
Enhancing the Caching of Web Service Responses on Wireless Clients

Apostolos Papageorgiou, Marius Schatke, Stefan Schulte, Ralf Steinmetz

Technische Universität Darmstadt
Multimedia Communications Lab - KOM

Darmstadt, Germany
{apostolos.papageorgiou, marius.schatke, stefan.schulte, ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—Contrary to simple Web content, standard Web
services do not offer their clients the possibility to use cached
information without the risk that it may be out-of-date. This
feature has not been worth its costs in realistic Web service
usage scenarios until now. However, its absence may pose
restrictions and impede possible benefits in a future scenario,
where mediators are both willing and able to effectively
minimize the amount of wirelessly transmitted data in the
Internet of Services. This paper describes how developments
in the Internet of Services start to motivate the automatic
enablement of safe (i.e., always up-to-date) client-side caching
for Web services. It presents our solution for generically
adding this feature to any Web service, and, based on new
experiments, reveals the limits beyond which the approach can
offer significant benefits.

Keywords-Web Services; Caching; Wireless; Adaptation;

I. INTRODUCTION

Undoubtedly, enterprise systems have been the domain
where Web services gained importance, being the most
common technology for implementing Service-oriented Ar-
chitectures (SOA) [13]. However, “everyday apps” might
already be an equally important class of Web service
consumers. Independently of which is the main applica-
tion domain for Web services, the involvement of wireless
devices as Web service consumers is increasing in both
of them. A recent survey of TechTarget [7] positioned
Web service-based mobile apps at the second place in
the category “service-based implementations planned for
the future” (planned by 60% of the questioned develop-
ers/companies), even higher than the “composite application
assembly” (planned by 58%), which has been often named
as the the main potential of SOA [13]. The popularity of
Web services is due to the interoperability and platform-
independence that are achieved through the self-description
of the interfaces and the messages, but it is exactly this self-
description that causes some communication overhead, for
which Web services have been criticised since they appeared
[5]. Enterprise systems may be affected by that only rarely
but the same is not true for wireless devices.

Although some argue that the constraints of mobile
devices (limited bandwidth, CPU, memory, or energy re-
sources) are disappearing due to technological progress, the
gap will not cease to exist. This is indicated by the latest

analyses of future wireless communications. In the book
of Sesia et al. [16] about LTE (Long Term Evolution of
3G mobile networks), five categories of user equipment are
defined, with smartphones being placed only in the second
or third category. According to this categorization, devices
of higher categories will be able to use wireless internet
connection rates up to six times greater than those of lower
categories. Furthermore, the wired connections of the future
will be even faster than that, not to mention the fact that
devices less capable than smartphones, such as sensor nodes,
will be able to consume Web services. So, the big differences
in device capabilities and connection qualities will maintain
the need for adaptation, as the size of the data that is
processed and wirelessly transmitted is growing parallel to
all other technological developments [1].

Therefore, most of the approaches that have appeared for
reducing the overhead of Web service communication focus
on wireless systems or are even specially designed for them.
Client-side caching of Web service responses is a broadly
used technique and many different algorithms and strategies
exist for it. However, all client-side caching algorithms
contain some risk of using information that is not up-to-
date. If we want to be sure that our information is up-to-
date, we have to send a new service request. Due to technical
restrictions that will be explained in Section 3, (XML-based)
Web services always transmit a complete (usually big)
response when they receive a request. Thus, the following
research question arises: “How can Web services exploit the
caching concept, i.e., the reuse of information from former
responses, but with certainty that they are up-to-date?”. A
mediator-based solution for enabling safe client-side caching
of SOAP responses is described in Section 4 and evaluated
in Section 5. To support a better understanding, related work
is explored in Section 2, while the necessary background and
an exact scenario are provided in Section 3.

II. RELATED WORK

Much of the research effort in the area of caching has been
devoted to the development of cache replacement strategies
[14]. Such strategies concern the maintenance of the cache
and their goal is to retain in the cache the entries that
are most likely to be needed again soon, i.e., to maximize

rst
Textfeld
Apostolos Papageorgiou, Marius Schatke, Stefan Schulte, Ralf Steinmetz: Enhancing the Caching of Web Service Responses on Wireless Clients. In: Proceedings of the ninth IEEE International Conference on Web Services (ICWS 2011), July 2011, pages 9-16, ISBN: 978-0-7695-4463-2/11..

