to optimally allocate
service curves to nodes along the path to obtain the optimal network
service curve. We further show how the nodes can locally optimize
their resources to accommodate as many service curve requests as pos-
sible. These results are achieved by exploiting novel properties of the
convolution operation in the Min-plus algebra, which are derived in
this work. Therefore, as a second contribution, this paper gives insight
on the min-plus convolution, as well as transforms in the min—plus
algebra. Particularly, an efficient method to compute the min-plus
convolution under Network Calculus constraints is developed. The key
results of this paper are accompanied by numerical examples.
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1 Introduction

1.1 Motivation

Quality of Service (QoS) in packet-switched networks remains a much de-
bated research issue. There have been recent doubts and frustrations, espe-
cially regarding QoS in the Internet. However, it is unlikely that the status
quo is the final peal of wisdom. In the future, there will be a multi-service IP
network which will carry many different types of traffic, which are today car-
ried over legacy networks. The applications range from time-uncritical FTP
connections, over semi-critical Voice-over-IP conversations and video confer-
ences to mission critical connections such as air traffic control or emergency
rescue calls. The latter require deterministic guarantees and even though it
will certainly not make up a large proportion of the bandwidth, it is worth
optimizing due to its expensive implementation and high significance. The
mission critical applications usually are low bandwidth, short delay flows,
which we focus on in this paper. Further there will be closed, specialized
networks, optionally based on IP. An example of such a network would be
in a car, where steer-by-wire, the multimedia entertainment system as well
as the log book share the communcation channel. This work builds upon
a result by Schmitt [17], where the optimal network service curves for such
flows were deduced. Here we discuss how to set the parameters of the service
curves in the nodes along the path in order to obtain the desired network
service curve. To date, most research on QoS has gone into developing and
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optimizing new architectures. The development of a mathematical frame-
work has fallen short. Our long term vision is a system theory for packet-
switched networks, which plays a role similar to classical system theory for
the analysis of electronic circuits, wireless channels, etc. Such a system
theory would be attractive as development costs could be saved. Currently,
simulations have to be conducted to evaluate new ideas regarding algorithms
for packet-switched networks. If they prove worthwhile, a prototype imple-
mentation is next, and at the end stands a product. In opposition, in many
fields mathematical frameworks exist that allow a theoretical analysis prior
to simulation. An example is the field of developing new codes for wireless
channels. E.g., in the paper by Sandhu et al. [15] this is demonstrated by
using the existing theoretical framework to analyze the gain of a non-linear
space/time block code. Besides the cost factor an advantage is that some
negative side effects of simulations can be overcome (e.g. random number
generation, parameter estimation) and radically different concepts, which
usually do not fit into existing simulation environments, can be evaluated.
Last but not least, mathematical properties from the analysis can lead to
improvements of an implementation, as demonstrated in this paper. It will
be shown how the properties of the min—plus convolutioncan be used for
optimal admission control.

Network Calculus, which was invented by Cruz [6] [7], has the potential
of becoming the tool that fulfills this vision. Therefore, a significant part of
this paper deals with enhancing Network Calculus. Explicitly, we shed light
onto transforms in the min—plus algebra and develop new properties of the
min—plus convolution, which is the second contribution of this paper.

This paper is organized as follows. In the next section we review the nec-
essary results from Network Calculus. We then give an overview of related
work, especially the paper from Schmitt [17] that this work builds upon. In
Section 5 we derive a theorem for calculating the min—plus convolutionof a
certain kind of functions typical for Network Calculus, and analyse its prop-
erties. We then apply this theorem, first in Section 7 to optimally allocate
service curves along a path, and then in Section 8 to optimally utilize the
resources of one node. Finally we conclude and give an outlook.

2 Background

2.1 Selected Results from Network Calculus

Network Calculus [6] [7] is a theory for deterministic queueing systems. The
underlying idea is that service guarantees can be achieved by regulating
the traffic and deterministic scheduling. Analogous to conventional system
theory, a system consists of an input, a transfer function and an output.
The input, mostly referred to as arrival curve, is an abstraction of the traffic
regulation, and the transfer function, mostly referred to as service curve, is



an abstraction of the scheduling. A dioid is a mathematical structure with
addition (often denoted by @) and multiplication (often denoted by ®) as
two inner operations. The difference to conventional system theory is that
the dioid {R U 0o, min, +} is used, i.e., that addition and multiplication are
replaced by minimum and addition, respectively. This is often referred to
as Min-plus Algebra. The reason to switch to Min-plus Algebra is that this
way linearity is preserved. In the following, we recapitulate the results from
Network Calculus which are relevant for this paper. They can all be found in
the excellent text of Le Boudec and Thiran [2]. As in conventional system
theory, a key operation in Network Calculus is the min-plus convolution.
Note that the infimum (inf) of a set A is similar to the minimum (min) of
this set, with the sole difference that the former does not have to be in the
set. The same applies for the supremum (sup) and maximum (max) of a set
A. We set

F = {f:R>R}|f(t)=0fort<0,f(t1) < f(t2) for t; < 1o}

i.e. F is the set of nonnegative wide-increasing functions.

