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Abstract— Quality of Service (QoS) is an area with high
academic curiosity. Our long-term goal is to develop
a unified mathematical model. This paper is a first
step towards this ambitious goal. The most widespread
models for network QoS are Network Calculus and
Queueing Theory. While the strength of Queueing
Theory is its proven applicability to a wide area of
problems, Network Calculus can offer performance
guarantees. We analyse by simulation the benefit of
bringing the two of them together, i.e., bounding the
stochastic processes of a queue with methods from Net-
work Calculus. A basic result from Network Calculus
is that enforcing traffic shaping and service curves
bounds the buffer. This leads to denying buffer states
in queues with infinite buffer. Specifically, we analyse
what happens with the probability mass of such buffer
states. Finally, we discuss how our results can be used
for dimensioning buffers for multiplexed traffic.

I. INTRODUCTION

A. Motivation

Despite recent doubts and frustrations, Quality of
Service (QoS) in the Internet remains a much debated
research issue. QoS research can be divided into
two classes: administrative vs. technical issues. The
former includes aspects such as pricing, accounting,
security and the interconnection between service
providers. Technical issues are the actual manipu-
lation of the data packets, such as traffic regulation,
scheduling and admission control algorithms. In the
context of technical issues, most research to date has
gone into developing and optimising new architec-
tures and algorithms. An open research issue, which
is relatively underexposed, is a unified theoretical
model for QoS. The two front runner models for
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QoS in packet networks undoubtedly are Queueing
Theory and Network Calculus. We assume that in
future there will be some kind of traffic shaping and
policing in the Internet since this is essential to offer
any kind of service guarantees, be they deterministic
or statistical. We believe the path to a unified model
for QoS consists of bringing Network Calculus and
Queueing Theory together. In this paper, we take
the first step by conducting a simulative approach
to analyse the impact of Network Calculus bounds
on Queueing Theory results. This could be viewed
as a Network Calculus-assisted Queueing Theory.

The remainder of this paper is organised as follows.
In the following subsections we review some basic
results from Network Calculus and discuss the re-
lated work. In section II we introduce the system
model. We then conduct the simulations and discuss
them in section III. In section IV the simulation
results are given. Finally, we conclude and give an
outlook.

B. Background

While we restrict the discussion of Queueing Theory
to a few general remarks, we recapitulate the defini-
tions and theorems of Network Calculus used in this
paper in this subsection.

In Queueing Theory, generally, the average quantities
in an equilibrium state are considered. However,
obtaining a rich set of tractable results comes at the
cost of having to restrict to Markovian (memoryless)
traffic. Beginning with [9], it has been shown several
times that this is not necessarily a realistic assump-
tion for Internet traffic. Another drawback which
could be mentioned is that there are few results
on the transient analysis of queueing systems. We
assume that the reader is familiar with Queueing



Theory and refer to [7] as an excellent book.

Network Calculus [6] is a theory for deterministic
queueing systems. The underlying idea is that service
guarantees can be achieved by regulating the traffic
and deterministic scheduling. Analogous to conven-
tional system theory, a system consists of an input,
a transfer function and an output. The input, mostly
referred to as arrival curve, is an abstraction of the
traffic regulation, and the transfer function, mostly
referred to as service curve, is an abstraction of the
scheduling. The difference to conventional system
theory is that the dioid �����	��
������
���� is used,
i.e., that addition and multiplication are replaced by
minimum and addition, respectively. This is often
referred to as Min-plus Algebra. The reason to switch
to Min-plus Algebra is that this way linearity is pre-
served. In the following, we recapitulate the results
from Network Calculus which are relevant for this
paper. They can all be found in the excellent text
of Le Boudec and Thiran [3]. As in conventional
system theory, a key operation in Network Calculus
is the min-plus convolution. Note that the infimum
( ����� ) is similar to the minimum ( ����� ), with the sole
difference that it does not have to be in the set. The
same applies for the supremum ( ���� ) and maximum
( ����� ). The min-plus convolution of  and ! is the
function"
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The traffic bound is given by an arrival curve, which
denotes the largest amount of traffic allowed to be
sent in a given time interval.

Definition 1 (Arrival Curve): Given a wide-sense
increasing function 5 defined for
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We say that : has 5 as an arrival curve, or also that: is 5 -smooth.

The arrival curve can be viewed as an abstraction
of the regulation algorithm. The most prominent
example for a traffic regulation algorithm is the
Leaky Bucket [14], which is often also referred to
as Token Bucket. Its arrival curve is given by the
following equation.
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Therefore, no more than > data units can be sent at
once and the long-term rate is A .
A greedy shaper with the shaping curve D optimally
delays packets, so that the output has D as an arrival
curve, and sends all bits as soon as possible.

Theorem 1 (Greedy Shaper): Consider a greedy
shaper with shaping curve D , which is sub-additive
and D
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Fig. 1. Backlog

empty at time

8
, and that it is large enough so that

there is no data loss. For an input flow : , the output:HG is given by

: G (�:F#BD (3)

We omit the proof as it can be found in [3].