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

the cache hit ratio. However, the hit ratio is irrelevant to
the freshness of the cache information. Thus, if the usage
of up-to-date information is of high importance, additional
techniques have to be used in order to update the cache
regularly. Such research is usually general-purposed and can
be applied with small changes in many fields including web
content (WWW caching), database information, and more.
Some specialized Web service caching approaches have also
appeared. These two classes of works (general-purposed
and SOA-related) comprise our research landscape and their
discussion is necessary in order to identify the challenge that
has not yet been successfully addressed.

Although most of the caching approaches are based to
some extent on the classical strategies “Least Recently
Used” (LRU, cf. [9]) and “Least Frequently Used” (LFU,
also cf. [9]), the research interest in the field is still alive.
New approaches are still being developed, exploiting the
characteristics of particular technologies in order to be
more efficient. For example, Jelenković and Radovanović
[8] recently published a replacement policy that has better
performance than LRU and less complexity than LFU in the
case of Zipfian request probabilities and big cache sizes. Cao
[2] has enhanced cache management for mobile computing
systems based on a concept for adaptively prefetching the
content. While the mentioned solutions focus on the cache
hit ratio, the state-of-the-art solution to optimize the cache
freshness is the use of Invalidation Reports (IR) [3]. In
that case, the servers indicate the changed data items to the
clients at intelligently-determined intervals.

One of the most detailed analyses of the peculiarities
of mobile caching for standard, XML-based Web services
was provided by Terry and Ramasubramanian [17]. A
demand for new technical solutions and standards, rather
than algorithmic extensions, has been identified. Most of
the challenges were related to technical enablements, and
not to enhancements of algorithmic efficiency. Thus, the
implicit directives provided by [17] led Elbashir and Deters
[6] to the development of a transparent, cross-application
cache for mobile clients, based on provider-metadata. Later,
Liu and Deters [10] developed a new caching strategy for
Web services, while Schreiber et al. ([15]) evaluated a
middleware-based solution with caching and prefetching for
mobile consumers of standard business processes.

Obviously, caching may be applied in different domains
(databases, WWW content, Web services etc.), may have dif-
ferent goals (reduction of used bandwidth, reduction of user-
perceived latency, reduction of server load, confrontation
with connectivity loss etc.), and may be subject to different
constraints (minimum hit ratio, minimum cache freshness
levels etc.). In the domain of Web services, no existing
solution can achieve the goal of reduction of bandwidth and
user-perceived latency while simultaneously satisfying the
constraint of 100% freshness, i.e., always using up-to-date
responses. The use of cached or prefetched responses with-

out establishing a connection to the server each time leads,
by definition, to a risk of using out-of-date information.
When 100% freshness is desired, caching must simply be
deactivated. The authors of [15] explicitly state that caching
or prefetching of critical responses must be avoided. This
statement is true, unless the responses are verified before use.
This verification concept will be the basis of our solution
and will be explained in the next section, following the
description of our scenario.

III. BACKGROUND AND SCENARIO

A. Mobility Mediation in the Internet of Services

New service description specifications such as USDL
[4], which include the business and operational aspects of
services in addition to their technical details, turn Web ser-
vices into perfectly tradable goods and lead to the so-called
Internet of Services (IoS). In the IoS, a great number of Web
services offered by different providers through global service
marketplaces co-exist with a big set of clients with different
features. As the trading and consumption of the services
will have a loose relationship to their development, limited
mobile clients will often need to use Web services that are
not specially designed for them. For this reason, we are
concerned in our project with the development of a Mobility
Mediation Layer (MML) for the IoS. Complementary to
other tasks (cf. [12]), such as automated inter-application
context-enrichment, the MML supports proxied consumption
of services that are available on the IoS-marketplace in order
to perform overhead reduction for the wireless transmission.
To achieve this, approaches like those analyzed in [11] are
employed, along with further techniques.

Thus, the MML is also concerned with supporting wire-
less clients with the caching of service responses. How
would traditional caching work? Naturally, every client can
store responses for future usage. However, there are three
main reasons why the client may avoid doing it:

• Frequent changes: The content changes so frequently
that client-side caching does not make any sense.