Definition 1 [Min-plus convolution] Let f and g be two functions or se-
quences of F. The min-plus convolution of f and g is the function

(F@9)®) = inf {F(t~3)+9(s)} (1)

The traffic bound is given by an arrival curve, which denotes the largest
amount of traffic allowed to be sent in a given time interval.

Definition 2 [Arrival Curve] Given a wide-sense increasing function a de-
fined for ¢ > 0, we say that a flow R is constrained by « iff for all s <t
R(t) — R(s) < a(t — s)

We say that R has « as an arrival curve, or also that R is a-smooth.

The arrival curve can be viewed as an abstraction of the regulation al-
gorithm. The most prominent example for a traffic regulation algorithm is
the Leaky Bucket [19], which is often also referred to as Token Bucket. Its
arrival curve is given by the following equation.

a(t)=b+rtfort >0 (2)

Therefore, no more than b data units can be sent at once and the long-
term rate is 7.



From this the Traffic Specification (T'Spec) of Integrated Services evolved.
It consists of two concatenated Token Buckets and has the following arrival
curve.

a(t) = inf(M + pt,b+rt) for t > 0 (3)

A greedy shaper with the shaping curve o optimally delays packets, so
that the output has ¢ as an arrival curve, and sends all bits as soon as
possible.

Theorem 1 [Greedy Shaper| Consider a greedy shaper with shaping curve
o, which is sub-additive and o(0) = 0. Assume that the shaper buffer is
empty at time 0, and that it is large enough so that there is no data loss.
For an input flow R, the output R? is given by

R°=RQ®o (4)

We omit the proof as it can be found in [2]. The service curve is an abstrac-
tion of the scheduling.

Definition 3 [Service Curve] Consider a system S and a flow through S
with input and output functions R and R°, respectively. We say that S
offers to the flow a service curve S if and only if § € F and R° > R® .

Theorem 2 [Concatenation of service surves| Consider n nodes, each of-
fering a service curve ;. A flow traversing these nodes in sequences is then
offered the service curve .

B=PRB®...Qp (5)

We omit the proof as it can be found in [2].
Due to its application in the Integrated Services context, a prominent
service curve is the rate-latency function.

Definition 4 [Rate-latency functions Sg 7]

Rt-T) ift>T
_ ot
Brr = Rlt - T] { 0 otherwise

for some R > 0 (the 'rate’) and 7" > 0 (the ’delay’).
We refer to this hereafter as the LR scheduler or LR service curve. It is also

the basis of the L2R scheduler, which will be introduced in Section 3 and
used throughout the paper.



2.2 Conventional system theory

In order to not cause confusion with max/min-plus system theory we use
the term conventional system theory. In this section we give a brief review
of conventional system theory. For a detailed description we refer the reader
to the excellent textbook by Oppenheim et al. [11].

The Z-Transforms plays an important role in the context of conventional
system theory; in particular, the Fourier transform is a special case. We de-
note by z(n) the input to a linear, time-invariant system. Then the (discrete)
Z-Transform X (z) of the signal z(n) is defined as:

X(z) = Z z(n)z " (7)

n—=—oo

The (continuous) inverse Z-Transform is then given by:

(n) = % }{ X(2)2" lde (8)

The output y(n) of an input z(n) of a linear, time-invariant system with the
impulse response h(n) is given by the convolution sum:

y(n) = Y a(k)h(n—k) (9)
Further, it can be shown that

Y(2) = X(2)H(2) (10)

Y(z), X(z) and H(z) are the z-transforms of y(n), z(n) and h(n), respec-
tively. Eq. 10 implies that the convolution from Eq. 9 can be carried over
to a multiplication in the z-domain. Similar results exist for the continuous
case, e.g., the Fourier transform or, more generally, the Laplace transform.
An alternative way to compute the convolution in conventional system the-
ory is to apply the Fourier transform to the functions, multiply the result
and apply the inverse Fourier transform. In certain cases this procedure can
be favourable in terms of computational complexity compared to the con-
volution operation itself. Therefore, it is worth looking into transforms for
the min-plus algebra in order to compute the Min-plus convolution, which
we will do in section 4.

3 Related Work

As mentioned before, the inspiration for this work is a result by Schmitt
[17], where he develops the optimal service curve for a bandwidth/delay-
decoupled scheduler. The optimal service curve is denoted by s°?. The
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Figure 1: L2R scheduler

bandwidth/delay-decoupled scheduler is characterized by a L2R service curve,
i.e., a service curve that has a latency, and two rates. The latency is de-

termined by factors such as the hardware and the scheduling discipline and

is therefore not a design parameter for us. After the latency the flow is

served with a rate R up to a certain time which we refer to as the inflection

point I. After that it switches down to rate r, which is the sustained rate

of the arrival curve. As depicted in Figure 1, s°?! is given by the 4-tuple

(L,I,R,r), where L is the latency and I the inflection point where the rate

switches from R to r. Further, we define U = I — L, which is the time that

the flow is served at peak rate.

