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ABSTRACT 
The rapid increase of multimedia t,raffic has to be accounted for when designing IP rietworks. A key characteristic 
of multimedia traffic is that it has strict Quality of Service (QoS) requiremerits in a heterogeneous manrier. 
There are many different traffic types which have different throughput and delay requirements. In such a settirig, 
scheduling by service curves is a useful method as it allows for assigning each flow exactly the service it requires. 
When hosting heterogeneous multimedia Ixaffic, the utilization of packet-switched networks cari be increased 
by using bandwidthldelay decoupled scheduling disciplines. It has been stiown in previous workl how optimal 
network service curves are obtained with them, where optimal means that each multimedia flow receives the 
required service with the least possible consumption of resources. A basic result from Network Calculus is that 
the network service curve is obtained by the min-plus convolution of the node service curves. We state a theorem 
on the min-plus convolutiori iri this work, which simplifics the computation of the min-plus convolution of service 
curves of bandnridth/delay decoupled schedulers. The rather complex miri-plus corivolutiori siinplifies to merely 
shifting the functions and taking the minimum. The theorem follows from the continuous FA-transform, whicli 
we develop. With this theorem, we derive the optimal service curves for the nodes along a path. Furtlier, we sliow 
how the admission control can be improved when networks are designed based on service curves. Corisidering 
one riode, reallocating the service curves leads to admitting more flows. Then we point out scenarios where 
sub-optimal allocation of service curves iri a node can increase the number of admitted flows to the network. 
The key results are accompanied by numerical examples. On a broader scale, this paper advances the research 
in analytically rnodeling packet-switched networks by pointing out novel properties and a new application of 
Network Calculus. 
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1. INTRODUCTION 

1.1. Motivation 

Future IP networks will carry heterogeneoiis traffic from a vast variety of applicatiori types, which includes 
several forms of niultimedia. Sonie of the traffic will stem froni rnultimedia applications which have hard Quality 
of Service (QoS) requirements. The typical QoS parameters of multimedia flows are throughput, delay and loss. 
Deterriiinistic QoS guarantees can only be given, if the following three ingredierits are enforced: traffic. regulation, 
scheduling arid admission coritrol. Regulated t,raffic is best described with the arrival curve concept, which gives 
an upper bourid of the trafiic. Schedulers can be modeled with service curves. This is useful wheri considering 
heterogeneous multimedia traffic as it is possible to ensure each multimedia flow receives exactly the service it 
requires. The relationship between service curves and the actual scheduler is well studied. With the schedulers 
SCED from Sariowan and Cruz2 as well as HFSC from Stoica3 general service curves can be scheduled with 
sufficierit efficiericy. We are especially interested in service curves for bandwidthldelay decoupled schediiling 
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disciplines, as ~chmi t t '  has shown that with those optimal network service curves are obtained. Optimal implies 
that the QoS requirement is met with the least possible consumption of resources. The challenge of admission 
control is to admit as many fiows as possible while assuring that each flow still receives the contracted service. 
Optimal network service curves maxiniize the number of admissible multimedia flows requiring QoS. This is in 
the interest of the network service provider if he can charge multimedia flows separately, but also for marketing 
purposes. Network Calculus provides methods to compute performance bounds based on arrival and service 
curves. The knowledge of performance bounds is essential when offcring deterministic QoS guarantees. A basic 
result of Network Calculus is that the network service curve is given by the min-plus convolution of the node 
service curves along the path. In this paper, we will show how to optimally desigri service curves for each node 
so that the network service curve is met. Therefore, this work generalizes the previously cited work of Schmitt,' 
which we review in the following subsection. 

Beyond that, the remainder of this paper is organized as follows. In Section 2 we develop a novel transform 
for Network Calculus. This transform leads to our theorem for calculating the min-plus convolution of a certain 
kind of functions typical for Network Calculus. We introduce it and analyse its properties in Section 3. We 
then apply this theorem to admission control, first in Section 4 to optimally allocate service curves along a path. 
Then, in Section 5 ,  we take the node perspective in order to perform admission optimizatiori. Finally we conclude 
and give an outlook. 

