
42 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Adaptation,	Caching,	Mobility,	Proxy,	Web	Service,	Wireless

INTRODUCTION

It seems that we are in the middle of an era
where the spectrum of computing and bandwidth
capacities is being stretched in both direc-
tions. At one end, highly capable systems are
enabled through the Cloud and the continuous
enhancements of the hardware, as well as of
the communication media. At the opposite end,
more limited, handheld, embedded, and mobile

devices are taking over the market in a scale
that inspires some people to argue that we are
finally entering the “post-PC era,” which has
already been proclaimed as early as 1999 (Press,
1999). Like any technology that inter-operates
between very different systems, Web service
technologies must be an efficient solution for
systems of both mentioned ends as well as the
systems in between these two extremes. For
this, they have to be adaptable to the entire
computing and bandwidth spectrum in which
they are used. Thus, Web service technologies

Lightweight Wireless Web
Service Communication Through
Enhanced Caching Mechanisms

Apostolos	Papageorgiou,	NEC	Europe	Laboratories,	Heidelberg,	Germany

Marius	Schatke,	Ecodaxi,	Blue	Moon	GmbH	-	Berlin,	Germany

Stefan	Schulte,	Vienna	University	of	Technology,	Austria

Ralf	Steinmetz,	Technische	Universität	Darmstadt,	Germany

ABSTRACT
Reducing	the	size	of	the	wirelessly	transmitted	data	during	the	invocation	of	third-party	Web	services	is	a	
worthwhile	goal	of	many	mobile	application	developers.	Among	many	adaptation	mechanisms	that	can	be	
used	for	the	mediation	of	such	Web	service	invocations,	the	automated	enhancement	of	caching	mechanisms	
is	a	promising	approach	that	can	spare	the	re-transmission	of	entire	content	fields	of	the	exchanged	messages.	
However,	it	is	usually	impeded	by	technological	constraints	and	by	various	other	factors,	such	as	the	inherent	
risk	of	using	responses	that	are	not	fresh,	i.e.,	are	not	up-to-date.	This	paper	presents	the	roadmap,	the	most	
important	technical	and	algorithmic	details,	and	a	thorough	evaluation	of	the	first	solution	for	generically	and	
automatically	enriching	the	communication	with	any	third-party	Web	service	in	a	way	that	cached	responses	
can	be	exploited	while	a	freshness	of	100%	is	maintained.

DOI: 10.4018/jwsr.2012040103

rst
Textfeld
Apostolos Papageorgiou, Marius Schatke, Stefan Schulte, and Ralf Steinmetz:Lightweight Wireless Web Service Communication Through Enhanced Caching Mechanisms. In: International Journal of Web Services Research, vol. 2, no. 9, p. 42-68, April 2012.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 43

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

have to focus on the needs of all their main
application domains.

Undoubtedly, enterprise systems have been
the application domain where Web services
gained importance, being the most common
technology for implementing Service-oriented
Architectures (SOA) (Papazoglou & Heuvel,
2007). However, “everyday apps” might al-
ready be an equally important class of Web
service consumers. Independently of which is
the main application domain for Web services,
the involvement of wireless devices as Web
service consumers is increasing in both of them.
A recent survey of TechTarget (Frye, 2009)
positioned Web service-based mobile apps
at the second place in the category “service-
based implementations planned for the future”
(planned by 60% of the questioned developers/
companies), even higher than the “composite
application assembly” (planned by 58%), which
has been often named as the main potential of
SOA (Papazoglou & Heuvel, 2007). The popu-
larity of Web service technologies is due to the
interoperability and platform-independence that
are achieved through the self-description of the
interfaces and the messages, but it is exactly
this self-description that causes some com-
munication overhead, for which Web services
have been criticized since they appeared (Davis
& Parashar, 2002). Enterprise systems may be
affected by that only rarely but the same is not
true for wireless devices.

Although some argue that the constraints
of mobile devices (limited bandwidth, CPU,
memory, or energy resources) are disappearing
due to technological progress and such devices
are “riding the wave of Moore’s Law” (Christin,
Reinhardt, Kanhere, & Hollick, 2011), the gap
between communication requirements and such
device’s capabilities will not cease to exist.
This is indicated by the latest analyses of future
wireless communications. In the book of Sesia,
Toufik, and Baker (2009) about LTE (Long
Term Evolution of 3G mobile networks), five
categories of user equipment are defined, with
smartphones being placed only in the second
or third category. According to this categoriza-
tion, devices of higher categories will be able

to use wireless internet connection rates up to
six times greater than those of lower categories.
Furthermore, the wired connections of the future
will be even faster than that, not to mention the
fact that devices less capable than smartphones,
such as sensor nodes, will be able to consume
Web services. So, the big differences in device
capabilities and connection qualities will main-
tain the need for adaptation of communication
methods, as the size of the data that is processed
and wirelessly transmitted is growing parallel to
all other technological developments (Canali,
Colajanni, & Lancellotti, 2009).

Therefore, most of the approaches that
have appeared for reducing the overhead of
Web service communication focus on wireless
systems or are even specially designed for them.
Client-side caching of Web service responses is
such a broadly used lightweight technique and
many different algorithms and strategies exist
for it. However, all client-side caching algo-
rithms contain some risk of using information
that is not fresh, i.e., up-to-date. If one wants
to be sure that the freshness of information is
guaranteed, a new service request has to be
sent. Due to technical restrictions that will be
explained in the upcoming sections, (XML-
based) Web services always transmit a complete
response when they receive a request. Thus, the
following research question arose: “How can
Web services exploit the caching concept, i.e.,
the reuse of information from former responses,
but with certainty that they are up-to-date?”

In Papageorgiou, Schatke, Schulte, and
Steinmetz (2011) we presented a mediator-based
solution for enabling freshness-safe client-side
caching of SOAP responses. This has been
achieved thanks to the innovative idea of en-
abling the automated and generic (i.e., service-
independent) generation of a particular type of
caching proxies. The article-at-hand takes the
mentioned work further by analyzing the vision
that led to the described solution, by offering a
description of how the proxy generation logic
can be realized, and by providing an extended
evaluation that demonstrates the possible ben-
efits of the approach in different Web service
usage scenarios.

44 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

RELATED WORK

Caching is only one of many approaches towards
lightweight Web service consumption. When
caching approaches are developed in this con-
text and with the goal of reducing the amount
of data that is being processed and transmitted
during mobile Web service usage, they have to
be considered in the general fields “Web service
performance enhancement” or “Lightweight
Web services.” Indeed, this is where this work
is positioned: Our approach aims at achieving
lightweight Web service communication based
on caching. However, research for caching can
be applied with small changes in many fields
including web content (WWW caching), data-
base information, and more. Thus, related work
for caching in other domains cannot be ignored.
On the contrary, it is one of the primary fields
where related approaches have to be searched.
Specialized approaches for caching Web service
responses have also appeared, indicating some
special challenges and particularities of Web
service caching. In the following, our approach
is first positioned in the research field where it
originates from. Then, two classes of caching-
related research works (general-purposed and
SOA-related) are discussed, leading us to the
identification of the gap that has not yet been
successfully addressed.

Positioning Our Approach

The listing of the most important approaches that
have been designed to reduce the amount of data
processed and/or transmitted during Web service
calls is here out-of-scope and has been partly
covered by our previous survey (Papageorgiou,
Blendin, Miede, Eckert, & Steinmetz, 2010).
Instead, it is meaningful to briefly summarize
the results of the mentioned survey, as well as
the results of a more recent survey of SOAP
processing enhancements (Tekli, Damiani,
Chbeir, & Gianini, 2011), in order to explain
why we decided to pursue the use of caching
as a Web service adaptation mechanism for
lightweight Web service consumption.

The most relevant of the adaptation mecha-
nisms examined in Papageorgiou et al. (2010)
fall into one of the following categories: (i)
reduction of redundancies, as in Oh and Fox
(2006), (ii) on-the-fly protocol transformation
(SOAP-to-X), as in Aitenbichler, Kangasharju,
and Mühlhäuser (2007), and (iii) compression
(or optimization of the representation), as in
Tian, Voigt, Naumowicz, Ritter, and Schiller
(2004). Obviously, the use of caching in the
form of an adaptation mechanism would be a
category by itself. A proof of this is that all the
approaches listed in Papageorgiou et al. (2010)
have calculable upper limits for the “message
size reduction ratio” that they can achieve. Such
limits do not exist for an adaptation mechanism
that is based on caching, as will become clear
in our evaluation.