• Criticality: The service call is so critical for the user
that she/he needs to be 100% sure about the validity of
the content, even if the old response has good chances
of being up-to-date.

• Legal issues: Caching may be implicitly or explicitly
stated to be illegal for a particular service.

In a global marketplace, it is difficult/unusual to know about
these features, unless relevant information is included in a
description such as USDL. But even if it is known that one of
the above statements is valid, the only solution is to always
request a new response.

B. The Challenges of Web Service Caching and the Vision
of “HTTP-like” Caching

As already identified shortly after the appearance of
Web service technologies, XML-based Web services present

many technical challenges and cannot be involved in a
caching process similar to the one used for simple Web con-
tent (e.g., pure HTML) [17]. Based on directives provided
by Web servers and supported by Web browsers, simple
Web content is not reloaded each time it is requested, if
the old (cached) content is still valid. The main technical
reason why this mechanism cannot be transferred to the
Web service technology is that Web services do not just
rely on the HTTP-GET method for their communication, but
they implement a rather more complex message exchange in
order to export a diverse set of operations. As a result, Web
services always transmit the complete response when they
receive a request. The only alternative in order to support
a validity check is to manually implement it inside the
logic of each service. A survey among 20 services provided
at www.webservicex.net (the 10 most popular and the 10
most recent) has revealed that not a single one of them has
inherently implemented such a logic. The reason is obvious:
the implementation effort outweighs the benefits, while the
latter may often concern a limited number of clients. But
what about a generic solution that could add this feature to
any Web service in the IoS? Why has research not focused
on it until now and what exactly would it enable?

In fact, the MML is one of the first systems confronted
with a scenario where such a generic “HTTP-like” solution
would be worth its effort, because:

• The MML has access to a huge amount of services over
the global marketplace. Some of them would benefit
from being enhanced with support for safe client-
side caching. However, the MML cannot extend them
directly with such a logic, because it has no access to
their code or their hosting systems.

• The MML target group consists exclusively of wireless
clients, while the service providers are often more
concerned about larger PC-based clients.

• The MML can estimate better which services (or their
clients) would profit more from client-side caching,
because of extra information about cacheability that
it can retrieve from USDL descriptions. However, a
general-purpose mechanism should be able to function
even without this extra information.

• The adaptation of Web services for mobility is the
business model of the MML. Thus, the access either
to the proxies generated by the MML or directly to
the MML software in order to generate own proxies
would be tradable goods in line with the MML business
model.

For these reasons, the MML needs a mechanism which,
when applied on any external Web service, allows the mobile
clients to perform service calls such as the one shown in Fig.
1. Upon receiving a response with a particular code in its
content (for example, 304, as in HTTP and in the example of
Fig. 1), clients would know that their cached data were still

<soap:Envelope>
………
<soap:Body>

<getStreetNoiseStatus xmlns=“………“>
<param1> Ocean Drive </param1>
<param2> 33139 </param1>

</getStreetNoiseStatus>
</soap:Body>
………
</soap:Envelope>

Example SOAP Request

<soap:Envelope>
………
<soap:Body>

<getStreetNoiseStatusResponse xmlns=“………“>
 <incident>

<date> … </date>
<time> … </time>
<log> … </log>
<noiseRecordingInBytes>…………………
………………………………………………………………………………
……………</noiseRecordingInBytes>

 </incident>
 ………
 <incident>
 ………
 </incident>

</getStreetNoiseStatusResponse>
</soap:Body>
………
</soap:Envelope>

Example SOAP Response

<soap:Envelope>
………
<soap:Body>

<getStreetNoiseStatusResponse xmlns=“………“>
<cachingCode> 304 </cachingCode>

</getStreetNoiseStatusResponse>
</soap:Body>
………
</soap:Envelope>

Envisioned next SOAP Response (at cache hit)

Figure 1. Visualization of the vision of “HTTP-like” caching for Web
services

up-to-date. This would not eliminate the need of establishing
a connection, but could significantly reduce the wirelessly
transmitted data. There is no way to be 100% sure of the
validity of the data without establishing a connection each
time that the data is needed, and this “100%” is a fixed
goal of ours. Enabling request/response pairs such as these
shown in Fig. 1 normally requires re-engineering and re-
programming of the Web service. However, the MML needs
a solution which somehow enables the described vision for
any third-party Web service without access to its code and
can be used by the clients without having to bother about any
of the obstacles listed in the previous subsection (frequent
changes, criticality, legal issues). Note that although the
MML-scenario is used to explain our motivation and to
support the technical understanding, the presented solution is
general-purpose and may be very useful in other scenarios,
as well.