The service curve is an abstraction of the scheduling.

Definition 2 (Service Curve): Consider a system I
and a flow through I with input and output functions: and : G , respectively. We say that I offers to the
flow a service curve J if and only if JLKNM and:HG

6
:O#BJ .

Due to its application in the Integrated Services
context, a prominent service curve is the rate-latency
function.

Definition 3 (Rate-latency functions JQPSR T ):

J PSR T (�:�U
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otherwise
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for some :
6F8

(the ’rate’) and V
6O8

(the ’delay’).

We next introduce the Backlog Bound, which is one
of the three basic bounds of Network Calculus.

Theorem 2 (Backlog Bound): Assume a flow, con-
strained by arrival curve 5 , traverses a system that
offers a service curve J . The backlog :
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We omit the proof as it can also be found in [3].

On a final note, a drawback of Network Calculus
is that it deals with the worst-case behavior of
traffic flows, which leads to severe under-utilisation
in realistic environments.

C. Related Work

There are several approaches to extend Network Cal-
culus into a stochastic setting. Bounds for the mul-
tiplexing of flows are obtained by utilizing methods
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Fig. 2. Queue

such as the law of large numbers and the Chernoff
Bound. Excellent overviews for this topic are [8]
and [5].

A framework for statistically aggregating flows is
given in [11]. However, there the focus is on reducing
state complexity in the network.

Liebeherr et al. [10] introduced the concept of Sta-
tistical Network Calculus. In the first incarnation this
is based on the assumption that an arrival curve does
not deterministically bound the incoming traffic but
bounds it only with a certain probability. Similarly,
a statistical service curve [4] is a service curve that
only offers the service with a certain probability. Sta-
tistical Network Calculus is the most closely related
work to our work. It can be seen as an approach
to the same goal from a different angle. To recall,
the goal is to obtain a model more strict than av-
erage behavior but looser than worst-case. Statistical
Network Calculus has Network Calculus as a starting
point and enhances it with probabilistic methods. We
start with Queueing Theory, i.e. a purely probabilistic
model, and enhance it with methods from Network
Calculus.

Schmitt [12] compares Network Calculus and
Queueing Theory results for priority queueing. Fur-
thermore, based on the Network Calculus results,
performance bounds can be obtained by enforcing
admission control in each priority class [13].

In [1] a shaper is derived that ensures that the traf-
fic has better stochastic properties than a reference
process, for which they use the Poisson process.
In contrast, our goal is not to derive a shaper, but
to assume a Network Calculus based shaper being
present and analysing its effect.

To our knowledge there exists no work which is
closely related enough to allow a comparison of our
numbers. The closest to an analytical solution of this
problem can be found in the book by Baccelli et
al. [2], and there especially the chapter on Stochastic
Event Graphs.

II. SYSTEM MODEL

In this section we introduce the system model.
Figure 2 shows a traditional queue, consisting of
a buffer and server. The input process is given
by a

"'&
% and the output process by b
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% . For thec�dec�d�f

case the input and output processes are
both Poisson processes. We now introduce the basic
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Fig. 3. Shaped queue

Network Calculus elements to the queue. These are a
shaper to manipulate the input process and a service
curve enforcer to manipulate the service times. This
is depicted in Figure 3. According to Equation 3,a1g
"'&
% is obtained by the min-plus convoluiton ofa1g
"'&
% and the shaping curve, for which we use the

Leaky Bucket from Equation 2. In other words, the
shaper works as follows. When a packet arrives at the
shaper, the shaper checks whether there are enough
tokens in the shaper - without loss of generality we
assume all packets to be of size

f
throughout this

paper - to admit the packet. If that is the case, then
the packet traverses the shaper infinitely fast and
arrives at the queue. If there are not enough tokens
to admit the packet, the packet is held in the shaper
until enough tokens have been collected. Therefore,
the shaper theoretically has an infinitely large buffer.
Since packets are delayed, the shaper might decrease
the rate of the process. We define a new arrival rateh g ( # of packets

duration of observation
Note that in our model the shaper is only a con-
ceptual model rather than an actual device hold-
ing packets. We assume that a higher layer such
as the application layer ensures that all traffic is
conform. When a packet arrives at the queue it
checks whether the server is available. If this is the
case, it receives service immediately, otherwise it
waits in a queue until the server becomes available.
Upon arrival of a packet, the server assigns it an
exponentially distributed service time. The service
curve enforcer then checks whether the service time
is less or equal to the maximum service time allowed
by the service curve. If this is the case, the service
time remains untouched, else the service time is set
to the maximum allowed service time. The service
curve enforcer therefore increases the server rate.
Accordingly, we define a new server ratei g ( f

mean of the actual server rates
Note that while the shaper can only delay packets,
the service curve enforcer releases packets ahead
of schedule. Therefore, its placement behind the
server seems counter-intuitive as the transfer function
mapping b�g

"'&
% to b

"=&
% is non-causal. As shaper we

use the Token Bucket. Our service curve of choice is
the rate-latency curve from Definition 3, which we
refer to as RLC hereafter.