In this case, optimality is defined on a per-flow perspective, i.e. min-
imizing the resource consumption of a single flow. The optimal network
service curve for an arrival curve is derived. In this work we extend those
results to a wider perspective, in particular we concentrate on two aspects.
The implications of an optimal network service curve to the service curves
of the nodes along the path are studied as well as the allocation of resources
within one node to accommodate as many flows as possible. It turns out
that the inflection point is chosen such that the delay bound is met at the
point where the arrival curve makes its last rate change to the sustained
rate. For the Tspec, this is the point where it switches from peak rate to
sustained rate, as shown in Figure 1. Besides deriving the optimal service
curve, numerical examples are given which show the benefit of this approach.
Schmitt further discusses related work, which obviously covers most of our
related work as well. Most interesting are the deterministic schedulers, as
they are the basis for allocating resources with the service curve approach.
Sariowan et al.[16] and Stoica et al. [18] describe algorithms which schedule
according to service curves.

Looking at the big picture, our work can be seen as a step towards devel-
oping a system theory for packet-switched networks on the basis of network
calculus. There are several researchers around the world who share this goal,
each approaching it from a different angle. What they have in common is
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that the focus is on developing new min—plus based methods for Network
Calculus, which solves an issue in contemporary networking research. We
exemplary point out two approaches. Bearing in mind that the common
goal is rather vague, they are far apart from our work as well as each other.
Chang et al. [4] extend the min—plus system theory to describe constrained
traffic regulation and dynamic service guarantees. Constrained traffic regu-
lation is achieved by concatenation of the so-called g-clipper and mazimum
service requlator. To obtain dynamic service guarantees results from filtering
theory with time-varying impulse responses are mapped to min—plus system
theory. Another big battlefield is enhancing Network Calculus with proba-
bilistic elements. Leading is the group around Liebeherr, who [10] introduce
the concept of Statistical Network Calculus. In the first incarnation this
is based on the assumption that an arrival curve does not deterministically
bound the incoming traffic but bounds it only with a certain probability.
Similarly, a statistical service curve [3] is a service curve that only offers the
service with a certain probability. Targeting the same goal from a different
angle are Pandit et al. [13], who conduct a simulation based analysis of a
Token Bucket bounded queue.

4 A Transform for Network Calculus

The min—plus convolutionis a key operation in Network Calculus. It has
a similar role as the conventional convolution in conventional system the-
ory. Therefore, it is worth analysing this operation to find efficient ways
to compute it. In conventional system theory, computation algorithms for
the convolution often rely on transforms, since the convolution in the time
domain corresponds to the multiplication in the frequency domain. Accord-
ing to [14], an efficient numerical algorithm to compute the conventional
convolution is via the Fast Fourier Transform (FFT). Hence, we turn our
attention to transforms. When looking for a transform for Network Calcu-
lus, the first thing that comes to mind is the Fenchel transform, also known
as the convex conjugate function. In the book by Bacelli et al.[1] it is briefly
pointed out that this transform carries over the min—plus convolutionin one
domain to an addition in another domain. In the book by Hiriart-Urruty and
Lemarechal [8] one finds the following definition for the convex conjugate
function:

Definition 5 The Fenchel transform, or convex conjugate function, is given
by

f*(s) = sup{sz — f(z) | x € dom f}

Further, the bi-conjugate function is given by
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™ (x) = sup{sz — f*(s) ‘ s € dom f*}

Unfortunately, a shortcoming of the Fenchel transform is that it only works
well for convex functions. For piecewise linear, convex functions (and slightly
more general ones) an efficient algorithm to obtain the min—plus convolutio-
nis outlined in Chapter 3 in the book by Le Boudec [2], where it is pointed
out that the min—plus convolutionof two piecewise linear, convex functions
is obtained by simply sorting the slopes of the individual functions. In gen-
eral, the bi-conjugate of a function yields the convex closure of the function.
For closed convex functions f (e.g. the piecewise linear, convex functions
n [2] fall into this category) we have f = f**. But in gerenal, i.e. for
non-convex functions, we can not hope for equality. Therefore, the Fenchel
transform is not suited in the context of Network Calculus. Applications and
problems of the Fenchel transform in the context of Network Calculus are
described in the technical report by Pandit et al.[12]. Furthermore example
computations are provided in this work. The next transform we consider
is the I'-transform. The I'-transform can easily be represented graphcically
by so-called point clouds, This transform is explained in the book by Ba-
celli et al.[1], and thoroughly described in the dissertation of Holger Jikel
(in German) [9]. Here we limit ourselves to a descriptive discussion on this
transform, the mathematically inclined reader is referred to the above two
texts. An element b € B[y, d]] is a formal power series in two variables (v, §)
with Boolean coefficients (the subscript z can be ignored for now):

b= sa(k,t)0"y" = Z:}:%ktﬁt (11)

kteZ k=—o0 t=—00
The possible "value” for the coefficients s;(k,t),k,t € Z in the min-plus
algebra are sg(k,t) = e =0 and sg(k,t) = € = +00. A sequence z(k),k € Z
can be transformed into B[[y, d]] via

|0 z(k) =t
Sﬂh“_{+m £(k) #1 (12)

This operation is called the I'-transform.