Tekli et al. (2011) is not limited to the ex-
amination of possible adaptation mechanisms,
but it rather considers all SOAP performance
enhancement approaches. The difference is that
some of the approaches described there may
not be applicable without changes on the side
of the original Web service, i.e., may not make
much sense when external, third-party services
are considered. However, this survey helps us
position our work more precisely, because it
defines six levels (i.e., six points/phases of the
“lifecycle” of a Web service call), where the
focus of the enhancement may lie. These are:
serialization, parsing, de-serialization, security
policy evaluation, compression, and multicast-
ing. Although approaches that are limitless in
terms of the “message size reduction ratio” may
appear there (a corresponding analysis is not
provided), it is self-evident that enhancement
approaches with different focus make sense
under different circumstances, depending on
the goals of the system. There, a client-side
caching approach is listed as an enhancement
of the serialization phase, because it does not
always reconstruct and, even better, does not
always retransmit identical requests. However,
if we do not consider caching as a client-side
optimization but as an adaptation mechanism
of the service itself, i.e., if we do not use the
idea of caching in order to avoid connection

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 45

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

establishments, but in order to reduce the size
of messages, then we have an approach that
falls under a different category, creates new
potentials, and achieves different goals, as we
will see in the following.

Caching in General

Much of the research effort in the area of
caching has been devoted to the development
of cache replacement strategies (Podlipnig &
Böszörmenyi, 2003). Such strategies concern
the maintenance of the cache and their goal is
to retain in the cache the entries that are most
likely to be needed again soon, i.e., to maxi-
mize the cache	hit	ratio. Although most of the
caching approaches are based to some extent on
the classical strategies “Least Recently Used”
(LRU) (cf. Karedla, Love, & Wherry, 1994) and
“Least Frequently Used” (LFU) (cf. Karedla,
Love, & Wherry, 1994), the research interest in
the field is still alive. New approaches are still
being developed, exploiting the characteristics
of particular technologies in order to be more
efficient. For example, Jelenkovic and Radova-
novic (2008) recently developed a replacement
policy that has better performance than LRU and
less complexity than LFU in the case of Zipfian
request probabilities and big cache sizes. Cao
(2002) has enhanced cache management for
mobile computing systems based on a concept
for adaptively prefetching the content.

However, the hit ratio is irrelevant to the
freshness of the cache information. Thus, if
the usage of up-to-date information is of high
importance, additional techniques have to be
used in order to update the cache regularly.
While the aforementioned solutions focus on
the cache hit ratio, the state-of-the-art solution
to optimize the cache freshness is the use of
server Invalidation Reports (IR) (Cao, Zhang,
Cao, & Xie, 2007). In that case, the servers
indicate the changed data items to the clients at
intelligently-determined intervals. Otherwise,
the freshness normally just relies on “Client
Validation,” which means either “polling every
time,” or defining an adequate Time-To-Live
(TTL) for the cached objects, as is explained

in more detail in the survey of Cao and Özsu
(2002).

Either because of their scope (i.e., they often
do not consider freshness at all) or because it
is impossible to apply them “as they are” in an
arbitrary domain, these general-purposed works
may be very important and fundamental, but
they are not always sufficient, when it comes
to the caching of Web service responses. This
is explicitly argued in related surveys (see next
paragraph) and implicitly proven by the fact
that specialized approaches for the caching of
Web service responses are explored.

Caching Web Service Responses

By studying the particularities of Web service
response caching (i.e., questions like: what are
the technical differences compared to caching
in other domains? What phases of Web service
calls are the most resource-consuming? What
are the alternatives for the representation of
cache responses?), some researches came up
with specialized solutions for the field. Before
proceeding to the description of proposed
solutions, we refer to one of the most detailed
analyses of the peculiarities of caching standard,
XML-based Web services for mobility (Terry &
Ramasubramanian, 2003). A demand for new
technical solutions and standards, rather than
algorithmic extensions, has been identified,
because most of the challenges were related
to technical enablements, and not to enhance-
ments of algorithmic efficiency. Thus, implicit
directives such as those provided by Terry and
Ramasubramanian (2003) led researchers to
suggest three different types of solutions: pro-
vider-based, mediator-based, and client-based.
Provider-based solutions rely upon logic or
modules that are added to the host of the origi-
nal Web service and thus assume access to the
provider system. Mediator-based solutions need
modules that are hosted separately from both
the provider and the consumer. Client-based
solutions enrich only the client-side (usually
with some client-side caching middleware) and
do not need any other entity elsewhere. The
categorization is not perfectly unambiguous,

46 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

but it depends on where the main components
or the important caching logic of each approach
are located and it helps to identify aspects that
each class of solutions cannot address.

Provider-based solutions have the major
drawback that they need modifications of the
original service (or of its hosting system).
Because of our target scenario, which will be
described in the following section, something
like this comes out of question and our solution
will be able to work with existing (probably
third-party) services without “touching” them.
However, some techniques and ideas may be
common with ours. Liu and Deters (2007)
describe an approach based on metadata that
indicate if Web services are cacheable or not.
The important issue of cache performance vs.
cache freshness (or consistency, as it is called
there) is mentioned, but without any attempt
to maximize the two properties at the same
time. Further, the authors focus on the case
of “connectivity loss,” which will not be our
focus, while they also rely upon provider-side
metadata and modules. Li, Zhao, Qi, Fang, and
Ding (2008) present a concept that is closest to
ours more than any other work. When responses
have been previously delivered to the same
client, the provider responds with a hashcode
instead of retransmitting an identical complete
response. Unfortunately, it is not clear if the
provider-side middleware (called SigsitAccel-
erator	Proxy) could work outside the provider
system. Furthermore, the proxy might become
a bottleneck, as it seems as if there is only one
dedicated proxy for all backend services. Even if
the above problems could be solved, we would
still be missing a proof that the proxy could be
generated for any Web service and a technical
description of how this could be achieved in an
automated manner. Further, the solution of Li et
al. (2008) is not designed for wireless commu-
nication. As will be seen later, the latter aspect
will affect the nature of our proposed solution
a lot. Some interesting ideas about efficient
caching based on metadata-based knowledge
about how response messages are generated is
presented in Tatemura, Po, Sawires, Agrawal,
and Candan (2005), but this work is, again,

strongly bound to a new architecture and new
standards for the provider, while the freshness of
Web service responses is not considered at all.

Although many of the referenced works
mention the use of proxies, they are not con-
sidered here as mediator-based if the proxy is
actually part of either the provider- or the client-
system or network (which is often the case). In
order to consider an approach as mediator-based,
it must be possible (and it also must make sense)
to physically separate the mediator (or proxy)
from both the provider- and the client-system.
Schreiber, Aitenbichler, Göb, and Mühlhäuser
(2010) present an efficient mediator-based tech-
nical solution about how the caching of mobile
Web services should be handled when processes
are concerned. Processes can be learned and
responses can be prefetched. Nevertheless,
prefetching is obviously forbidden when the
goal is 100% freshness. CRISP (Elbashir &
Deters, 2005) can be also used as mediator-based
solution, as its architecture enables method-call
interception without further requirements at the
provider-side. However, the existence of two
modes (“consistency mode” and “performance
mode”) proves that the constraint mentioned for
Liu and Deters (2007) is present here, as well.
Our approach is going to be mediator-based but
it differs from the referenced approaches in that
the proxies at the mediator-side are generated
automatically and separately for each service
and, of course, in that it will guarantee 100%
freshness.

Client-based solutions attempt to enhance
the way a client can store, represent, handle,
replace, and re-use identical requests and re-
sponses. However, when a message-exchange
does occur, it conforms exactly to the message-
exchange that occurs in the absence of any
caching mechanism. Within the context of our
work, Takase and Tatsubori (2004) present the
most similar client-based approach. There,
the idea of using “HTTP-like” validity-checks
in order to enhance freshness is theoretically
mentioned, but not further handled. It was not
considered from a technological point of view
and it was, of course, not generically enabled
for existing Web services. The work “assumes

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 47

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

that it is the responsibility of the client applica-
tion administrator to configure a Time-To-Live
(TTL) for each operation.” The existence of
TTL is a proof that the risk of using outdated
data is accepted. A very important point of that
work is the idea to compare application objects
instead of XML messages. We will embrace this
idea, but we will implement it in a more generic
manner, because the modules that compare
the responses will not be built once statically,
but they will be built automatically for every
Web service, thus being able to handle every
application object. We cannot tell if the cache
of Takase and Tatsubori (2004) uses some other
way in order to be able to handle every applica-
tion object. Many of the previously referenced
approaches compare XML messages. This is
slower and reduces the probability of a hit
(or “match”) because of small, unimportant,
content-irrelevant differences that may appear
in an XML message.