IV. THE WEB SERVICE PROXY GENERATOR

The described vision is enabled by a software called Web
Service Proxy Generator (WSPG). In addition to proxies
for caching, the WSPG can also generate other proxies for
overhead reduction (e.g., protocol-transformation, compres-
sion), but the latter are out-of-scope because they are based
more on existing technologies, rather than on new concepts,
techniques and evaluations, as is the case with caching. To
provide a good understanding of the (caching) WSPG, an

Step 1:
WSDL/USDL

 Parsing

Step 2:
Consumer
Generation

Step 3:
Code
Enrichment

Step 4:
Cacheability
Injection

Step 5:
Transparent
Deployment

Figure 2. Workflow for the automatic generation of Web service caching
proxies

Figure 3. Overview of the technical landscape after some proxy genera-
tions

overview of its functionality is given along with a description
of the resulting technical landscape. Then, a cost-benefit
analysis is presented, which can also be used for deciding
for which services the proxy generation is worth its costs.

A. Technical description and proxy generation logic

The WSPG is a module of the MML and should not be
confused with the actual proxies that it generates, which
are then deployed in a Web container of the MML. Fig.
2 shows the workflow with which the WSPG generates
proxies based only on service descriptions, while Fig. 3
shows a possible technical landscape after the generation
of some proxies. As shown in Fig 3, after the generation of
a proxy, the direct communication of the consumer with the
service (long dashed arrow) can be replaced with a proxied
consumption, where the back-end call is performed between
IT systems over fast connections (short direct arrow) and the
wireless call (short dashed arrow) has the option of getting a
very short answer, as envisioned in the previous section and
shown in Fig. 1. In the following, the steps of the proxy
generation are explained. Most descriptions are provided
from an engineering point-of-view, though some helpful
references to details of the java-based implementation are
made. The highlights are to be identified in the conception
of the workflow itself and in the innovative code adjustment
techniques (esp. of Steps 3 and 4), but also in the difficulty
of implementing such a logic generically.

Step 1 - WSDL/USDL Parsing: All the necessary infor-
mation, such as operations, data types, interfaces, ports etc.,
are read from the service description. Because specialized
information is needed, but also because the parser has to be
extensible in order to support USDL, the WSPG does not
use an off-the-shelf service description parser but a new one.

Step 2 - Consumer Generation: This step generates the
part of the proxy that is responsible for calling the original
Web service. For this purpose, the standard tool wsimport is
transparently and automatically used by the WSPG.

Step 3 - Code Enrichment: The code generated by
wsimport is different for each service. Each time, the WSPG
has to dig deep into that code in order to find the points that
have to be enriched. Then, it automatically modifies/adds
code as needed. For example, (i) the addition of extra
parameters in the request/response wrappers and (ii) the
adjustment of the interface classes, which determine what
the -new- WSDL (of the proxy) will look like, are two
important code enrichment actions.

With regard to (i), a request (or response) wrapper is a
class that determines what the SOAP request (or response)
contains. After detecting these classes by analyzing the
annotations of their code, the WSPG inserts the field ifMod-
ifiedSince to the request wrapper and the fields statusCode
and identTag to the response wrapper, always preceded by
the annotations that are necessary for their inclusion in
an XML message and accompanied by the corresponding
getters and setters. This allows for a communication pattern
such as the one presented in Fig. 1 and for a validity check
implemented based on the comparison of ifModifiedSince
parameters with previously saved identTag parameters.

As for (ii), the WSPG has to detect the interface classes
and replace pairs of RequestWrapper / ResponseWrapper
annotations that are included there with the annotation
@javax.jws.soap.SOAPBinding(parameterSytle=ParameterStyle.BARE). This al-
lows for the use of extra parameters (see previous paragraph)
without having to change the Web service signature, i.e.,
without additional wrapper classes for the new service.

Step 4 - Cacheability Injection: Similar code adjust-
ments are also needed for the cacheability injection. How-
ever, this step concerns the actual handling of the cache,
i.e., of the classes that access it or support it. Its logic is
seperate from the previous step, and most of the results of
the code enrichment actions of Step 3 are pre-conditions for
the cacheability injection.