For two elements bi,by € B[[7v,d]] we define their sum (in the min-plus
sense) componentwise as the usual minimum operation of their coefficients.
Denote by s;(k,t),i = 1,2 the coefficients of b;,7 = 1,2. Then the coefficients
(s1 @ s2)(k,t) of by @ by are given by

(s1 @ s2)(k,t) = Igclitnsl(k, t), s2(k,t) (13)

The multiplication of two elements b1, bo € B|[[7, d]] is more involved. Again,
let s;(k,t),7 = 1,2 denote the coefficients of b;,i = 1,2. Then the coefficients
(s1 ® s2)(k,t) of b1 ® by are given by
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(s1®s2)(k,t) = min  [s1(i1,]1) + s2(i2; j2)] (14)
t1+i2=k,j1+j2=1

While the addition operation is trivial, the multiplication operation is not as
intuitive. The graphical interpretation of the addition operation is simply to
take all points of the underlying point clouds, choose the minimum of those
and fix it as a new point for the point cloud of the sum. The multiplication
operation is explained below using a back-of-the-envelope example.
In order to compute the min—plus convolutionof two functions f and h,
we sample them (i.e. we obtain a sequence f(k),h(k),k € Z), apply the
I-Transform, add the resulting elements in B[y, §]] and apply the inverse
I-Transform. However, it will also show that this is merely a different rep-
resentation of obtaining the min—plus convolutionwithout any gain on the
computing complexity. We have to limit ourselves to a discrete excerpt (re-
ferred to as ”sample” in the following) of the actually continuous functions,
as with the number of points the complexity rises exponentially.

Let z1(k) be a sample of a token bucket arrival curve with bucket depth
2 and slope 1.

0 k=20
z1(k)=4¢ 24k 1<k<3
+00  otherwise

The I'-transform T'; of z;(k) is depicted in Figure 2 a). Note that we
always assume the function to be 0 at £ = 0. Similarly, z2(k) is a sample of
a LR service curve with latency 2 and slope 2.

0 k=20
zo(k) =4 2(k—2) 2<k<A4
+o0 otherwise

The I'-transform I'y of z2(k) is depicted in Figure 2 b). In Figure 2 c)
the multiplication operation of I'; and I'y is depicted. Every point is added
to every other one. Therefore, since we have 4 points in each cloud, the
result should be 16 points. The avid reader counts only 15, as one point,
the one with the square around it, falls twice on the same spot. This is also
the point where the resulting min—plus convolutionof two such service curves
would have the switch from the slope from the service curve, to the slope
from the arrival curve. The resulting min—plus convolutionof the curves is
depicted by the dashed line. The reverse I-transform is obtained by taking
the corners of the area above or left of each point. This area is shaded in
Figure 2 c).

It can be clearly seen that the number of points we picked is not sufficient
to obtain the correct result even for the depicted range. It is also not possible
to find some characteristic points which describe the min—plus convolutionof
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a) s1(k,t)

b) so(k, t)

c) s1(k,t) @ s1(k,t)

Figure 2: Disggete transform



Figure 3: Continuous transform

piecewise linear functions. Therefore, the I'-transform is not very helpful to
simplify the general computation of the min—plus convolution.

The main problem is the discretization or sampling procedure. The
accuracy of the computation depends strongly on the amount of discrete
points we choose. However, the more points we take into account, the closer
the result becomes to the min-plus convolution. Taking this considerations
to the limit, we end up at the continuous I'-transform. A function, such as an
arrival curve or service curve, can be viewed as an infinite set of points. We
proceed with them as with the points in the I'-transform. This is depicted
in Figure 3. Underlying are an arrival curve, and a service curve. The are
obtained when all their points are summed with each other, and it can be
easily verified that the border of this are denotes the min—plus convolution.
With this in mind, we bring the attention back to Eq. 14 and realize that
this merely is another representation of the min—plus convolution. Taking
a close look at this graphical representation, we obtain a theorem which is
given in the following section.

5 Min-plus Convolution under Network Calculus
constraints

In this section we derive an efficient method to calculate the min—plus con-
volutionunder Network Calculus constraints.

Remark 1 All functions f, g in this section belong to F. This is important,
since if the range of a function f is not a subset of the real numbers, one
can not speak of "the slope of f or ¢” that easily. Accordingly, the following
definition would not make sense any more.
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First we define the convex inflection point, as it will play a key role in
the course of this paper. Recall that for a function f € F, f piecewise linear,
a reflection point R € R is simply a point with f'(R™) # f'(R"); i.e. the
slope of f changes at R.