The Gap and Our Contribution

Putting it all together, caching may be applied
in different domains (databases, WWW content,
Web services etc.), may have different goals
(reduction of used bandwidth, reduction of
user-perceived latency, reduction of server load,
confrontation with connectivity loss etc.), and
may be subject to different constraints (mini-
mum hit ratio, minimum cache freshness levels
etc.). The conclusion drawn by the analysis of
related work is that in the domain of Web ser-
vices, no existing solution can achieve the goal
of reduction	of	bandwidth	and	user-perceived	
latency while simultaneously satisfying the
constraint of 100%	freshness, i.e., always us-
ing up-to-date responses. The use of cached
or prefetched responses without establishing
a connection to the server each time leads, by
definition, to a risk of using out-of-date infor-
mation. Following these approaches, whenever
100% freshness is desired, caching must simply
be deactivated. The authors of Schreiber et al.
(2010) explicitly state that caching or prefetch-
ing of critical responses must be avoided. This
statement is true, unless the responses are

verified before use. This verification concept
will be the basis of our solution and will be
explained in the next section, following the
description of our scenario. To the best of our
knowledge, the approach that we describe is the
very first approach that allows for using cached
Web service responses with guaranteed 100%
freshness generically, i.e., for any Web service,
even if it the latter is provided by a third-party.

BACKGROUND AND SCENARIO

In the following, the context that motivated
our work is briefly described. Then, a current
constraint for the caching of Web service re-
sponses is described, along with an explanation
of why the generic withdrawal of this constraint
is just now starting to be motivated in modern
service-oriented landscapes. Our vision is to be
able to automatically withdraw this constraint
from any Web service without having access to
its hosting system. Thus, the third subsection
explains how the communication with a Web
service can look like if our vision is achieved.

Mobility Mediation in the
Internet of Services

New service description specifications such
as the Unified Service Description Language
(USDL) (Cardoso, Barros, May, & Kylau,
2010), which include the business and opera-
tional aspects of services in addition to their
technical details, turn Web services into per-
fectly tradable goods and lead to the so-called
Internet of Services (IoS) (Oberle, Bhatti,
Brockmans, Niemann, & Janiesch, 2009). In
the IoS, a great number of Web services offered
by different providers through global service
marketplaces co-exist with a big set of client
devices with different features. As the trading
and consumption of the services will have a loose
relationship to their development, limited mo-
bile clients will often need to use Web services
that are not specially designed for them. For this
reason, we are concerned in our work with the
development of a Mobility Mediation Layer
(MML) for the IoS (Papageorgiou, Leferink,

48 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Eckert, Repp, & Steinmetz, 2009). Comple-
mentary to other tasks, such as automated
inter-application context-enrichment, the MML
supports proxied consumption of services that
are available on the IoS-marketplace in order
to perform overhead reduction for the wireless
transmission. To achieve this, approaches like
those analyzed in Papageorgiou et al. (2010),
e.g., protocol transformation or compression,
are employed, along with further techniques,
such as service-specific, personalized cropping
of irrelevant data.

Thus, the MML is also concerned with
supporting wireless clients with the caching
of service responses. How would traditional
caching work? Naturally, every client can store
responses for future usage. However, there are
three main reasons why the client may avoid
doing it:

• Frequent changes: The content changes so
frequently that client-side caching does not
make any sense.

• Criticality: The service call is so critical
for the user that she/he needs to be 100%
sure about the validity of the content, even
if the old response has good chances of
being up-to-date.

• Legal issues: Caching may be implicitly
or explicitly stated to be illegal for a par-
ticular service.

In a global marketplace, it is difficult or
unusual to know about these features, unless
relevant information is included in a description
such as USDL. But even if it is known that one
of the above statements is valid, the best that the
user can do is always request a new response.

An Important Constraint of
Web Service Caching

As already identified shortly after the appear-
ance of Web service technologies, XML-based
Web services present many technical challenges
and cannot be involved in a caching process
similar to the one used for simple Web content
(e.g., pure HTML) (Terry & Ramasubrama-

nian, 2003). Based on directives provided by
Web servers and supported by Web browsers,
simple Web content is not reloaded each time
it is requested, if the old (cached) content is
still valid. The main technical reason why this
mechanism cannot be transferred to the Web
service technology is that Web services do not
just rely on the HTTP-GET method for their
communication, but they implement a rather
more complex message exchange in order to
export a diverse set of operations. As a result,
Web services always transmit the complete
response when they receive a request. The only
alternative in order to support a validity check is
to manually implement it inside the logic of each
service. A survey among 20 services provided
at www.webservicex.net (the 10 most popular
and the 10 most recent) has revealed that not a
single one of them has inherently implemented
such a logic. The reason is obvious: the indi-
vidual implementation effort outweighs the
benefits, while the latter may often concern
a limited number of clients. But what about a
generic solution that could add this feature to
any Web service in the IoS? Why has research
not focused on it until now and what exactly
would it enable?

In fact, the MML is one of the first systems
confronted with a scenario where such a generic
“browser-like” solution would be worth its
effort, because:

• The MML has access to a huge amount of
services over the global marketplace. Some
of them would benefit from being enhanced
with support for safe client-side caching.
However, the MML cannot extend them
directly with such logic, because it has no
access to their code or their hosting systems.

• The MML target group consists exclusively
of wireless clients, while the service provid-
ers are often more concerned about larger
PC-based clients.

• The MML can estimate better which ser-
vices (or their clients) would profit more
from client-side caching, because of extra
information about “cacheability” that it
can retrieve from USDL descriptions.

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 49

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

However, a general-purpose mechanism
should be able to function even without
this extra information.

• The adaptation of Web services for mobility
is the business model of the MML. Thus,
the access either to the proxies generated by
the MML or directly to the MML software
in order to generate own proxies would
be tradable goods in line with the MML
business model.

Envisioning a “Browser-
like” Caching Approach for
Web Service Responses

For these reasons, the MML needs a mecha-
nism which, when applied to any external Web
service, allows the mobile clients to perform
service calls that have the chance to be satis-
fied with very small, lightweight responses,
whenever there is no reason to retransmit lots of
data. Upon receiving responses with particular
codes in their content (for example, 304, as in
simple HTTP calls), clients would know that
their cached data was still up-to-date. This
would not eliminate the need for establishing
a connection, but could significantly reduce
the wirelessly transmitted data. There is no
way to be 100% sure of the validity of the data
without establishing a connection each time that
the data is needed, and this “100%” is a fixed
goal of ours. The principal difference between
typical Web service communication and the
communication scheme that our solution will
enable is explained in the following with the
help of an example.

Figure 1a shows a SOAP request / response
pair of an example Web service that informs
its invoker about recorded noise incidents at
a particular place / address. Such a response
may contain binary data, resulting in very big
content sizes. Of course, this is only an example.
Responses that do not contain binary data may
become very big, as well. Currently, with the
typical implementation of Web services, the
transmission of a request such as this of Figure
1a leads inevitably and each	time to the trans-
mission of a complete response.

Our vision is to enable a communication
scheme where it can be automatically recog-
nized if the response contains any data that
would be “new” for the invoker. In that case,
instead of receiving a response such as this of
Figure 1a at every invocation, the invoker would
sometimes receive a response that signals the
fact that the invoker still has up-to-date infor-
mation from a previous invocation and can thus
reuse it. An example response is shown in
Figure 1b, making it obvious that there is a
potential for much more lightweight commu-
nication.

Enabling request / response pairs such
as these shown in Figure 2 normally requires
reengineering and reprogramming of the Web
service. However, the MML needs a generic
solution which somehow enables the described
vision for any third-party Web service without
access to its code and can be used by the cli-
ents without having to bother about any of the
obstacles listed previously (frequent changes,
criticality, legal issues). Note that although the
MML-scenario is used to explain our motivation
and to support the technical understanding, the
presented solution is general purpose and will
be surely very useful in other scenarios.

THE WEB SERVICE PROXY
GENERATION

The described vision is enabled by a solution
called Web Service Proxy Generator (WSPG).
In addition to proxies for caching, the WSPG
can also generate other proxies for overhead
reduction (e.g., protocol-transformation, com-
pression), but the latter are out-of-scope of this
paper because they are based more on existing
technologies, rather than on new concepts,
techniques and evaluations, as is the case with
caching. To provide a good understanding
of the (caching) WSPG, an overview of its
functionality is given along with a descrip-
tion of the resulting technical landscape. After
the presentation of the most important details
about its logic and its algorithms, a cost-benefit
analysis is presented, which can also be used for

50 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure	1.	Visualization	of	the	vision	of	“browser-like”	caching	for	Web	services

Figure	2.	Example	technical	landscape	after	some	proxy	generations

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

deciding for which services the proxy generation
is worth its costs.