The most interesting actions of the WSPG during this
step are the insertions of appropriate annotations to all the
entities that must be persistable, i.e., are involved in the
storage of request/response pairs, as well as the automatic
generation of two further classes for each operation: A
builder class and a controller class. The first is capable of
storing request/response pairs so that validity checks can be
performed, while the latter can search among the mentioned
pairs and compare new responses with cached ones, in order
to decide whether the new response or just a status code
should be sent back to the wireless client.

Step 5 - Transparent Deployment: In this step, not
only the code that results from the execution of Step 4
has to be packed and deployed but also the file structure
and the configuration files of the Web container that will
host the proxy have to be transparently adjusted, so that the
generated proxy becomes automatically available as a new
Web service.

B. Cost-benefit analysis

The proxy can be generated and deployed in up to a few
seconds. Because the proxy is generated once a priori and
not during a service call, this cost is trivial. However, there
are other reasons why the generation of proxies for all known
services may be impossible or undesirable. For example, the
proxy-hosting platform may have limited capacity (it should
be considered that a huge number of services shall exist on
the IoS), the administrator may want to avoid having too
many open ports or public interfaces because of security
or management issues etc. Therefore, an estimation of the
expected benefit should be supported by the WSPG.

The “total bandwidth saved by a proxy generation” (tbs)
is exemplarily used here as the benefit metric because of
its simplicity. Different metrics can be used, resulting in
different models. If hits are the service calls for which the
cached data can be used (i.e., 304 is returned) and misses
are the service calls for which the complete response must
be re-transmitted, then

tbs = avg bandwidth saving of hit×number of hits
− avg bandwidth loss of miss× number of misses

which, if we define savg as the average response size, r as
the hit ratio (0 ≤ r ≤ 1), s304 as the size of the minimal
response that corresponds with a hit (s304 > “size of the
extra information needed in a proxy response”), and N as the
total number of calls, gives after some simple calculations:

tbs ≥ savg × r ×N − s304 ×N

In order to assign values to these variables for particular
services, the WSPG has two options. First, the expected
values, e.g., for r or savg , could be read from an ex-
tended description such as USDL. Our related suggestions
are being examined from the developers of USDL. Sec-
ond, estimations can be performed based on information
from standard descriptions. For example, the amount of
parameters of an operation, as well as their types and
name lengths, let the WSPG calculate the XML overhead
needed to wrap the actual data in the corresponding re-
sponses. To provide a simplified example, n parameters
(of primitive types) appearing sequentially with an aver-
age name length of l would produce in the response an
overhead of n × (2 × l + 5) characters, according to the
schema <paramName>...</paramName>. Similar but
more complex functions are used for calculating the over-
head for the complete response, helping to estimate savg .

V. PERFORMANCE EVALUATION

In the following, the caching approach enabled by the
WSPG will be thoroughly evaluated regarding performance.
The presented approach can be combined with other over-
head reduction techniques and its usefulness is not restricted
to the cases in which the devices act as SOAP clients.
Actually, in the MML it is currently often combined with

REST-translation plus proxy-side caching, thus eliminating
the external call completely when it is safe. The extra
benefits of the presented approach are notable in these
combined cases, as well. However, all other techniques are
out-of-scope for our evaluation, whose purpose is to measure
what our solution can contribute when used independently.
Thus, all measurements refer to a scenario where devices,
MML, and external services all communicate using SOAP,
without any other optimizations.

A. Metrics and setup

Compared approaches: The presented approach is novel
in that it achieves 100% freshness, so it should be compared
with the only existent approach for achieving this, namely
the direct call of the external Web service without the use of
any cached results. However, the performance of our solution
must also be compared with that of traditional caching, in
order to evaluate what has to be sacrificed for achieving this
absolute freshness. Thus, three approaches will be referred
to, namely DCN (Direct Call, No cache), DCC (Direct Call
with Caching), and PCV (Proxied Call with Validity check
– our approach). The expectations are as follows: DCC
performs best (but risks using old data), while PCV may
complicate the communication compared to DCN (PCV uses
extra data for the validity check and replaces one service call
with two) but it reduces the wirelessly transmitted data in
the case of a hit.