Definition 6 [Convex and concave inflexion points] We define a convez
inflection point R as an inflection point, where the slope to its right is
greater than the slope to its left. More mathematically, a convex inflection
point R has the property that f'(R*) > f'(R™). Analogously, we call an
inflection point where the slope to its right is less than the slope its left a
concave inflection point. Thus, a concave inflection point R has the property
that f'(R*) < f'(R™)

Next we discuss what we mean by Network Calculus constraints. This
refers to the shape of the functions. We argue that the relevant functions
have two properties

1. All functions are monotonously (wide-sense) increasing
2. All functions are 0 for ¢ < T and concave for t > T.

As pointed out in section 2.1, the underlying functions are the arrival
curves as well as the service curves. The first property is straight-forward, as
we are dealing solely with cumulative functions. The second property holds
for arrival curves, as they are are sub-additive. Further, the service curve
from [17], which is the work we build upon, satisfies the second property.

Therefore, we are interested in the min—plus—convolution of special func-
tions f and ¢g. Let 7,7 = 0,...,n, AZ',A]',BZ',BJ' € R with 4; > Aj and
B; > Bj if i > j. Then define I}' = [A4;_1,A;] with A_; = —oo and
An+1 = +00. Now we can state the functions f and g to be investigated in
the rest of this section.

(0 telIg
ao(t — Ao) teIf
aO(A1 —A0)+a1(t—A1) te Ié4

fo=3"
> ai(Aip1 —A) +an1(t—A, 1) teld
=0
n—1
Z a,-(AH_l —A,’)—Fan(t—An) te 17114-1—1
\ =0
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Figure 4: Shape of functions f and g

(0 teIf
bo(t—Bo) tEIP

bo(Bl—Bo)+b1(t—Bl) t€I2B

n2
E bi(Bi+1 — B,) + bn_l(t — Bn—l) t € If
=0

n—1
> bi(Big1 — B;) + bp(t — By) te If+l
\ =0

The functions f and ¢ have exactly one convex inflection point each
at Ay and By, respectively, and only concave inflection points thereafter.
Le., we have a; < aj and b; < b; for j < i. In other words, we assume
an < ap—1 < ... < a1 and b, < by_1 < ... < by. In the style of L2R
functions, we call them LnR functions. The shape of f and g is given in
Figure 4.

We are now ready to formulate the theorem, which is the foundation of
this work.

Theorem 3 The min—plus—convolution of f and g is given by
(f*9)(t) = inf {f(t—35)+g(s)} = min{f(t ~ Bo), g(t — Ao)}

Proof We assume Ay < By without loss of generality. For t < Ag let s =0
and we have

(F*9)(t) = f(t) +9(0) =0
For Ag <t < Ag + By let s = Ay which yields

(f*g)(t) = f(Ao) +g(t— Ag) =0

Let t > Ag + By and assume that
f(t—Bo) > g(t — Ao)

17



Let x be such that Ag+ Bg+x < t. Then we have the following inequalities:

f(t — By) — f(Ao) < f(Ao + ) — f(Ao)

t—B(]—A() - T (15)

g(t — Ag) — g(t — Ay — z) g9(t — Ao) — g(Bo)
. T : S t—B?()—AOO (16)

f(t — Bo) — f(Ao) g(t — Ao) — g(Bo)
t—Bo—AO 2 t—Bo—AO (17)

Inequality (17) simply restates our assumption f(¢ — By) > g(t — Ap)-
Inequality (15) and (16) hold, since f respectively g are concave. We will
give a proof below.

We can write down a series of inequalities:

g(t — Ag) — g(t — Ag — 2) < g(t — Ao) — g(Bo)
x - t — Bog — Ap

J(t — By) — f(A)
- t—Bo—AO

f(Ao + ) — f(Ao)

T

<

Multiplying by = > 0 and rearranging we obtain
g(t — Ao) + f(Ao) < f(Ag+2) +g(t — Ao — z)
Setting y := Ag + x and recalling f(Ap) = 0 we have

(1) g(t —Ao) < fly) +g(t —y)

Proof of inequality (15)

We have t > Ag + By. For z > 0 with t > Ag + By + © we have Ag <
Ap+x < t— By, hence Ay + = can be written as unique convex combination
of the points Ay and ¢t — By. Therefore we need to solve the following;:

Ag+z=0a-Ag+ (1 —a)-(t — By)

A simple computation yields

A0+$—t+Bo T
o = =1-— <1
Ao —t+ By t— Ay — By
Hence we have
T
l-a=————
*T i "4 — By
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Now we use that f is concave. Recall, that a function 7 is concave on [a, b],
if for every «a € [0, 1] the following inequality holds:

a-n(a)+(1—a)-nb) <nla-a+(1-a)-b)