The Technical Landscape

The WSPG is a module of the MML and should
not be confused with the actual proxies that
it generates, which are then deployed in Web
containers of the MML. Figure 2 shows a pos-
sible technical landscape after the generation of
some proxies. As shown in Figure 2, after the
generation of a proxy (here: a proxy for service
S1 of Figure 2), the direct communication of the
device with the service (long dashed arrow)
can be replaced with a proxied consumption,
where the backend call is performed between
IT systems over fast connections (short direct
arrow) and the wireless call (short dashed
arrow) has the option of getting a very short
answer, as envisioned in the previous section
and depicted in Figure 1.

Figure 2 is limited to presenting the broader
technical setting and abstracts from the most
important part, which is the internal logic of
the WSPG. As depicted, the proxies of Figure
2 are generated automatically and based only
on the service descriptions thanks to the logic
provided by the WSPG, which is elaborated in
the following.

The Logic of the Generic
Proxy Generation

Figure 3 shows the steps of the workflow
that is used in order to achieve the automated
proxy generation. Each step will be described
separately. Most descriptions are provided from
an engineering point of view, though some
helpful references to details of the Java-based
implementation are made. The highlights are to
be identified in the conception of the workflow
itself and in the innovative code adjustment

techniques (esp. of Steps 3 and 4), but also
in the difficulty of implementing such a logic
generically.

Step 1. Description Parsing: All the necessary
information, such as operations, data types,
interfaces, ports etc., is read from the ser-
vice description. Because specialized in-
formation is needed, but also because the
parser has to be extensible in order to
fully support USDL (in addition to WSDL),
the WSPG does not use an off-the-shelf
service description parser but a new one.
A part of its logic, which is important for
our scenario, is explained later, based on
an algorithmic extract.

Step 2. Consumer Generation: This step
generates the part of the proxy that is
responsible for calling the original Web
service. As no sophisticated or scenario-
related actions have to be performed during
the consumer generation, the standard tool
wsimport is transparently and automatically
used by the WSPG for this step.

Step 3. Code Enrichment: The code generated
by wsimport is different for each service.
Each time, the WSPG has to dig deep into
that code in order to find the points that have
to be enriched. Then, it automatically modi-
fies / adds code as needed. For example,
(i) the addition of extra parameters in the
request / response wrappers and (ii) the
adjustment of the interface classes, which
determine what the new WSDL (i.e., the
WSDL of the proxy) will look like, are two
important code enrichment actions.

 With regard to (i), a request (or response)
wrapper is a class that determines what
the SOAP request (or response) contains.
After detecting these classes by analyzing
the annotations of their code, the WSPG

Figure	3.	Workflow	of	the	proxy	generation	logic

52 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

inserts the field ifModifiedSince to the
request wrapper and the fields statusCode
and identTag to the response wrapper,
always preceded by the annotations that
are necessary for their inclusion in an
XML message and accompanied by the
corresponding getters and setters. This
allows for a communication pattern such
as the one presented in Figure 1 and for a
validity check implemented based on the
comparison of ifModifiedSince parameters
with previously saved identTag parameters.

 As for (ii), the WSPG has to detect the
interface classes and replace pairs of
RequestWrapper / ResponseWrapper an-
notations that are included there with the an-
notation: @javax.jws.soap.SOAPBinding
(parameterSytle=ParameterStyle.BARE).
This allows for the use of extra parameters
(see previous paragraph) without having
to change the Web service signature, i.e.,
without additional wrapper classes for the
new service.

Step 4. Cacheability Injection: Similar code
adjustments are also needed for the ca-
cheability injection. However, this step
concerns the actual handling of the cache,
i.e., of the classes that access it or support
it. Its logic is separate from the previous
step, and most of the results of the code
enrichment actions of Step 3 are precondi-
tions for the cacheability injection.

 The most interesting actions of the WSPG
during this step are the insertions of ap-
propriate annotations to all the entities
that must be persistable, i.e., are involved
in the storage of request / response pairs,
as well as the automatic generation of
two further modules for each operation: A
builder module and a controller module.
The first is capable of storing request /
response pairs so that validity checks can
be performed, while the latter can search
among the mentioned pairs and compare
new responses with cached ones, in order
to decide whether the new response or just
a status code should be sent back to the
wireless client.

Step 5. Transparent Deployment: In this
step, not only the code that results from
the execution of Step 4 has to be packed
and deployed but also the file structure and
the configuration files of the Web container
that will host the proxy have to be transpar-
ently adjusted, so that the generated proxy
becomes automatically available as a new
Web service.

Important Details of the
Proxy Generation Process

In order to make the proxy generation process
more comprehensible and traceable, a sequence
diagram is presented, along with extracts of
algorithms that highlight and further explain
some important procedures.

The sequence diagram of Figure 4 reveals
how the proxy generation program runs through
concrete actions of the five workflow steps. An
understanding of the workflow described in the
previous subsection is necessary in order to
study the sequence diagram, while algorithms
that refer to the actions 1.2, 3.1, and 4.3 are
provided separately in Figure 5. The depicted
entities should be understood as follows:

• The Proxy	Creator is the module that co-
ordinates the process and stores globally
needed information. It also arranges the
generated software parts, ensuring thus the
easy integration of the generated proxies
into the system(s) where they will have to
operate.

• The Description	Parser analyzes the ser-
vice description. As shown in the sequence
diagram, it is used by the Proxy Creator and,
apart from integrating an XML parser, it has
no further interactions with other modules.

• The Generation	 Module is the module
that actually implements all the complex
tasks of the workflow steps 3 and 4. After
initiating the consumer generation, it gen-
erates various classes, the most important
of which are shown and explained in the
diagram.

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 53

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• The External	Modules include all third-
party libraries as well as any non-source-
code-related components that are used
throughout the process (compilers, tools
etc.).

The purpose of the algorithms of Figure
5 is to explain the internal logic of important
actions, because this logic does not become

obvious from the sequence diagram alone.
Furthermore, some of these actions are closely
related to aspects that distinguish our work
from the state-of-the-art. The algorithms are
high-level and coarse-grained, as well, and the
provided parts may correspond with hundreds
of lines of code in the actual implementation:

Figure	4.	High-level	sequence	diagram	with	the	main	entities	of	the	WSPG

54 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Figure 5a shows how our description parser
preprocesses and stores the necessary
information in a way that will optimally
support the next steps of the workflow.
For example, line 7 prepares the package
structure that will be needed based on the
target namespaces found in the service

description. If the packaging was not based
on the target namespaces the way it is done,
it could lead to the automatic generation of
wrong or inconsistent code, which would
not compile. The next lines gather and store
the operations-related information (name,
wrappers, parameters) exactly as they will

Figure	5.	Internal	logic	of	selected	proxy	generation	actions	(high-level	pseudo-code)

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

be needed later for the code enrichment and
the cacheability injection. Such actions are
not included in state-of-the-art (WSDL)
description parsers.

• The way in which the WSPG digs into the
generated code in order to add the annota-
tions and the code that will determine how
the new service interface and, accordingly,
the new service description (i.e., that of the
proxy) will look like, is shown in Figure
5b. Lines 9-12 indicate, for example, how
wrapper annotations are added directly
before the declarations of class variables.
As can be seen, the types of these variables
are those that have been identified by the
parser (cf. Figure 5a).

• A closer look at the automatic genera-
tion of the class that performs the actual
comparison of Web service responses
(Figure 5c) is also interesting. Contrary
to the generation of the “caching base
class,” which is similar for all services
/ operations, the “cache lookup classes”
have many operation-specific parts. This
makes it very difficult for the Generation	
Module to perform its task generically.
The pseudo-code in Figure 5c summarizes
(among others) how (i) the generated code
must use the particular request / response
wrapper objects that correspond with the
target operation (e.g., line 8), (ii) a construc-
tor must be built that is able to populate
the cache by using operation-specific SQL
queries (line 9), (iii) the actual comparison
will later be done by code that does not
compare XML documents but response
objects (lines 18-34). As explained in the
“Related Work” section, this is an important
aspect, which is very often implemented
differently by related approaches. The
comparison of objects makes the cache
lookup more efficient and bypasses the
undesired possibility that small changes
in non-content-related details of irrelevant
XML parts (e.g., headers) lead to retrans-
mission of actually identical responses.
The code 303 (line 20) is returned when
the mediator thinks that the response the

client already possesses is still fresh. This
feature is very useful when the calls to the
original service need to be reduced, but it
is out-of-scope of this paper. It is only code
304 (line 24) that can guarantee freshness
of the response that the client has.

Cost-Benefit Analysis

The proxy can be generated and deployed
in up to a few seconds. Because the proxy is
generated once a priori (e.g., during service
registration) and not during a service call, this
cost is trivial. However, there are other reasons
why the generation of proxies for all known
services may be impossible or undesirable. For
example, the proxy-hosting platform may have
limited capacity (it should be considered that a
huge number of services shall exist on the IoS),
the administrator may want to avoid having too
many open ports or public interfaces because of
security or management issues etc. Therefore,
an estimation of the expected benefit should be
supported by the WSPG.