1.2. Background 
For the following we assume the reader to be familiar with the arrival cume and seruice curve notions of Network 
Calculus, especially the TSpec, which is the Internet Engineering Task Force (IETF) arrival curve for multimedia 
flows, and the Latency-Rate (LR) scheduler. Further, we use the min-plus convolution as well as the theorems 
on concatenation of service curves and virtual delay bound. All of the above notions and results are excellently 
described in the textbook by Le Boudec and Thiran,4 as well as introduced in our technical ~ - e ~ o r t . ~  

As mentioned above, the inspiration for this work is a result by Schmitt,' where he develops the optimal 
service curve for bandwidthldelay-decoupled scheduling discipliries. Such scheduling disciplines are well suited for 
multimedia networks, as these comprise traffic with diverse throughput and delay requirements. Each multimedia 
flow can then be assigned a service which offers exactly the requirements. The bandwidthldelay-decoupled 
scheduler is characterized by a non-linear service curve. The optimal network service curve for an arrival curve 
is derived, i.e., the network service curve which meets the QoS requirements while minimizing the resource 
consumption of a single fiow. For a TSpec, which is the most widely spread arrival curve, the optimal service 
curve @'Pt is that of a so-called L2R scheduler. The L2R scheduler has a latency and two rates. After the latency 
the flow is served with a rate R up to a certain time whicki we refer to as the inflection point I. After that it 
switches down to rate r ,  which equals the sustained rate of the arrival curve. Therefore, ßOpt is origirially given 
by the 4-tuple (L, I, R, r ) ,  where L is the latency and I the inflcction point where the rate switches from R to 
r. The inflectiori point I is chosen such that the delay bound is met a t  the point where the TSpec changes from 
the peak rate to the sustained rate. Further, we define U = I - L, which is the peak rate interval, i.e., the 
time that the flow is served a t  peak rate. In our considerations the peak rate interval is more important than 
the absolute inflcction point, hence we will denote L2R service curves by the Ctuple (L, U, R,  r) hereafter. In 
Figure 1, a TSpec and its according optimal service curve ß o P t  are depicted. Note that in all figures A indicates 
that the following value belongs to the underlying slope. Schmitt further gives numerical examples which point 
out the benefits of this approach. In this work we extend those results to a wider perspective. The implications 
of an optimal network service curve to the service curves of the nodes along the path are studied as well as the 
allocation of resources within one node to obtain optimal service curves. 

1.3. Related Work 
Much of the related work evolves around scheduling disciplines. This is well discussed by Schmitt.' Fidler and 
ReckerG discuss the Fenchel transform in the context of Network Calculus. This is subject of Section 2. 

2. A TRANSFORM FOR NETWORK CALCULUS 
The min-plus corivolution is a key operation in Network Calculus. I t  has a similar role as the conventional 
convolution in coriventional system theory. Therefore, it is worth analysing this operation. In conventional 
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Figure 1. L2R scheduler 

system theory, cornputation algorithms for the convolution often rely on transforms, since the convolutiori in the 
time domain corresponds to the multiplication in the frequency domain. According to the legacy book by Press et  
a1.,7 an efficicnt riurnerical algorithm to cornpute the coriventiorial convolutiori is via the Fast Fourier Transforrn 
(FFT). Hence, we turn our attentiori to trarisforms. Wheri looking for a transform for Network Calculus, the first 
thing that Comes to mind is the Fenchel transform, also known as the convex conjugate function. In the book by 
Bacelli et  al.s it is briefly pointed out that this transform carries over the min-plus convolution in one domain to 
an addition in another domain. In the book by Hiriart-Urruty and Lemarechalg one finds the following definition 
for the convex conjugate function. The Fenchel transform, or convex conjugate function, is given by 