Setting a = Ay and b =t — By, we obtain

f(Ao+2) 2 af(Ao) + (1 —a)f(t — Bo)
T T

= f(Ao) — mf(flo) + mf(t — By) (18)
= [(40) + =g =g (6 = Bo) = f(40)) (19)

Rearranging yields inequality (15).
Proof of inequality (16)

We have t > Ag + By. For © > 0 with ¢t > Ay + By + = we have By <
t— Ay —xz < t— Ag, hence t — Ay — = can be written as unique convex
combination of the points By and ¢t — Ay. Therefore we need to solve the
following;:

t—Ay—z=0a -By+(1—a)-(t— A

A simple computation yields

—T T <1

T BetAg—t t—Ag—By =

Now we use that g is concave. Recall, that a function 7 is concave on [a, b],
if for every a € [0, 1] the following inequality holds:

a-n(a)+(1—-a)nb) <nla-a+(l-a)-b)
Setting a = By and b =t — Ay, we obtain

gt — Ag — z) > ag(Bo) + (1 — a)g(t — Ao)

= t—A:—Bog(BO)+ (1—ﬁ) g(t — Aop) (20)
= gt = Ao) + ;= 5 (9(Bo) — gt — A)) (21)

So we have

gt —Ag —z) — g(t — Ag) S 9(Bo) — g(t — Ao)
x - t— Ao — By

Multiplying by —1 yields inequality (16), which concludes the proof.

In other words, the convolution is obtained by taking the minimum of
the two functions shifted such that their convex inflection points are at
t = Ay + By. This is also depicted in Figure 5.

19



AyBy Ao+ By

Figure 5: Application of Theorem 3

Note that the proof does not require f and g (f,g € F) to be piecewise
linear and works for any function that has only one convex inflection point.
Note that the convex inflection point has to be the first inflection point,
but that is given for all functions out of F. However, we only consider
piecewise linear functions as all function in contemporary Network Calculus
are piecewise linear. The slopes always denote some kind of rate. The
piecewise linearity is also subject of the next remark.

Remark 2 The convolution of f and g is also piecewise linear and concave
from Ag + By onwards.

Proof of Remark 2

Since f,g are piecewise linear and concave, f(t — By) and g(t — Ag) also
posess these properties, since they evolve from f and g, respectively, by
shifting along the z-axis. That the convolution is again piecewise linear is
clear, since f and g are piecewise linear and continuous. It remains to show
that the convolution is a concave function.

Let f,g be concave from a point R onwards. Set p(t) := min{f(¢), g(t)}-
Then p(t) is concave.

We need to show that for any given z,y € R and A € [0,1] we have

pAz+(1-XNy) > Ip(z)+(1-Apy) (22)

20



We assume w.Lo.g. f(Az+ (1 —A)y) < g(Az + (1 — A)y). Then we have

p(Az+(1-Ny) = min{f(Az+(1-Ny),g(Az+(1—-Ny)}

= f(Az+(1-A)y) (23)
Af(z) + (1= X)f(y) (24)
Amin{f(z),g(z)} + (1 — A) min{f(y), g(y)}
= Ap(z) + (1 — A)p(y)

Note that (23) holds because of our assumption and (24) uses the concavity
of f.

Remark 3 Let f and g have m and n concave inflection points, respectively,
i.e., m + 1 and n + 1 slopes greater than 0, respectively, The convolution
of f and g then has m 4+ n concave inflection points and m + n + 1 slopes
greater than zero.

This leads to the following theorem.

Theorem 4 Given n functions fi, f,..., fn, each with the properties of f.
The min—plus convolutionof all of them is given by

(Frofoxeox fa)(t) = _min  (fi(t+ Ao, — ZAO,

Proof Utilizing the distributivity,

(fix foxooox fu)(8) = (((fr % f2) ¥ £3) % ... x fn) (2)

This can be computed using Theorem 3 recursively, which yields the above
term. Note that a function f; is shifted by the sum of all Ay’s other than
the own one.

6 System Model

In the remainder of this paper, we apply the results obtained so far to
prevailing network problems. We assume to be dealing with networks where
a typical path is 6 hops and the number of nodes is approximately 50.
Mission-critical, as well as semi-critical and uncritical data traffic traverse
this network. Therefore, this network could be either a domain in the future
Internet, where the mission-critical traffic would be some air traffic control,
the semi-critical traffic is a Internet radio stream and the uncritical an Email.
However, it could as well be a network in an automobile. There the mission-
critical data flow is the brake-by-wire signal, the semi-critical a Video-on-
Demand from the entertainment system and the uncritical again an Email.
For critical flows the network service curve is given to reserve resources along
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the path. The scheduler is based on service curves. As mentioned in the
related work, SCED [16] and HFSC [18] are the front runners.

We understand that this does not seem viable today, however, we do
believe that if this theory is advanced further, the system theory concept
will find its way into network design. We further do not believe that strict
priority queueing is the ultimate answer to such a setup, even though it seems
to be destined to be used when mission-critical flows are in the network.