The “total bandwidth saved by a proxy
generation” (tbs) is exemplarily used here as
the benefit metric because of its simplicity. Dif-
ferent metrics can be used, resulting in different
models. If hits are the service calls for which the
cached data can be used (i.e., 304 is returned)
and misses are the service calls for which the
complete response must be retransmitted, then

tbs = avg_bandwidth_saving_of_hit
* number_of_hits
–	avg_bandwidth_loss_of_miss	 	
*	number_of_misses (1)

which, if we define savg as the average response
size, r as the cache hit ratio (0 ≤ r ≤ 1), s304 as the
size of the minimal response that corresponds
with a hit s304 > “size of the extra information
needed in a proxy response”, and N as the
total number of calls, gives after some simple
calculations:

tbs	≥	(savg	*	r	*	N)	–	(s304	*	N) (2)

56 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In order to assign values to these variables
for particular services, the WSPG has two op-
tions. First, the expected values, e.g., for r or
savg, could be read from an extended description
such as USDL. Our related suggestions are be-
ing examined from the developers of USDL.
Second, estimations can be performed based
on information from standard descriptions. For
example, the amount of parameters of an opera-
tion, as well as their types and name lengths, let
the WSPG calculate the XML overhead needed
to wrap the actual data in the corresponding
responses. To provide a simplified example,
n parameters (of primitive types) appearing
sequentially with an average name length of l
would produce a response overhead of n	*	(2	
*	 l	+	5) characters, according to the schema
<paramName>...</paramName>. Similar but
more complex functions are used for calculat-
ing the overhead for the complete response,
helping to estimate savg.

PERFORMANCE EVALUATION

In the following, the caching approach enabled
by the WSPG will be thoroughly evaluated re-
garding performance. The presented approach
can be combined with other overhead reduction
techniques and its usefulness is not restricted
to the cases in which the devices act as SOAP
clients. Actually, in the MML it is currently
often combined with REST-translation plus
proxy-side caching, thus eliminating the exter-
nal call completely when it is safe. The extra
benefits of the presented approach are notable
in these combined cases, as well. However,
all other techniques are out-of-scope for our
evaluation, whose purpose is to measure what
our solution can contribute when used inde-
pendently. Thus, all measurements refer to a
scenario where devices, MML, and external
services all communicate using SOAP, without
any other optimizations.

Metrics and Setup

Compared approaches: The presented ap-
proach is novel in that it achieves 100%

freshness. Thus, it should be compared with
the only existent approach for achieving
this, namely the direct call of the external
Web service without the use of any cached
results. However, the performance of our
solution must also be compared with that
of traditional client-side caching, in order
to evaluate what has to be sacrificed for
achieving this absolute freshness. Thus,
three approaches will be referred to, namely
DCN (Direct Call, No cache), DCC (Direct
Call with Caching), and PCV (Proxied
Call with Validity check, which is our
approach). The expectations are as fol-
lows: DCC performs best (but risks using
old data), while PCV may complicate the
communication compared to DCN (PCV
uses extra data for the validity check and
replaces one service call with two) but it
reduces the wirelessly transmitted data in
the case of a hit.

Dependent variables: We focus on two pa-
rameters, which –depending on the sce-
nario– may be most important to the client:
The reduction of the amount of wirelessly
transmitted data or saved	bandwidth (sb)
and the user-perceived	latency (upl).

Independent variables: The main variables
that determine the performance are the
response	size (s) of the Web service and
the hit	ratio (r). For PCV, the hit ratio is
the probability of the cached response
being still up-to-date, while for DCC it
is, equivalently, the probability of using
a cached response (of course, without
knowing if it is up-to-date). s and r will be
varied, while the rest will be controlled.

Controlled variables: Other parameters that
affect the results are the client device,
the network connection, the structure of
Web service responses, and the workload
(service call pattern). The next subsection
explains how these variables have been
chosen/controlled/varied and why.

Environment and simulated aspects: sb is
exact and environment-independent. upl
has been measured as response time plus
parsing time, because it refers to the time

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 57

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

between the user action that sends the re-
quest and the moment where the received
results are ready to be presented to the
user (Schreiber et al., 2010). Parsing times
have been measured on a real device, while
response times have been measured with a
simulator in order to ease tests with different
networks (GPRS, UMTS, LTE). However,
these response times have been validated
with sample tests from the device.

Setting the Controlled Variables

The measurements were done with an iPhone
3G (iOS 4.0.2) device. Less capable devices
would obviously favor our approach even more.
Furthermore, even if more capable devices
had been used, similar conclusions could be
reached by slightly increasing the examined
Web service response sizes, which would be
completely realistic. Thus, the mentioned device
was exemplarily selected because it is popular
and it obviously does not favor our approach.

With regard to the network	connection, dif-
ferent results will be shown, namely for GPRS
(currently most used), UMTS (successor of
GPRS in 3G networks), and LTE (future tech-
nology). EDGE and HSDPA perform similarly
to GPRS and UMTS, respectively. WLAN can
perform similarly to LTE, while the cases where
WLAN achieves a performance almost equal
to wired networks are obviously out-of-scope
for any adaptation technique.

The experimental Web	services have been
chosen so that their response size can be easily
varied. However, other service features may
affect the results, as well. Responses with
different structure may need different pars-
ing times even for the same response sizes.
Thus, two different real Web services were
used: YellowMap’s Point-Of-Interest service
(http://www.yellowmap.de/Partners/XML/
PoiXmlServiceV21.asmx?wsdl) (S1) has high
parsing complexity, while a SOAP version of
Apple’s “iTunes new releases” service (http://
ax.phobos.apple.com.edgesuite.net/WebOb-
jects/MZStore.woa/wpa/MRSS/newreleases/
rss.xml) (S2) is easy to parse.

Figure 6 shows the parsing times measured
for different response sizes and the lines	of	best	
fit that represent the parsing time as a function
of response size s. The latter functions were
calculated with linear regression to be approx.
8.6228	*	s	+	13.849 and 4.632	*	s	+	22.264
for S1 and S2, respectively, while other Web
services would probably give a line somewhere
between them. Each point depicted in Figure 6
is the average value after ten repetitions of the
experiment. The deviation has been small and
therefore omitted from the graph.

Different workloads have been tested. In
the first part of the evaluation (evaluation of
basic benefit), most of the results are presented
for a scenario where a number of clients just
send the same request twice. The number of
clients is irrelevant because the saved bandwidth
and the user-perceived latency reduction will
be presented relatively. The existence of many
clients is only assumed (and simulated) in order
to assign all possible values to the cache hit
ratio. More precisely, the whole response is
always fetched at the first request, while the
second request leads either to re-transmission
of the response (cache miss) or to the transmis-
sion of our “small” 304 response. Thus, the
savings cannot exceed 50%. This generic sce-
nario was chosen because its triviality in-
creases the comprehensibility of the results, its
results consist again a worst case (minimal
repetition of identical requests) for our ap-
proach, and no other scenarios are commonly
accepted as realistic (Schreiber et al., 2010).
This workload will be called 50-50, indicating
that 50% of the calls have a chance to –but will
not necessarily– be satisfied by cached results.

In the second part of the evaluation (evalu-
ation of the tradeoffs), the workloads refer to a
single client that performs the same Web service
call repeatedly but with different traces each
time, i.e., with different assumptions about
how often the service is called, how often its
responses change etc. These workloads will be
justified with references to related surveys, as
well as with examples of mobile applications.

58 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Selected Results: The Basic
Benefit of the Approach

The explicit goal of PCV is to increase the saved
bandwidth (sb). Both response time and parsing
time reduction are actually caused by sb, so that
upl depends up to an extent on sb. The question
with regard to sb is for what values of s and r
it becomes significant. Obviously, PCV cannot
save much bandwidth when the exchanged
messages are small and it is not worth it either

when the expected cache hit ratio is low. For
the 50-50 workload, Figure 7 represents sb in
percentage of the originally used bandwidth,
i.e., the bandwidth used in the case of DCN.
The results prove that sb gets significant val-
ues early, e.g., ca. 25% of the bandwidth can
be saved for mediocre values of r even when
s is smaller than 10kb. Note that sb is service-
independent. The extra data used by PCV are
normally trivial and may only cause minimal
performance degradation for very small values

Figure	6.	Examining	Web	services	with	regard	to	their	parsing	complexity

Figure	7.	Saved	Bandwidth	(sb)	as	a	function	of	response	size	and	cache	hit	ratio

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 59

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of s and r (under the lowest delimitating line
in Figure 7). In all other cases, the bandwidth
savings are positive.