Dependent variables: We focus on two parameters,
which – depending on the scenario – may be most important
to the client: The reduction of the amount of wirelessly
transmitted data or saved bandwidth (sb) and the user-
perceived latency (upl).

Independent variables: The main variables that deter-
mine the performance are the response size (s) of the Web
service and the hit ratio (r). For PCV, the hit ratio is the
probability of the cached response being still up-to-date (see
also IV.B), while for DCC it is, equivalently, the probability
of using a cached response (of course, without knowing if
it is up-to-date). s and r will be varied, while the rest will
be controlled.

Controlled variables: Other parameters that affect the
results are the client device, the network connection, the
structure of Web service responses, and the workload (ser-
vice call pattern). The next subsection explains how these
variables have been chosen/controlled/varied and why.

Environment and simulated aspects: sb is exact and
environment-independent. upl has been measured as re-
sponse time plus parsing time. Parsing times have been
measured on a real device, while response times have been
measured with a simulator in order to ease tests with
different networks (GPRS, UMTS, LTE). However, these
response times have been often validated with sample tests
from the device.

B. Setting the controlled variables

The measurements were done with an iPhone 3G (iOS
4.0.2) device. Less capable devices would obviously favour
our approach even more. Furthermore, even if more capable
devices hd been used, similar conclusions could be reached
by slightly increasing the examined Web service response
sizes, which would be completely realistic. Thus, the men-
tioned device was exemplarily selected because it is popular
and it obviously does not favour our approach.

With regard to the network connection, different results
will be shown, namely for GPRS (currently most used),
UMTS (successor of GPRS in 3G networks), and LTE
(future technology). EDGE and HSDPA perform similarly
to GPRS and UMTS, respectively. WLAN can perform
similarly to LTE, while the cases where WLAN achieves a
performance almost equal to wired networks are obviously
out-of-scope for any adaptation technique.

The experimental Web services have been chosen so that
their response size can be easily varied. However, other ser-
vice features may affect the results, as well. Responses with
different structure may need different parsing times even for
the same response sizes. To reflect this, two different real
Web services have been selected: YellowMap’s POI (Point-
Of-Interest) service1 (S1) has a high parsing complexity,
while a SOAP implementation of Apple’s “iTunes new
releases” service2 (S2) is easy to parse. Fig. 4 shows the
parsing times measured for different response sizes and the
lines of best fit that represent the parsing time as a function
of response size s. The latter functions were calculated to
be approx. 8.6228 × s + 13.849 and 4.632 × s + 22.264
for S1 and S2, respectively, while other Web services would
probably give a line somewhere between them. Each point
depicted in Fig. 4 is the average value after ten repetitions
of the experiment. The deviation has been insignificant.

Different workloads have been tested. However, many
of the results are presented for a scenario where a number
of clients just send the same request twice. The number
of clients is irrelevant because the saved bandwidth and the
user-perceived latency reduction will be presented relatively.
The existence of many clients is only assumed (and simu-
lated) in order to assign all possible values to the cache
hit ratio. More precisely, the whole response is always
fetched at the first request, while the second request leads
either to re-transmission of the response (cache miss) or
to the transmission of our “small” 304 response. Thus, the
enhancements cannot exceed 50%. This generic scenario was
chosen because its triviality increases the comprehensibility
of the results, its results consist again a bad case (minimal
repetition of identical requests) for our approach, and no
other scenarios are commonly accepted as realistic (see also

1http://www.yellowmap.de/Partners/XML/PoiXmlServiceV21.asmx?wsdl
2http://ax.phobos.apple.com.edgesuite.net/WebObjects/MZStore.woa/wpa

/MRSS/newreleases/rss.xml

Figure 4. Examining Web services with regard to their parsing complexity

Figure 5. Saved bandwidth as a function of response size and cache hit
ratio

[15]). This workload will be called 50-50, indicating that
50% of the calls have a chance to –but will not necessarily–
be satisfied by cached results. The performance limits of
the compared approaches will be illustrated independently
of this scenario, as well.