F'urther, the bi-conjugate function is given by 

I.e., the suprenium of the term is taken for all X, where f(x) is defincd. Unfortunately, a shortcomirig of the 
Fenchel transform is that it only works well for convex functions. For piecewise linear, corivex functions (and 
slightly niore general ones) an efficient algorithm to obtain the min-plus corivolution is outlined in Chapter 3 iri 
the book by Le Boudec and Thiran: where it is pointed out that the min-plus convolution of two piecewise 
linear, convex functions is obtained by simply sorting the slopes of the individual functions. In general, the 
bi-conjugate of a function yields the convex closure of the function. For closed corivex functions f we have 
f = f**.  But in general, i.e., for non-convex functions, we cannot hope for equality. Therefore, the Fenchel 
transform is not suited in the context of Network Calculus. Applications and problems of the Fenchel transform 
in the context of Network Calculus are described in the technical report by Pandit et  al,1° as well as the work by 
Fidler and R e ~ k e r . ~  The latter further introduce the concave conjugate function, which is the equivalent of the 
Fenchel transforni for concave functions, and present a graphical interpretation of some Network Calculus results. 
The next transform we consider is the rA-transform. The i'A-transform can easily be represented graphically 
by so-called point clouds, This transform is explained in the book by Bacelli et al.,s and thoroughly described 
in the dissertation of Jäkel (in German),ll whose notation we adopt. Here we limit ourselves to a descriptive 
discussiori on this transform, the mathematically inclined reader is referred to the above two texts. An elernent 
b E B[[?, 611 is a formal power series in two variables (y, 6) with Boolean coefficients, 

w m  

bi = s,,(k,t)bkyt = >: sZi (k, t)6"t. 
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Figure 2. Discrete rA-transform 

The possible "value" for the coefficients sxi (k, t ) ,  k, t E Z in the rnin-plus algebra are sXi (k, t )  = e = 0 and 
s,, (k, t )  = c = +W. A sequence xi(k), k E Z can be transforrned into B[[y, 611 via 

This operation is called the rA-transfonn. For two elements bl, b2 E B[[?, 611 we define their sum (in the min-plus 
sense) component-wise as the usual minimum operation of their cocfficients. Denote by sXi (k, t ) ,  i = 1,2 the 
coefficients of bi,  i = 1,2. Then the coefficients (s„ @ s„)(k, t )  of bl @ b2 are given by 

(sxl @ sX2)(kl t) = min k.t [s„ (k,t), sx2(k, t)]. ( 5 )  

The rnultiplication of two elernerits bl, b2 E B[[y, 611 is rnore involved. Again, let s,, (k, t ) ,  i = 1,2 denote the 
coefficients of be, i = 1,2. Then the cocfficients (s„ s„)(k,t) of bl 8 bz are given by 

While the addition operation is trivial, the rnultiplication operation is not as intuitive. The graphical interpreta- 
tion of the addition operation is sirnply to take all poirits of the underlying point clouds, choose the rninirnum of 
those and fix it as a new point for the point cloud of the sum. The rnultiplicatiori operation is explained below 
using a back-of-the-envelope example. 
In order to cornpute the min-plus convolution of two functions XI  and $2, we sample them (i.e., we obtain a 
sequence xl(k),x2(k), k E Z), apply the rA-transform, add the resulting elements in B[[y,6]] and apply the 
inverse rA-transforrn. We have to limit ourselves to a discrete excerpt (referred to as "sample" in the following) 
of the actually continuous functions, as with the nurnber of points the cornplexity rises exponentially. 

Let X I  (k) be a sample of a token bucket arrival curve with bucket depth 2 and slope 1. 

k = O  

+m otherwise 

The coefficients of the rA-transform of xl(k) are depicted in Figure 2 a). Note that we always assume the 
function to be 0 a t  k = 0. Sirnilarly, x2(k) is a sarnple of a LR service curve with latency 2 and slope 2. 

k = 0 

otherwise 



Figure 3. Continuous transform 

The coefficients of the FA-lransbrrn of x2(k) are depicted in Figure 2 b). In Figure 2 C) the rnultiplication 
operation (s„ @s„)(k, t) is depicted. Every point is added to every other one. Therefore, since we have 4 poirits 
in each cloud, the result should be 16 points. The avid reader Counts only 15, as one point, the one with the 
square around it, falls twice on the sarne spot. This is also the point where the resulting rniri-plus corivolution 
of two such service curves would have the switch frorn the slope frorn the service curve, to the slope frorn the 
arrival curve. For reference, the resulting rnin-plus convolutiori of the sarnpled curves is depicted by the dashed 
line. The reverse T'A-transforrri is obtained by taking the hull of the area above or left of each point. This area 
is shaded in Figure 2 C). 