Figure 8 shows the reduction of upl with
a similar representation, i.e., as a percentage of
the values of upl without caching (DCN). As
expected, the reduction of upl is bigger for S1.
Interesting is the fact that, depending on the
relationship between parsing times and response
times, the percentage of upl reduction may be
similar for LTE and UMTS (compare S1-UMTS
with S1-LTE in Figure 8). This is due to the fact
that the parsing time sometimes dominates over
response time in the overall upl, so that the
connection becomes less important. The abso-
lute upl reduction is, of course, bigger for

UMTS, but the same does not necessarily hold
when examining the relative reduction in per-
centage. Most important is the fact that upl
presents significant reductions even though the
call is proxied and the backend (wired) call is,
naturally, also included in the measurements.
Figure 9 shows exemplarily and scenario-in-
dependently some absolute values for the upl
reduction when S1 is called with PCV (compared
to DCN). A logarithmic scale is used because
the reduction is much bigger for a GPRS net-
work. Nevertheless, the upl reduction is sig-
nificant for UMTS and LTE, as well, because
enhancements of hundreds of milliseconds
cannot be considered to be trivial. Again, each

Figure	8.	User-perceived	latency	(upl)	reduction	with	the	50-50	workload	(maximum	reduction	
<	50%)	as	a	function	of	response	size	and	cache	hit	ratio

60 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

measurement has been repeated ten times and
only average values are presented.

The response sizes used throughout the
evaluation were realistic and not very big. Both
test services can give response sizes > 500kB,
while other Web services cause even “heavier”
communication. Frequent usage of such ser-
vices causes significant amounts of data to be
exchanged.

Selected Results: The
Tradeoffs Under Particular
Realistic Call Traces

The previous results were limited to presenting
the sb- and upl-reduction that PCV can achieve
compared to DCN. DCC has not been involved
yet because the fact that no service call actually
happens at a cache hit makes it senseless to
talk about upl and lets the reader easily assume
how the results would look like. However, the
following evaluation results will illustrate the
spectrum between the performances of DCC
and DCN where PCV is expected to lie, i.e., the
tradeoff “performance vs. freshness” between
the approaches. In order to demonstrate the
mentioned tradeoff, an appropriate test dataset
(“workload”) is needed. This dataset should
normally consist of different Web service call
traces, i.e., logs of the monitored activity of mo-

bile applications that perform repeated service
invocations. As also explained by Schreiber et
al. (2010), there are no such real public datasets
because monitored activity of popular applica-
tions is usually private. Furthermore, finding a
couple of such datasets would not be enough.
They should also be proven to be representa-
tive. Taking this into consideration, the three
approaches have been evaluated here with
artificial traces, which are designed based on a
use case analysis supported by related surveys.
An infinite number of different traces could be
designed and could appear in a real system. The
following traces are single incidents that are
here considered to be realistic and representa-
tive. The results must not be seen as a complete
and exhaustive comparison.

The trace characteristics that are of inter-
est –because they determine the performance
of the approaches– are the dynamicity and the
response	sizes:

• Dynamicity	(d) is defined here as “the	prob-
ability	of	each	response	to	be	identical	with	
a	previously	sent	response”. The dynamic-
ity depends on two factors: The expected
time intervals between subsequent service
calls and the nature of the contents of the
response (are they static or do they change
often?). The dynamicity is measured in %.

Figure	9.	Absolute	reduction	of	user-perceived	latency	for	service	S1

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 61

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Response	 sizes	 (s) will have a different
spectrum for each trace, depending on how
big the responses of the trace are expected
to be. Response sizes are measured in kB.

Use Cases (UC) of mobile, Web service-
based applications that may perform repeated
(identical) calls will be identified and discussed
with respect to their expected dynamicity and
response sizes: A survey of Gartner, Inc. (Petty
& Stevens, 2009) identified the following top
10 consumer mobile application categories for
the near future: “i)	money	transfer,	ii)	location-
based	services,	iii)	mobile	search,	iv)	mobile	
browsing,	 v)	 mobile	 health	 monitoring,	 vi)	
mobile	payment,	vii)	near	field	communication	
services,	viii)	mobile	advertising,	ix)	mobile	in-
stant	messaging,	and	x)	mobile	music”. Among
them, ii, iii, v, vi, viii, and maybe x, seem to
be the less sensitive and/or most promising
concerning the use of cached data. Along
with these results, it should be considered that
the findings of two scientific surveys about
public Web services (Fan & Kambhampati,
2005; Li, Liu, Zhang, Li, Xie, & Sun, 2007)
can be summarized as follows: ca. 50% or
more of the public Web services offer data	
lookup	services, i.e., connections to –usually
not very dynamic– databases, while the other
important categories (10%-15%) are sensing	
services (Li et al., 2007) probably include them
in data lookup services), and data	processing	
/	conversion. After considering the categories
of the Gartner survey, the mentioned types of
public Web services, and some of the “hottest”
application domains, the following UCs have
been identified as interesting and relevant to
the purposes of a caching evaluation:

• UC1: Data lookup, location-based service
in the domain “mobility and transport.”
 ◦ Example: A mobile car-sharing app

developed in the context of our project
Green Mobility (http://www.green-
mobility-project.de) includes a Web
service request for Points-of-Interest
(POI). This request may be sent ev-
ery time that the user wants to show

possible meeting points on his map
in order to choose one. Another good
example from this domain would be a
mobile monitoring app of a car rental
company, which is informed periodi-
cally about the status (incl. location)
of its cars through Web services.

 ◦ Characteristics: The mentioned POI
service sends responses that are usu-
ally some tens of kB but could also
be much bigger. Similar could be true
for a service that reports the status of
cars, as location-based services in this
domain may include similar format
and information fields. Concerning
dynamicity, responses may change
because of newly added POIs. This
does not happen very often, but it
should be considered that identical
calls do not occur extremely often
but between longer time intervals,
a fact that obviously increases the
dynamicity. In the car rental app, the
time intervals may be much smaller
(maybe some seconds) but the status
of a car is more likely to change often,
so a given dynamicity is there present,
as well. All in all, this UC is expected
to have a medium dynamicity.

• UC2: Data lookup advertising service in the
domain “live ads in communication apps.”
 ◦ Example: One can think of a Web ser-

vice request included in a messaging
app. The request would periodically
look for “current ads” (push mecha-
nisms may be used but are, especially
for mobile apps, hindered by ad-
dressing problems or implementation
difficulties, so that one could argue
confidently that periodical pull is
used very often). The concept can be
understood by considering Skype, for
example, where ads are continuously
downloaded and shown at the bottom
while the app is being used.

 ◦ Characteristics: Ads may contain im-
ages, moving images, or even sound.
The message sizes can vary a lot

62 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

here, but big-sized messages must be
considered here as a possibility, espe-
cially for the future. The dynamicity
is not necessarily very high, because
the request may be sent often, but the
“current ad” will not change every
few seconds. This would be bad for
the advertised party and annoying for
the user.

• UC3: Sensing service for mobile health-
monitoring in the domain “assisted living.”
 ◦ Example: We refer directly to the

survey of Kameas and Calemis
(2010), where many different example
systems are mentioned. According to
the survey, the most widely monitored
medical variables are the electro-
cardiograph, the heart rate monitor,
the blood pressure monitor, and the
oxygen saturation monitor.

 ◦ Characteristics: Although sensor data
are usually compact, a look at example
electrocardiograph reports reveals that
a Web service response containing
such a report could reach very big
sizes (maybe hundreds of kB). How-
ever, if this degree of detail is needed,
no chance for caching exists. Thus,
systems will be considered where
summarized, smaller reports are sent,
which do not indicate every detail, but
the status. These have smaller sizes but
a very low dynamicity, because the
time intervals are very small (critical
apps), while the summarized status has
great chances of being identical for
many consequent invocations.

• UC4: Data processing/conversion service
for mobile payment systems.
 ◦ Example: A classic currency con-

version service (http://www.web-
servicex.net/CurrencyConvertor.
asmx?WSDL) can be considered here,
maybe combined with the processing
of some extra user data.

 ◦ Characteristics: Responses of such
a service may normally not exceed a
maximum of 2-3 kB. The dynamicity

is also pretty high, because usual apps
are not expected to perform many
payments on a single day, while the
response of the currency converter
is normally modified at latest one
day later.

In accordance to the discussion of the UCs,
Figure 10 coarsely depicts the characteristics
that the Web service call traces of the UCs are
expected to have. Based on these expectations
and remaining close to the values used in the
previous subsection, the following four traces
have been designed, mirroring the discussed
UCs:

• Trace 1: Test run of Web service invoca-
tions with d = 50% and s = random
(20kB..80kB).

• Trace 2: Test run of Web service invocations
with d = 20% and s = random(50kB..200kB).