C. Results

The explicit goal of PCV is to increase the saved band-
width (sb). Both response time and parsing time reduction
are actually caused by sb, so that upl depends up to an extent
on sb. The question with regard to sb is for what values
of s and r it becomes significant. Obviously, PCV cannot
save much bandwidth when the exchanged messages are
small and it is not worth it either when the expected cache
hit ratio is low. For the 50-50 workload, Fig. 5 represents
sb in percentage of the originally used bandwidth, i.e., the
bandwidth used in the case of DCN. The results prove that sb
gets significant values early, e.g., ca. 25% of the bandwidth
can be saved for mediocre values of r even when s is smaller
than 10kb. Note that sb is service-independent. The extra
data used by PCV are normally trivial and may only cause
a minimal performance degradation for very small values of

Figure 6. User-perceived latency reduction in the 50-50 workload (maximum reduction < 50%) as a function of response size and cache hit ratio

Figure 7. Absolute reduction of user-perceived latency for S1

s and r (under the lowest delimitating line in Fig. 5). In all
other cases, the bandwidth savings are positive.

Fig. 6 shows the reduction of upl with a similar repre-
sentation, i.e., as a percentage of the values of upl without
caching (DCN). As expected, the reduction of upl is big-
ger for S1. Interesting is the fact that, depending on the
relationship between parsing times and response times, the
percentage of upl reduction may be similar for LTE and
UMTS (compare S1-UMTS with S1-LTE in Fig. 6). This is
due to the fact that the parsing time sometimes dominates
over response time in the overall upl, so that the connection
becomes less important. The absolute upl reduction is, of
course, bigger for UMTS, but the same does not necessarily
hold when examining the relative reduction in percentage.
Most important is the fact that upl presents significant

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
c
c
u

m
u

la
te

d
 u

s
e

d
 b

a
n

d
w

id
th

 (
k
B

)

Web service call index

PCV-WC
DCN
PCV
DCC

PCV-BC

Figure 8. Illustration of the limits of the different caching approaches

reductions even though the call is proxied and the backend
(wired) call is, naturally, also included in the measurements.
Fig. 7 shows exemplarily and scenario-independently some
absolute values for the upl reduction when S1 is called
with PCV (compared to DCN). A logarithmic scale is used
because the reduction is much bigger for a GPRS network.
Nevertheless, the upl reduction is significant for UMTS and
LTE, as well. Again, each measurement has been repeated
ten times and only average values are presented.

DCC has not been involved in the previous comparisons
because the fact that no service call actually happens at
a cache hit makes it senseless to talk about upl and lets
the reader easily assume how the results would look like.
However, in order to illustrate the spectrum between the
performances of DCC and DCN where PCV is expected to

lie, Fig. 8 shows the used bandwidth for all three approaches
in a particular setting. The goal here is a behaviour analysis,
while the exact values are less important. Thus, Fig. 8 shows
the accumulated bandwidth used by DCN, DCC and PCV for
15 periodical identical requests of a service whose response
size is equal to 40kB. DCC uses for its cached objects a
Time-To-Live (TTL) such that the objects expire after a
time that corresponds with 3 calls, so that the 4th call has
to fetch a new response. For PCV, the Worst Case (PCV-WC:
no response is identical to a previous one) and the Best Case
(PCV-BC: the response never changes) are drawn, showing
the limits of the approach. As can be seen, for TTL <∞,
PCV can even achieve better results than DCC. However,
this can only happen in cases in which the responses change
rarely and, in such cases, DCC would not use many outdated
information, anyway. With regard to the Worst Case, it is
obvious that the difference to DCN is trivial. In addition to
these limits, another case of PCV is depicted, where its hits
and misses happen randomly (probability = 0.5). This last
case achieves a good bandwidth usage, while the crosses
denote calls for which DCC would have used outdated data.
Although it would be interesting to examine where the PCV
line appears in real scenarios, this issue is left open because
a general view was desired and because no real data that are
commonly accepted as realistic have been available.

The response sizes used throughout the evaluation were
realistic and not very big. Both test services can give re-
sponse sizes > 500kB, while other Web services cause even
“heavier” communication. Frequent usage of such services
causes significant amounts of data to be exchanged.

VI. SUMMARY AND OUTLOOK

After discussing why research for the automatic enable-
ment of Web service caching with 100% freshness is now
motivated by developments of the IoS, a solution has been
presented for adding this feature to third-party Web services
based on the idea of validity checks. It was shown that
this solution can enhance the performance of wireless Web
service calls, has unique features and can be considered as
the most appropriate in particular scenarios.