It cari be clearly seen that the number of points we picked is not sufficient to obtairi the correct result everi 
for the depicted range. It is also not possible to find sorne characteristic points which describe the rniri-plus 
convolution of piecewise linear functions.1° Therefore, the rA-transforrn is not very helpful to sirnplify the 
general cornputation of the min-plus convolution. 

The rnain problern is the discretizatiori or sarnpling procedure. The accuracy of the cornputation depends 
strongly on the amount of discrete points we choose. However, the rnore poirits we take into account, the closer 
the result approaches the rnin-plus convolution. Taking this to the liniit, we end up a t  the continuous r A -  
transform. A function, such as an arrival curve or service curve, can be viewed as an infinite set of points. We 
proceed with tliern as with the points in the rA-transform. This is depicted in Figure 3. Underlying are an 
arrival curve, and a service curve. They are obtained when all their points are surnrned with each other, and it 
can be easily verified that the border of this denotes the rniri-plus convolution. With this in rnind, we bring the 
attention back to Equation (6) and realize that this rnerely is another representation of the niin-plus convolution. 
Taking a close look a t  this graphical representation, we obtain a theorern which is given in the following section. 

3. MIN-PLUS CONVOLUTION UNDER NETWORK CALCULUS CONSTRAINTS 

In this section we develop theorerns on the rnin-plus convolution under Network Calculus constraints, which 
are beneficial for allocating resources by service curves. Note that all functions f , g  in this section belorig to 3, 
where we set 

F:= { f : R + R $ I  f ( t ) = O f o r t < O , f ( t l ) <  f ( t z ) f o r t l I t 2 )  . (9) 



i.e., 3 is the set of nonnegative wide-sense increasing functions. First we define the convex inflection point, as it 
will play a key role in the Course of this Paper. Recall that for a function f E 3, f piecewise linear, an infiection 
point Q E R is simply a point with f l ( Q - )  # f ' ( Q f ) ;  i.e., the slope of f changes a t  Q. 

D E F I N I T I O N  3.1 (CONVEX A N D  CONCAVE INFLECTION P O I N T S ) .  We define a convex injkction point Q as 
an infiection point, where the slope to its right is greater than the slope to its left. More mathematically, a convex 
inJection point Q has the property that f l (Q+) > f l (Q- ) .  Analogously, we call an infiection point where the 
slope to its right is less than the slope its left a concave inflection point. Thus, a concave infiection point Q has 
the property that f ' (Q+)  < f l ( Q - )  

Next we discuss what we mean by Network Calculus constraints. This refers to the shape of the functions. We 
argue that the relevant functions have two properties. Firstly, all functions are wide-sense increasing. Secondly, 
all functions are 0 for t 5 T and concave for t > T. This is reasonable, as all underlying functions are 
arrival curves or service curves. The first property is straight-forward, as we are dealirig solely with cumulative 
fiirictions. The second property holds for arrival curves, as they are are sub-additive. Further, the service curves 
of bandwidthldelay decoupled schedulers from Schmitt,' which is the work we build upon, satisfy the second 
property. 

Therefore, we are interested in the min-plus-convolution of special functions f and g. Let i = 0, .  . . , m, 
j = 0 , .  . . ,n ,  Ai, B j  E R+ with Ak > Al and Bk > B! if k > 1. Now we can state the functions f and g to be 
investigated in the rest of this section. 

t l Ao 
ao(t - Ao) A o < t L A l  
ao(Ai - Ao) + a l ( t  - A i )  Ai < t s A ~  

g ( t )  = 

C bi(Bi+~ - B i )  + bn-l(t - B,-1) BnP1 < t 5 B,  
i=o 

[ k1 bi(Bi+' - Bi )  + b,(t - B,) t > B,  
i=O 

The functions f and g are to have exactly one convex inflection point each a t  Ao and Bo,  respectively, and 
only concave inflection points thereafter. I.e., we have ak < al and bk < bl for 1 < k. In other words, we assume 
a, < um-1 < . . . < ao and b, < bnPl < . . . < bo. The shape of f and g is given in Figure 4. Again, A indicates 
value of the slope. 