• Trace 3: Test run of Web service invocations
with d = 10% and s = random(5kB..20kB).

• Trace 4: Test run of Web service invocations
with d = 70% and s = random(1kB..3kB).

Figure 11 shows for each trace the accumu-
lated bandwidth used by DCN, DCC and PCV
for 20 subsequent identical requests. DCC uses
for its cached objects a Time-To-Live (TTL)
such that the objects expire after a time that
corresponds with 5 calls, so that the 6th call has
to fetch a new response. TTL is normally used
as part of DCC (Cao & Özsu, 2002), while the
particular value has been chosen so as to be ap-
propriate enough for the examined cases. Other
values, which make DCC look less efficient,
have been tested but are not included, because
they do not offer many interesting new insights.
Even so, it is easy to imagine how altering the
TTL would alter the results. Each trace has
been run many times, thus providing different
instances. Averaging the results would be wrong
and meaningless, as they already contain many
invocations with random values. Instead, we
select two typical instances of each trace and
discuss their meaning.

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 63

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

After a first look upon all the results, it
becomes obvious that for TTL	<	∞, PCV can
even achieve better results, i.e., use less band-
width, than DCC. However, this happens only
in cases in which the responses change rarely
and, in such cases, DCC would not use many
outdated information. Even in the normal case,
where PCV uses more bandwidth than DCC,
PCV often achieves a bandwidth usage close
to that of DCC. Furthermore, the crosses denote
invocations for which DCC would have used
outdated data. It is reminded that the only
other approach that can prevent these red
crosses from occurring is DCN, whose results
are depicted, as well.

More concretely, Figure 11a and Figure 11b
show that, for Trace 1, the bandwidth consump-
tion of PCV remains somewhere between those
of DCN and DCC. Indeed, this was true for all
instances of Trace 1. However, the appearances
of red crosses in the case of DCC are so often
that PCV should definitely be considered, at
least for critical applications.

Traces 2 and 3 are cases where PCV has
very high chances of being the preferred ap-
proach. Contrary to Trace 1, the difference of
the used bandwidth between PCV and DCC was
usually insignificant and there have even been
cases where PCV consumed less bandwidth
in total, although DCC has used a couple of

outdated responses (cf. Figure 11d and Figure
11f). However, it must be reminded that the
used bandwidth is not the only metric that may
be of interest. If, for example, the number of
established connections (may affect response
times and/or energy consumption) is more
important than the freshness of the responses,
then DCC may remain preferable.

As shown by Figure 11g and Figure 11h,
Trace 4 refers to cases where PCV is not efficient
at all, at least in terms of bandwidth usage. In
the corresponding instances, PCV has used al-
most as much bandwidth as DCN. Sometimes,
PCV uses even more bandwidth than DCN
(cf. Figure 11g), because in the case of small
messages (combined with low hit ratio), the
overhead of the extra fields used by the proxy
is not insignificant compared to the size of the
content field of the response. Analogously, the
data whose re-transmission is spared by PCV,
is sometimes no more than half the size of the
response, which is transmitted anyway. Even
if absolute freshness is demanded, PCV may
still be a suboptimal solution here. DCN may
be preferred because of its simplicity.

Concerning the impact that these differ-
ences of used bandwidth may have on the ap-
plication in terms of user-perceived latency and
costs, we refer to the first part of our evaluation.

Figure	10.	Expected	dynamicity	and	message	sizes	of	the	use	cases	of	interest

64 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure	11.	Accumulated	bandwidth	used	by	the	3	caching	approaches	(PCV,	DCC,	DCN)	for	
the	different	traces

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 65

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

SUMMARY AND OUTLOOK

Different adaptation mechanisms have been
proposed in order to reduce the amount of data
that is wirelessly transmitted when Web services
are invoked from wireless devices. Employing
caching-support as an adaptation mechanism
opens new potentials, because in optimal sce-
narios it can spare the transmission of entire
content fields, thus achieving a much bigger data
reduction than any compression- or encoding-
based approach. After discussing technological
constraints and scientific challenges towards
achieving an automatic enablement fresh and
efficient response caching of third-party Web
services, we presented the technical details of
the first solution that can generically enhance
the communication with any Web service in
order to combine the use of cached responses
with certainty about their freshness. The basic
benefit of the approach during simple Web
service invocations on wireless clients, as well
as its efficiency under realistic Web service call
traces of mobile applications, have been shown
through an extensive evaluation.

The main focus of our future work is the
investigation of the circumstances under which
our solution can reduce energy consumption.
As shown by Balasubramanian, Balasubrama-
nian, and Venkataramani (2009), the reduction
of the used bandwidth is not always the most
important factor regarding energy consump-
tion. Other characteristics, such as the number
of connection establishments or the temporal
distribution of actions, play an important role.
The solution presented in this paper has been
designed taking energy into consideration.
However, the approach has to be extended in
order to achieve the best possible results in
this direction.

ACKNOWLEDGMENTS

This work was funded in part by means of the
German Federal Ministry of Economy and

Technology under the promotional reference
01MQ09016 (Green Mobility Project). The
authors take the responsibility for the contents.
Many thanks go to Philippe-Henri Marcy and
Mouhannad Akhkobek for participating in the
WSPG implementation, as well as to the authors
of Schreiber et al. (2010) for the knowledge
exchange.

REFERENCES

Aitenbichler, E., Kangasharju, J., & Mühlhäuser, M.
(2007). Mundocore: A lightweight infrastructure for
pervasive computing. Pervasive	and	Mobile	Comput-
ing, 3(4), 332–361. doi:10.1016/j.pmcj.2007.04.002

Balasubramanian, N., Balasubramanian, A., &
Venkataramani, A. (2009). Energy consumption in
mobile phones: A measurement study and implica-
tions for network applications. In Proceedings	of	the	
ACM	SIGCOMM	Internet	Measurement	Conference
(pp. 280-293).

Canali, C., Colajanni, M., & Lancellotti, R. (2009).
Performance evolution of mobile web-based services.
IEEE	Internet	Computing, 13(2), 60–68. doi:10.1109/
MIC.2009.43

Cao, G. (2002). Proactive power-aware cache man-
agement for mobile computing systems. IEEE	Trans-
actions	on	Computers, 51(6), 608–621. doi:10.1109/
TC.2002.1009147

Cao, J., Zhang, Y., Cao, G., & Xie, L. (2007). Data
consistency for cooperative caching in mobile
environments. IEEE	 Computer, 40(4), 60–66.
doi:10.1109/MC.2007.123

Cao, L., & Öszu, M. (2002). Evaluation of strong con-
sistency web caching techniques. World	Wide	Web	Jour-
nal, 5(2), 95–123. doi:10.1023/A:1019697023170

Cardoso, J., Barros, A., May, N., & Kylau, U. (2010,
July). Towards a unified service description language
for the Internet of services: Requirements and first
developments. In Proceedings	of	the	International	
Conference	on	Services	Computing (pp. 602-609).

Christin, D., Reinhardt, A., Kanhere, S. S., & Hol-
lick, M. (2011). A survey on privacy in mobile par-
ticipatory sensing applications. Journal	of	Systems	
and	 Software, 84(11), 1928–1946. doi:10.1016/j.
jss.2011.06.073

66 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Davis, D., & Parashar, M. (2002). Latency perfor-
mance of SOAP implementations. In Proceedings	of	
the	IEEE/ACM	International	Symposium	on	Cluster	
Computing	and	the	Grid (pp. 407-412).

Elbashir, K., & Deters, R. (2005, July). Transparent
caching for Nomadic WS clients. In Proceedings	of	
the	IEEE	International	Conference	on	Web	Services
(pp. 177-184).

Fan, J., & Kambhampati, S. (2005). A snapshot of
public Web services. SIGMOD	Record, 34(1), 24–32.
doi:10.1145/1058150.1058156

Frye, C. (2009). SOA	growth	and	change. Retrieved
August 23, 2011, from http://searchsoa.techtarget.
com/news/1351532/SOA-growth-and-change-
TechTarget-survey-shows-SaaS-BPM-emerging

Jelencovic, P., & Radovanovic, A. (2008). The
persistent-access-caching algorithm. Random	Struc-
tures	and	Algorithms, 33(2), 219–251.

Kameas, A., & Calemis, I. (2010). Pervasive systems
in health care. In Nakashima, H., Aghajan, H., & Au-
gustus, J. C. (Eds.), Handbook	of	ambient	intelligence	
and	smart	environments (pp. 315–346). New York,
NY: Springer. doi:10.1007/978-0-387-93808-0_12

Karedla, R., Love, S., & Wherry, B. (1994). Cach-
ing strategies to improve disk system performance.
IEEE	Computer, 27(3), 38–46. doi:10.1109/2.268884

Li, W., Zhao, Z., Qi, K., Fang, J., & Ding, W. (2008,
July). A consistency-preserving mechanism for web
services response caching. In Proceedings	 of	 the	
IEEE	 International	 Conference	 on	 Web	 Services
(pp. 683-690).