Future experiments are planned in two main directions:
Firstly, the solution should be evaluated for real Web service
call traces in order to examine its performance in more real-
istic scenarios. Secondly, the reduction of the used badwidth
is not necessarily the most important factor regarding energy
consumption of mobile phones, which depends rather more
on the time during which the device remains at a “high
power status”. Thus, the investigation of the circumstances
under which our solution can also help reduce energy
consumption is an important future goal.

VII. ACKNOWLEDGEMENTS

This work was funded in part by means of the German
Federal Ministry of Economy and Technology under the pro-

motional reference 01MQ09016 (Green Mobility Project).
The authors take the responsibility for the contents. Many
thanks to Philippe-Henri Marcy and Mouhannad Akhkobek
for participating in the WSPG implementation, as well as to
the authors of [15] for the knowledge exchange.

REFERENCES

[1] C. Canali, M. Colajanni, and R. Lancellotti. Performance
Evolution of Mobile Web-based Services. IEEE Internet
Computing, 13(2):60–68, 2009.

[2] G. Cao. Proactive Power-Aware Cache Management for Mo-
bile Computing Systems. IEEE Transactions on Computers,
51(6):608–621, 2002.

[3] J. Cao, Y. Zhang, G. Cao, and L. Xie. Data Consistency
for Cooperative Caching in Mobile Environments. IEEE
Computer, 40(4):60–66, 2007.

[4] J. Cardoso, A. Barros, N. May, and U. Kylau. Towards a
Unified Service Description Language for the Internet of Ser-
vices: Requirements and First Developments. In International
Conference on Services Computing (SCC ’10), pages 602–
609. IEEE, 2010.

[5] D. Davis and M. Parashar. Latency Performance of SOAP
Implementations. In IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID ’02), pages 407–
412. IEEE, 2002.

[6] K. Elbashir and R. Deters. Transparent Caching for Nomadic
WS Clients. In IEEE International Conference on Web
Services (ICWS ’05), pages 177–184. IEEE, 2005.

[7] C. Frye. SOA Growth and Change. Available online at
SearchSOA.com, March 2009. Last visited: January 2010.

[8] P. Jelencović and A. Radovanović. The Persistent-Access-
Caching Algorithm. Random Structures and Algorithms,
33(2):219–251, 2008.

[9] R. Karedla, S. Love, and B. Wherry. Caching Strategies
to Improve Disk System Performance. IEEE Computer,
27(3):38–46, 1994.

[10] X. Liu and R. Deters. An Efficient Dual Caching Strategy for
Web Service-Enabled PDAs. In ACM Symposium on Applied
Computing (SAC ’07), pages 788–794. ACM, 2007.

[11] A. Papageorgiou, J. Blendin, A. Miede, J. Eckert, and
R. Steinmetz. Study and Comparison of Adaptation Mecha-
nisms for Performance Enhancements of Mobile Web Service
Consumption. In IEEE World Congress on Services (SER-
VICES ’10), pages 667–670. IEEE, 2010.

[12] A. Papageorgiou, B. Leferink, J. Eckert, N. Repp, and
R. Steinmetz. Bridging the Gaps Towards Structured Mobile
SOA. In The 7th International Conference on Advances in
Mobile Computing and Multimedia (MoMM ’09), pages 288–
294. OCG - ACM, 2009.

[13] M. P. Papazoglou and W.-J. Heuvel. Service Oriented Archi-
tectures: Approaches, Technologies and Research Issues. The
VLDB Journal, 16(3):389–415, 2007.

[14] S. Podlipnig and L. Böszörmenyi. A Survey of Web
Cache Replacement Strategies. ACM Computing Surveys,
35(4):331–373, 2003.

[15] D. Schreiber, E. Aitenbichler, A. Göb, and M. Mühlhäuser.
Reducing User Perceived Latency in Mobile Processes. In
IEEE International Conference on Web Services (ICWS ’10),
pages 235–242. IEEE, 2010.

[16] S. Sesia, I. Toufik, and M. Baker. LTE, The UMTS Long Term
Evolution: From Theory to Practice. Wiley Publishing, 2009.

[17] D. Terry and V. Ramasubramanian. Caching XML Web
Services for Mobility. ACM Queue, 1(3):70–78, 2003.