We are now ready to formulate the theorem, which is the foundation of this work. I t  states, that the 
convolution is obtained by taking the minimum of the two functions shifted such that their convex idlection 
points are a t  t = Ao + Bo. This is depicted in Figure 5. 

T H E O R E M  3.2 .  The min-plz~s-convolution of f und g is given by 
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Figure 6. Proof of Theorem 3.2 

Proof. While the complete proof is given in the technical report5 we limit ourselves here to a graphical 
proof. As pointed out in the previous section, the min-plus convolution can be obtained by using the continuous 
FA-transform. The continuous FA-transform of two functions is given by adding all points of one function to all 
points of the other function. The reverse transform, i.e., taking the minimum over all t ,  then yields the min-plus 
convolution. We show now that the minimum of the shifted functions is always the overall minimum. 

In Figure 6, all poirits of g(t) (only the firsl few are shown) are added to different points of f ( t ) ,  namely P I ,  P2 
and P3. At time to ,  the lowest point is Po, which is obtained when all points of g(t) are added to the point Pi .  
The value a t  Po is 

f (to - Bo) + g(B0) = f (to - Bo). (13) 

It can be Seen, that f ( t o  - B. - C)  + g(Bo + E )  yields a higher value a t  to for any c > 0. The reason is that the 
slope of g(t) between B. and B. + C is greater than the slope of f ( t )  between to - B. and to - B. - E. This is 
depicted where the points of g(t) are added to point P2. Similarly, f (to - B. + 6) + g(Bo - E )  always yields a 
higher value a t  to for any E > 0. The value for f ( to - B. + E )  is greater than f (to - Bo) and g(Bo - E )  is always 
0. This is depicted where the points of g(t) are added to point P3. Therefore, moving in both directions yields 
a higher value a t  to which concludes the proof. 11 

In this case, an alternative proof is to dissect the function f and g into a burst-delay component and a concave 
component and compute the convolution then. The advantage of the proof given here is that it is more general 
and easily extensible to functions with mixed concave and convex inflection points. We skip this since it would 
exceed the scope of this paper and is not required for our applications to multimedia networks, which we will 
show in the remainder of this paper. Note that the proof does not require f and g ( f ,  g E F )  to be piecewise 
linear and works for any function that has only one convex inflection point. However, we only consider piecewise 
linear functions as all functions in contemporary Network Calculus are piecewise linear. The slopes always denote 
some kind of rate. We make following two observations. The convolution of f and g is also piecewise linear and 
concave from Ao + B. onwards. F'urther, the number of concave inflection points is well defined. Let f and g 
have m and n concave inflection points, respectively, i.e., m + 1 and n + 1 slopes greater than 0, respectively. 
The convolution of f and g then has m + n concave inflection points and m + n + 1 slopes greater than zero. 
These two observations lead to the following theorem. 

THEOREM 3.3. Given n functions f 1, f 2 ,  . . . , f n r  each with the properties of f ,  the rninplus convolution of all 
of thern is given by 

7, 



Proof. Utilizing the distributivity, 

This can be computed using Theorem 3.2 recursively, which yields tlie above term. This is equivalent to sliifting 
all functions fi by the sum of all Ao's other than the owri one and taking the minirnum. O 

Iri the rernainder of this paper we apply the results froni this section to resource allocation iri networks. 

4. ALLOCATION OF SERVICE CURVES ALONG A PATH 
This section deals with the relationship of the network service curve to the node service curves. The goal is 
to meet the QoS requirements, in particular the delay bound, of a multiniedia flow while allocating as little 
resources to it as possible. 