Li, Y., Liu, Y., Zhang, L., Li, G., Xie, B., & Sun, J.
(2007, July). An explanatory study of Web services
on the Internet. In Proceedings	of	the	IEEE	Inter-
national	Conference	on	Web	Services (pp. 380-387)

Liu, X., & Deters, R. (2007). An efficient dual
caching strategy for Web service-enabled PDAs.
In Proceedings	of	the	ACM	Symposium	on	Applied	
Computing (pp. 788-794).

Oberle, D., Bhatti, N., Brockmans, S., Niemann, M.,
& Janiesch, C. (2009). Countering service informa-
tion challenges in the Internet of services. Business	
&	Information	Systems	Engineering, 1(5), 370–390.
doi:10.1007/s12599-009-0069-9

Oh, S., & Fox, G. C. (2006). Optimizing Web service
messaging performance in mobile computing. Future	
Generation	 Computer	 Systems, 23(4), 623–632.
doi:10.1016/j.future.2006.10.004

Papageorgiou, A., Blendin, J., Miede, A., Eckert,
J., & Steinmetz, R. (2010, July). Study and com-
parison of adaptation mechanisms for performance
enhancements of mobile web service consumption.
In Proceedings	 of	 the	 IEEE	 World	 Congress	 on	
Services (pp. 667-670).

Papageorgiou, A., Leferink, B., Eckert, J., Repp, N.,
& Steinmetz, R. (2009, December). Bridging the gaps
towards structured mobile SOA. In Proceedings	of	
the	International	Conference	on	Advances	in	Mobile	
Computing	and	Multimedia (pp. 288-294).

Papageorgiou, A., Schatke, M., Schulte, S., &
Steinmetz, R. (2011, July). Enhancing the caching
of Web service responses on wireless clients. In
Proceedings	of	the	IEEE	International	Conference	
on	Web	Services (pp. 9-16).

Papazoglou, M. P., & Heuvel, W. J. (2007). Service
oriented architectures: Approaches, technologies and
research issues. The	Very	Large	Data	Base	Journal,
16(3), 389–415. doi:10.1007/s00778-007-0044-3

Patty, C., & Stevens, H. (2009). Gartner	identifies	
the	top	10	consumer	mobile	applications	for	2012.
Retrieved September 14, 2011, from http://www.
gartner.com/it/page.jsp?id=1230413

Podlipnig, S., & Böszörmenyi, L. (2003). A
survey of Web cache replacement strategies.
ACM	 Computing	 Surveys, 35(4), 331–373.
doi:10.1145/954339.954341

Press, L. (1999). The post-PC era. Communications	of	
the	ACM, 42(10), 21–24. doi:10.1145/317665.317670

Schreiber, D., Aitenbichler, E., Göb, A., & Mühl-
häuser, M. (2010, July). Reducing user perceived
latency in mobile processes. In Proceedings	of	the	
IEEE	 International	 Conference	 on	 Web	 Services
(pp. 235-242).

Sesia, S., Toufik, I., & Baker, M. (2009). LTE:	
The	 UMTS	 long	 term	 evolution:	 From	 theory	 to	
practice. Chichester, UK: John Wiley & Sons.
doi:10.1002/9780470742891

Takase, T., & Tatsubori, M. (2004). Efficient web
services response caching by selecting optimal data
representation. In Proceedings	of	the	International	
Conference	on	Distributed	Systems	Computing (pp.
188-197).

Tatemura, J., Po, O., Sawires, A., Agrawal, D., &
Candan, S. (2005). WreX: A scalable middleware
architecture to enable XML caching for Web services.
In Proceedings	of	the	ACM/IFIP/USENIX	Interna-
tional	Conference	on	Middleware (pp. 124-143).

International Journal of Web Services Research, 9(2), 42-68, April-June 2012 67

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Tekli, J., Damiani, E., Chbeir, R., & Gianini, G.
(2011). SOAP processing performance and enhance-
ment. IEEE	Transactions	on	Services	Computing,
99, 1–18.

Terry, D., & Ramasubramanian, V. (2003). Cach-
ing XML Web services for mobility. ACM	Queue;	
Tomorrow’s	 Computing	 Today, 1(3), 70–78.
doi:10.1145/846057.864024

Tian, M., Voigt, T., Naumowicz, T., Ritter, H., & Schil-
ler, J. (2004). Performance considerations for mobile
Web services. Computer	Communications, 27(11),
1097–1105. doi:10.1016/j.comcom.2004.01.015

Apostolos	 Papageorgiou	 is	 currently	 working	 for	 NEC	 Europe	 Laboratories	 in	 Heidelberg	
Germany)	and	holds	a	PhD	degree	from	the	Multimedia	Communications	lab	at	the	Technische	
Universität	Darmstadt	(Germany).	He	received	his	diploma	from	the	Computer	Engineering	and	
Informatics	Department,	University	of	Patras	(Greece)	in	2007,	while	he	has	also	stayed	in	2005	
as	a	visiting	student	at	the	University	of	Valladolid	(Spain)	and	in	2011	as	a	visiting	researcher	
at	the	Yale	University	(USA).	While	involved	in	lectures	about	net-centric	systems,	his	research	
and	his	publications	have	focused	on	service-oriented	computing,	especially	mobile	Web	service	
adaptation	and	optimization.	From	2009	to	2011	has	also	worked	for	the	Hessian	Telemedia	
Technology	Competence	Center	(httc	e.V.)	as	a	leader	of	the	research	project	Green	Mobility.

Marius	Schatke	studied	at	the	Technische	Universität	Darmstadt,	where	he	finished	his	BSc	degree	
in	electrical	engineering	in	2011.	During	his	studies,	he	specialized	in	distributed	data	processing	
and	gathered	software	engineering	experience	in	smartphone	development.	His	Bachelor	thesis	
was	about	caching	mechanisms	for	Web	service-based	mobile	applications.	Marius	continued	
to	work	in	this	technology	area,	being	co-founder	and	technical	leader	of	a	start-up	company	in	
Berlin	(Germany),	which	develops	smartphone-related	services	and	achieved	to	win	a	founder’s	
grant	from	EXIST,	a	business	start-ups’	support	program	of	the	German	Federal	Ministry	of	
Economics	and	Technology	(BMWi).

Stefan	Schulte	is	a	Project	Assistant	and	Postdoctoral	Researcher	at	the	Distributed	Systems	
Group	of	the	Vienna	University	of	Technology.	Stefan	holds	a	PhD	degree	from	the	Technische	
Universität	Darmstadt	(Germany),	where	he	headed	the	research	group	“Service-oriented	Com-
puting”	of	the	Multimedia	Communications	Lab	until	July	2011.	He	received	a	diploma	degree	in	
economics	and	a	Bachelor	in	computer	science	from	the	University	of	Oldenburg,	Germany,	and	
a	Master	of	Information	Technology	(with	Merit)	from	the	University	of	Newcastle,	New	South	
Wales,	in	2005	and	2006,	respectively.	His	current	research	focus	is	on	Quality	of	Service	(QoS)	
and	Quality	of	Experience	(QoE)	aspects	of	Service-oriented	Computing,	SOA	Benchmarking,	
Semantic	Web	Services.

68 International Journal of Web Services Research, 9(2), 42-68, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ralf	Steinmetz	worked	for	over	nine	years	in	industrial	research	and	development	of	distributed	
multimedia	systems	and	applications.	Since	1996	he	is	head	of	the	Multimedia	Communications	
lab	at	Technische	Universität	Darmstadt,	Germany.	From	1997	to	2001	he	directed	the	Fraunhofer	
(former	GMD)	Integrated	Publishing	Systems	Institute	IPSI	in	Darmstadt.	In	1999	he	founded	
the	Hessian	Telemedia	Technology	Competence	Center	(httc	e.V.).	His	thematic	focus	in	research	
and	teaching	is	on	multimedia	communications	with	his	vision	of	real	“seamless	multimedia	
communications.”	With	over	200	refereed	publications	he	has	become	ICCC	Governor.	He	was	
awarded	as	Fellow	of	the	IEEE	and	in	2002	as	Fellow	of	the	ACM,	becoming	the	first	German	
researcher	awarded	with	this	title	from	both	IEEE	and	ACM.	In	2008,	he	was	awarded	the	first	
ACM	 SIGMM	 “Award	 for	 Outstanding	 Technical	 Contributions	 to	Multimedia	 Computing,	
Communications	and	Applications.”