All nodes are controlled by one central entity, which we call the Network
Calculator. It has knowledge about the sum of all service curves each node
is serving as well as the path of each source-destination pair. Note that it
does not have to know the state of every flow. New requests are sent to
this entity which checks whether it can be accommodated. If the request is
not directly admissible, it checks whether it can be admitted by altering the
service curves in the nodes preserving the delay guarantees. There are two
turning knobs here, path optimal allocation and node optimal allocation of
service curves. These two are discussed in the following two sections.

Making End-to-end guarantees requires the interconnection of domains.
We neglect this and related issues as they would be out of scope of this
paper.

It will turn out that shortcomings of nodes with respect to providing
service can only be compensated by other nodes reducing their latency.
Therefore we require the following definition.

Definition 7 [Compensated latency] We define compensated latency U, as
the time that has to be reduced from the initially allocated latency in order
to meet the service curve requirement. Depending on the context, the re-
duction is done either the shortcoming node itself, or other node along the
path, or a combination of nodes along the path.

Also depending on the context, the service curve requirement can be the
local service curve of a node or the network service curve. To accommodate
as many flows as possible in a node, some flows will not be allocated their
initial service curve. Of course, this only works, if the new service curve gives
better guarantees than the initial one. Therefore, we require the notion of
a dominating service curve.

Definition 8 [Dominating Service Curve] We call S4(t) a dominating ser-
vice curve over ((t), if Bq(t) > B(t) for all ¢.

In other words over any time fS4(t) offers always at least the service that
B(t) does.

7 Path Optimal Allocation of Service Curves

This section deals with the relationship of the network service curve to the
service curves of the individual nodes. We assume, a network service curve
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s°P* has been obtained as shown in Section 3. Therefore, it is given by a
4-tuple (L, I, R,r). Now the question arises, which service curves the nodes
on the path have to have so that the concatenation of these service curves
yields the desired network service curve. We assume k nodes, where each
node has a service curve s;, with ¢ = 1...k. The service curves s; are also
given by 4-tuples, namely (L;, I;, R;, ;). By using Theorem 4 we have

k

t .
s = min (st +Lj - ;Li))

First, we notice that the latency L of the network service curve is the sum
of all L;’s of each node service curve along the path. Right of L, the slope
of the network service curve will first be the minimum of all R;’s of all node
service curves. In other words, if any node has an R; higher than another
one, it is wasted as only the minimum defines the network service curve.
Therefore, it makes sense if all R;’s, U;’s and r;’s are equal. The setting
of L;’s is a question of delay distribution along a path. As pointed out in
Section 3, much work exists on this. An popular assumption is to distribute
the delay equally among all nodes. Therefore, the optimal parameters for
each node service curve are (L/k,L/k+ U, R, r). Trivially, if one node offers
less resources the delay bound can not be met anymore without the other
nodes raising their resources. However, if one node offered a higher rate R;
or r;, or a longer period AU of sending at rate R, this would not have any
effect on the network service curve and therefore be wasted resources.

The following numerical examples illustrate these findings. Assume
a low bandwidth, short delay flow that suffices a TSpec with peak rate
9000 bytes/s, sustained rate 1000 bytes/s and buffer 2000 bytes. Without
loss of generality we assume the maximum packet size is 0. Therefore we
have, T'Spec(b,r,p, M) = (2000,1000,9000,0). The flow traverses a path
consisting of 5 nodes and has a delay bound of 500 ms. In other words, a
flow can send at its peak rate for 250 ms and then has to reduce to sustained
rate. Using the method from [17] the optimal network service curve is

0 t < 500
st =24 9000 500 < t < 750
1000 t > 750

Assuming an equal delay distribution over all nodes, the optimal node service
curves are for each node

0 ¢ <100
st =<{ 9000 100 < ¢ < 350
1000 t > 350

We now discuss the consequences of a node not being able to offer the
demanded service. There are 3 ways in which a node can fail to offer the
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Figure 6: Compensated latency with deficient peak rate

demanded service: latency, peak rate and sustained rate. If a node can not
offer the sustained rate, then the flow can not be accepted, as there is no way
that the other nodes can make this up. The sustained rate of the network
service curve is determined by the smallest sustained rate of all nodes. A
node not making the delay requirement can be compensated rather easily.
The time that it exceeds the delay requirement has to be made up by one
or many of the other nodes guaranteeing a lower latency, such that the sum
of the latencies of all nodes remains the required latency. To illustrate this
with the example above, if one node can only offer a latency of 140 ms, then
the network service curve can still achieved if the other nodes along the path
save 40 ms. This can either be done by reducing the latency of one node to
60 ms or by the 4 other nodes having a latency or 90 ms each, or any other
combination for which the sum of all latencies is 500 ms. The last possible
failure is when a node is not able to offer the demanded peak rate. Here we
distinguish whether the node is not able to offer the rate itself or whether
is not able to offer the rate for the required time. A crucial quantity is Sy,
which we defined as the amount of data that is served at the inflection point.
Consider a node can only offer a deficient peak rate py. If it can offer it for a
time Uy, such that psUy = B, then the delay bound can be met by reducing
the latency. The amount by which the latency has to be reduced, Uy — U,
is obtained by the following consideration.