4.1. Determining optimal node service curves 
With the theorems of the previous sectiori we have established a relationship between functions and their min- 
plus convolution. Recall that the network service curve is the concatenatiori, i.e., the min-plus convolution, of 
the node service curves. Therefore, we can use our theorem to answer the question, which service curves the 
nodes on the path must have, so that the concatenation of these service curves yields tlie network service curve 
desired for the rnultimedia flow. 

Assume a network service curve Dopt has been obtained as shown in Section 1.2. Further, assume k nodes, 
where each node has a service curve [Ij, with j = 1 .  . . k.  Recalling Theorem 3.3 we have 

O P t -  j=1,2, niin ..., ( ß j ( t + L j - C L i ) ) .  
i=l 

It can be Seen that the latency L of the network service curve is the sum of all Lj's of all node service curves. 
To the right of L, the slope of the network service curve will first be the minimum of all Rj's of all node service 
curves. In other words, if any node has an R j  higher than another one, it is wasted as only the minimum defines 
the network service curve. This property is depicted in Figure 5. Imagine f ( t )  and g(t) to be service curves. 
The area between the da.shed lines and the solid line denoting the convolution are wasted resources. The same 
rationale applies for all times, therefore it is beneficial that all node service curves are equal after their convex 
inflection point. Therefore, optimal node service curves are given by 4-tuples (Lj, Uj, Rj, rj), where all Rj's, Uj's 
and rj 's  are equal. Setting the latencies L j  is a question of delay distribution along a path, which we will riot 
discuss further. Trivially, if one node offcrs less resources the delay bound cannot be met ariyrnore without the 
other nodes raising their resources. However, if one node offered a higher rate Ri or ri ,  or a loriger peak rate 
interval U, this would not have any effect on the network service curve and therefore be wasted resources, i.e., 
preverit more multimedia flows to be adrriitted. 

4.2. Numerical Example 
The following numerical exarnples illustrate these findings. Assume a low bandwidth, short delay flow that 
satisfies a TSpec with peak rate 9000 bytes/s, sustained rate 1000 bytes/s and biiffer 2000 bytes. Without loss 
of generality we assume a fluid rnodel, i.e., M = 0. Hence we have 

TSpecl (6, r ,  p, M) = (2000 bytes, 1000 bytes/s, 9000 bytes/s, 0). (17) 

In other words, a flow can send a t  its peak rate for 250 ms and then lias to reduce to sustained rate. The flow 
traverses a path consisting of 5 nodes and has a delay bound of 500 ms. Using the metliod from Schmittl the 
optimal network service curve is the 4-tuple 

= (L, U, R,  r )  = (500 ms, 250 ms, 9000 bytes/s, 1000 bytes/s). (18) 

Assuming an equal delay distribution over all nodes, the optimal riode service curves are for each node is 

[j:::, = (L, U, R, r )  = (100 ms, 250 ms, 9000 bytes/s, 1000 bytes/s). (19) 



Figure 7. Local Reallocation 

5. REALLOCATION OF SERVICE CURVES IN NODES 
5.1. Local Reallocation 
In this subsection we take a perspective of a single node. There are instances where altering the service curves 
within a node can lead to increasing the number of multimedia flows adniitted. The rationale is explained by a 
numerical example and depicted in Figure 7. 

There exists a maximiim service curve C which denotes the capacity of a node. Without loss of generality, we 
assume this to be an LR service curve, which we call the capacity service curve C. Assume a node has two 
requests of flows, each with an arrival curve U. in form of the following TSpec. 

TSpecz(b, r, p, M) = (1500 bytes, 2500 bytesls, 10000 bytesls, 0). 

A service curve ß is chosen according to the method of Schmittl such that the delay bound is met a t  the two 
crucial points, nainely the kinks of the arrival curve. 

ß = (L, U, R, r )  = (300 ms, 40 ms, 40000 bytesls, 2500 bytesls) (20) 

Per se they can not be accepted as the sum of the service curves, 2ß, exceeds the C between ti and tz. However, 
if a service curve ßnCW can be found such that the delay bound remains met a t  the two crucial points and the 
sum ß + pneW never exceeds the capacity service curve C, both flows can be accommodated. For this example, 
a possible ßnew is given by 

ßnCW = (L, U, R, r )  = (300 ms, 80 ms, 21250 bytesls, 2500 bytesls). (21) 

From Theorem 3.2 we can be Sure that the network service curve is not a.ffected if one or more nodes apply this 
method. 