We call packets, which are delayed by the shaper,
shaper manipulated packets. Accordingly, we call



packets, which are served earlier due to the service
curve, server manipulated packets.

Therefore, the parameters of our system model are
" h 
 i 
�>`
A�
/jk
/:H% , which denote the arrival rate, ser-
vice rate, leaky bucket depth, leaky bucket rate,
latency of the RLC and rate of the RLC, respectively.

The analysis of the shaper manipulation itself is
tedious. Many favourable properties, such as memo-
rylessness and the stationarity, are lost by shaping
the Poisson process. It is obvious that the server
manipulation is even less tractable, as it depends
on the state of the queue. Therefore, a mathematical
analysis of this problem is beyond the scope of this
paper.

III. SIMULATIONS

Qualitatively, we expect the following behaviour in
the simulations of the bounded queue. Trivially, the
probability of the states higher than the Backlog
Bound from Theorem 2 will be

8
. The probability

of state

8
will remain unchanged in the bounded

queue. The reason for this is that the shaper and the
service curve enforcer are both inactive when the
system is empty. There will be a strong increase in
probability mass at the state

f
, due to the shaper. The

shaper causes the inter-arrival times of packets at the
queue to be more equally distributed than in a pure
exponential distribution. Note that asymptotically,
i.e., when Aml h

, all inter-arrival times are no
after the initial tokens in the bucket have emptied.
Both, the traffic shaper as well as the service curve
enforcer, cause the probability mass to shift towards
the lower states. Therefore, the higher states of the
bounded queue will be less probable than the same
states of the M/M/1 queue.

As parameters of the simulation we use
" h 
 i 
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"Eq
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q
% Using Theorem 2

we obtain that the maximum buffer state is t .
There are 5000 arrivals per run and the simulation
is repeated 30 times. The values are depicted in
Figure 4.

The average number of input and shaper manipulated
packets are uwvxrwr and

q
t�s�y
q
, respectively. As a ref-

erence, the state probabilities of the corresponding
M/M/1 Queue, i.e., with z g (|{~}� } (�n�� �/�� � n� (

8
y���� , are

given. Since the difference to the M/M/1/N queue
is marginal, we can neglect it. What is striking
here is that the probabilities of the high states of
the Bounded Queue are lower than of those states
in the M/M/1 case. The probability mass of the
higher states is neither distributed evenly among
the allowed states, nor is it collected in the last
allowed state. This result confirms our assumptions,
that by putting structure in form of input shaping
and service curve enforcement, the behavior of the
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queue in the relevant buffer states becomes better.
Being interested in the state � , we find that the
queue has a better behavior than a M/M/1 queue withz��W� 0=��� (

8
y�� f . This gives us an adjustment factor� ( z��W� 0=���z g (

8
y �x�

We now analyse several parameter sets in order to
get an insight on the adjustment factor. We hold the
parameters

h (��� and i ( f
and set the Token

Bucket rate equal to the RLC rate A�(|:�( f
. In

order to compare the buffer occupancy distributions
in a fair manner, we ensure that the Backlog Bound
is constant at t . We therefore set >�( f 


q

�y,y�ye
�t and

accordingly j�(�t�
]s�
,y,y�ye
 f . The buffer occupancy
density functions are shown in Figure 5. In Fig-
ure 6 some interesting values are shown. These arez�gE
 h g�
 i g and z ��� 0=��� . As reference,

h
and i are also

shown. It can be seen that when the bucket depth is
low, and consequently the latency is high, i g is close
to i . The same applies to

h g vice versa. In Figure 7
the adjustment factor is plotted. It can be seen that
it is lowest for the endpoints. This implies that
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tight shaping or tight service curve enforcement have
a stronger influence on the adjustment factor than
some shaping and some service curve enforcement
combined. The influence of tight shaping is stronger
than that of tight service curve enforcement.

IV. CONCLUSION

In this paper we analyse the impact of traffic shaping
and service curve enforcement on a M/M/1 queue.
We show how the probability mass of the higher
buffer states of the M/M/1 queue distributes over
the lower buffer states. We show that the probability
mass of the bounded queue strongly shifts towards
the lower buffer states. The higher states of the
bounded queue are less probable than the same states
in the M/M/1 queue. This is a key contribution of
this paper as it can be utilised when dimensioning
aggregate buffers for multiplexed flows. With the
knowledge of the queue being bounded, a lower
utilisation than the reference M/M/1 queue can be
used. Unfortunately, it was not possible to quantify
this effect, due to the complexity of the system. This
will be subject of future work. Another obvious issue

is an analytical solution to this problem. Further,
as the parameter space is large, arbitrarily many
simulations can be run. An especially interesting
issue would be the impact of different traffic shapers,
such as a TSpec, and different service curves. Finally,
the setting can be expanded to Queueing Networks,
starting with a simple concatenation of queues. There
the question arises how simulating the network with
a concatenation of nodes, each enforcing a service
curve, compares to assuming one node which offers
the network service curve. A long shot is considering
complex networks with feedback to model flow
control.
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