Br = paUa = pU (25)
Uc:Ud_U:,BI(i_l) (26)
ba P

Again, it is arbitrary which nodes make up the latency. This case is depicted
in Figure 6.
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Figure 7: Compensated latency with deficient peak rate serving time

The next case is a node that can offer the peak rate only for a time
Uy < U. The term U, is the time needed to reach (; after the peak rate
stopped. The latency that has to be compensated is then U; + U, — U.

Br = pU, + rU, = pU (27)
(p—r)(Br —pU1)
pr

U =U,+U,—-U = (28)

This case is depicted in Figure 7. It can be seen that if the ratio between
peak rate p and sustained rate r is large, the compensated latency grows
rapidly.

The bottom line is that no shortcoming of a node can be compensated
by any other offering only a higher rate. All compensations rely on one or
many other nodes guaranteeing a lower latency.

8 Node Optimal Allocation of Service Curves

We shift our attention now to one node, and apply our results to the op-
timization of the service curves. As mentioned in Section 6, new requests
come in and it has to be decided whether the node can admit the flow. It
is not relevant for the following concept whether this decision is taken by
the Network Calculator or outsourced to the node itself. There exists a
maximum service curve which denotes the capacity of a link. Without loss
of generality, we assume this to be an LR curve, which we call the capacity
service curve C. The sum of all prevailing service curves as well as the ca-
pacity service curve C are known. Figure 8 shows a capacity service curve,
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Figure 8: Not achievable service curves I

two individual service curves and their summed service curve. The first cri-
terion for a flow to be admitted, is that the sum of all service curves does not
exceed the capacity service curve. Remember that the service curve denotes
how many packets have to be serviced by time ¢. In the case of a maximum
service curve, it denotes how many packets can maximally be serviced. Ob-
viously, if the number of packets that have to be service exceed the number
that maximally can be serviced, the delay guarantee can not be made. The
second criterion is that the rate in the summed service curve at any time ¢
must never be greater than the rate at that time ¢ in the capacity service
curve. In Figure 8 the first criterion is met, while the second is violated
between the times t; and ¢9. This is much clearer to see in the derivatives
of the service curves, which are given in Figure 9.

Consider the following numerical example. A node receives two requests.
Both are low bandwidth short delay flows and suffice the same TSpec with
peak rate 9000 bytes/s, sustained rate 1000 bytes/s and buffer 2000 bytes.
Without loss of generality we assume the maximum packet size is 0. There-
fore we have, T'Spec(b,r,p, M) = (2000,1000,9000,0). In other words, a
flow can send at its peak rate for 250 ms and then has to reduce to sus-
tained rate. Flow 1 requires a delay bound from the node d,,,; = 100 ms.
Flow 2 requires dj,q; = 300 ms. Let the available capacity of the router at
the time the requests are made be the rate-latency curve with L = 100 ms
and R = 15000 bytes/s. According to [17] the optimal service curve for Flow
1is
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Figure 9: Not achievable service curves I1

0 ¢ < 100
s =4 9000 100 < ¢ < 350
1000 t > 350

Similarly, the optimal service curve for Flow 2 is

0 t < 300
s = ¢ 9000 300 < t < 550
1000 t > 550

Clearly, offhand both flows can not be accepted, as together they require a
rate of (9000+9000)bytes/s = 18000 bytes/s in the interval ¢t € [300ms, 350ms].
But, using Theorem 3 Flow 1 can be assigned the service curve

0 t <100
s = ¢ 11000 100 <t < 300
1000 t > 300

This allows both flows to be accommodated.

9 Conclusion and Outlook

In this paper we introduce some novel properties of the min—plus convolu-
tionunder Network Calculus constraints. All functions relevant for Network
Calculus known to us are piecewise linear and wide-sense increasing func-
tions with only one convex kink. Explicitly, we show that the min-plus
convolutionof functions with these characteristics can by efficiently com-
puted by taking the minimum of the shifted functions. We apply this result
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to determine the optimal service curves of single nodes along a path in or-
der to meet a network service curve. Therefore, our theorem brings insight
on the relationship between the service curve of the single nodes and the
network service curve. A key result is that no shortcoming of a node can be
compensated by the other nodes merely increasing their rate. Rather, it is
the latency of the other nodes that is crucial for compensation. With this
work we move a step closer to allowing networks to be designed by service
curves. Subject of future work will be to bring this theory closer to practice.
I.e., derive an optimization algorithm that actually conducts the admission
control. Further, we are working on implementing the system in a testbed
under ALTQ [5]. On a final note, it remains a long way to bring a system
theory for networking to the level of conventional system theory.
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