5.2. Global Reallocation 
We next discuss how deficiencies of one node can be compensated by other nodes. We require the following 
defini1,ion. 

DEFINITION 5.1 (COMPENSATED LATENCY). We dcjine compensated latency U, as the time that has to be 
reduced from the initially allocated latency in order to meet the service curue requirement. Depending on the 



Figure 8. Compensated latency with deficient peak rate (left) aiid with deficient peak rate serving time (right) 

context, the reduction is done either b y  the shortcoming node itself, or one other node along the path, or a 
combination of nodes along the path. 

There are 3 ways in which a node can fail to offer the demanded service arid therefore be forced to reject a 
request: latency, peak rate and sustained rate. If a node cannot oKer the sustained rate, then the flow cannot 
be accepted. There is no way that the other nodes can compensate this, as the sustairied rate of the network 
service curve is determined by the smallest sustained rate of all nodes. A node not rnaking the delay requirement 
can be corripensated rather easily. The time that it exceeds the delay requirement has to be made up by one or 
many of the other nodes guaranteeirig a lower latency, such that the sum of the latencies of all nodes remains 
the required latericy. Tliis corresponds directly to the shift of Theorem 3.3. To illiistrate this with the example 
of Sectioil4.2, if one node can only offer a latency of 140 ms, then the network service curve can still be achieved 
if the other nodes along the path save 40 ms. This can either be done by reducing the latency of one node to 
60 ms or by the 4 other nodes having a latency of 90 ms each, or any other combination for which the sum of 
all latencies is 500 ms. The last possible failure is when a node is not able to offcr the dernanded peak rate. 
Here we distinguish whether the node is not able to offer the rate itself or whether it is not able to offer the rate 
for the required time. A crucial quantity is ß ( I ) ,  which we define as the amount of data that is served a t  the 
inflection point. It follows from Theorem 3.2 that having less data served a t  the infleclion point would decrease 
the minimum of the shifted functions. This would destroy the network service curve as the inflection point is 
crucial for the delay bound. 

Consider a node that can only offer a deficient peak rate pd. If it can offer it for a time Ud, such that 
pdUd = ß(I), therl the delay bound can be met by reducing the latency. The amount by which the latency has 
to be reduced, Ud - U, is obtained by the following consideration. 

Again, it is arbitrary which nodes make up the latency. This case is depicted in the left graph of Figure 8, where 
A again labels the slope. 

The next case is a node that can offer the peak rate only for a time Ul < U. The term U, is the time needed to 
reach ß(I)  after the peak rate stopped. The latericy that has to be compensated is theri Ui + U, - U. 



This case is depicted in the right graph of Figure 8. It can be seen that if the ratio between peak rate p and 
sustained rate r is large, the compensated latency grows rapidly. Note that the service curves ßneW in this section 
are not optimal, in the sense that they guarantee a lower delay for the first packets than required. This does 
not improve the overall performance as the worst-case delay, which is a t  the infiection point, remains untouched. 
Therefore, some resources are wasted. The bottom line is that no shortcoming of a node can be compensated by 
any other oIfering only a higher rate. All compensations require other nodes guaranteeing a lower latency. 

6. CONCLUSION AND OUTLOOK 
In this paper we developed the continuous rA-transform and devised a theorem on the computation of the min- 
plus convolution under Network Calculus constraints. These results advance the research in Network Calculus, 
which is a well-suited tool for modeling multimedia networks. Beyond that our results were applied to assist 
admission control decisions in networks with heterogeneous multimedia traffic. With the theorem, optimal service 
curves of single nodes along a path in order to meet a network service curve were determined. Further, we showed 
kiow shortcomings of nodes can be compensated locally and globally to improve admissiori control. Subject of 
future work will be to bring this theory closer to practice, i.e., to develop algorithms that actually conduct the 
admission control. Finally, such a system is to be implemented in a testbed under ALTQ.12 
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