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Abstract- Quality of Service (QoS) is an area with high 
acadernic curiosity. Our long-term goal is to develop 
a unified mathematical model. This paper is a first 
step towards this ambitious goal. The most widespread 
models for network QoS are Network Calculus and 
Queueing Theory. While the strength of Queueing 
Theory b its proven appiicability to a wide area of 
problems, Network Calculus can offer performance 
yarantees. We analyse by simulation the benefit of 
bringing the two of them together, i.e., bounding the 
stochastic processes of a queue with methods from Net- 
work Calculus. A basic result from Network Calculus 
is that enforcing traffic shaping and service curves 
bounds the buffer. This leads to denying buffer states 
in queues with inhite buffer. Specifically, we analyse 
what happens with the probability mass of such buffer 
states. Finally, we discuss Iiow our results can be used 
for dimensioning buffers for multiplexed traffic. 

A. Motivation 

Despite recent doubts and frustrations, Quality of 
Service (QoS) in the Intemet remains a much debated 
research issue. QoS research can be divided into 
two classes: administrative vs. technical issues. The 
former includes aspects such as pricing, accounting, 
security and the interconnection between service 
providers. Technical issues are the actual manipu- 
lation of the data packets, such as traffic regulation, 
scheduling and admission control algorithms. In the 
context of technical issues, most research to date has 
gone into developing and optimising new architec- 
tures and algorithms. An Open research issue, which 
is relatively underexposed, is a unified theoretical 
model for QoS. The two front runner models for 
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QoS in packet networks undoubtedly are Queueing 
Theory and Network Calculus. We assume that in 
future there will be some kind of traffic shaping and 
policing in the Internet since this is essential to offer 
any kind of service guarantees, be they deterministic 
or statistical. We believe the path to a unified model 
for QoS consists of bringing Network Calculus and 
Queueing Theory together. In this paper, we take 
the first step by conducting a simulative approach 
to analyse the impact of Network Calculus bounds 
on Queueing Theory results. This could be viewed 
as a Network Calculus-assisted Queueing Theory. 

The remainder of this paper is organised as follows. 
In the following subsections we review some basic 
results from Network Calculus and discuss the re- 
lated work. In section I1 we introduce the System 
model. We then conduct the simulations and discuss 
them in section 111. In section IV the simulation 
results are given. Finally, we conclude and give an 
outlook. 

B. Background 

While we restrict the discussion of Queueing Theory 
to a few general remarks, we recapitulate the defini- 
tions and theorems of Network Calculus used in this 
paper in this subsection. 

In Queueing Theory, generally. the average quantities 
in an equilibrium state are considered. However, 
obtaining a rich Set of tractable results Comes at the 
cost of having to restrict to Markovian (memoryless) 
traffic. Beginning with [I)], it has been shown several 
times that this is not necessarily a realistic assump- 
tion for Internet traffic. Another drawback which 
could be mentioned is that there are few results 
on the transient analysis of queueing Systems. We 
assume that the reader is familiar with Queueing 



Theory and refer to [7] as an excellent book. 

Network Calculus [6] is a theory for deterministic 
queueing Systems. The underlying idea is that sewice 
guarantees can be achieved by regulating the traffic 
and deterministic scheduling. Analogous to conven- 
tional system theory, a system consists of an input, 
a transfer function and an output. The input, mostly 
referred to as arrival curve, is an abstraction of the 
traffic regulation, and the transfer function, mostly 
referred to as service curve, is an abstraction of the 
scheduling. The difference to conventional system 
theory is that the dioid {R U oo,min, +) is used. 
i.e., that addition and multiplication are replaced by 
minimum and addition, respectively. This is often 
referred to as Min-plus Algebra. The reason to switch 
to Min-plus Algebra is that this way linearity is pre- 
served. In the following, we recapitulate the results 
from Network Calculus which are relevant for this 
Paper. They can all be found in the excellent text 
of Le Boudec and Thiran [3]. As in conventional 
systein theory, a key operation in Network Calculus 
is the min-plus convolution. Note that the infimum 
(inf) is similar to the minimum (min), with the sole 
difference that it does not have to be in the set. The 
Same applies for the supremum (sup) and maxiinum 
(max). The min-plus convolution of f and g is the 
function 

The traffic bound is given by an arrival curve, which 
denotes the largest amount of traffic allowed to be 
sent in a given time interval. 

Definition I (Arrival Curve): Given a wide-sense 
increasing function a defined for t > 0, we say that 
a flow R is constrained by a iff for all s 5 t  

We say that R has a as an anival curve, or also that 
R is a-smooth. 

The arrival curve can be viewed as an abstraction 
of the regulation algorithm. The most prominent 
example for a traffic regulation algorithm is the 
Leaky Bucket [14], which is often also referred to 
as Token Bucket. Its arrival curve is given by the 
following equation. 

a ( t )  = b + rt for t  > 0 (2) 

Therefore, no more than b data units can be sent at 
once and the long-term rate is r. 

A greedy shaper with the shaping curve a optimally 
delays packets, so that the output has a as an arrival 
curve, and sends all bits as soon as possible. 

Theorem 1 (Greedy Shaper): Consider a greedy 
shaper with shaping curve a, which is sub-additive 
and ~ ( 0 )  = 0. Assume that the shaper buffer is 

Fig. I .  Backlog 

empty at time 0, and that it is large enough so that 
there is no data loss. For an input flow R, the output 
R0 is given by 

We ornit the proof as it can be found in [3]. 

The service curve is an abstraction of the scheduling. 

Definition 2 (Service Curve): Consider a system S 
and a flow through S with input and output functions 
R and RO, respectively. We say that S offers to the 
flow a service curve ß if and only if ß E F and 
R0 2 R @ ß .  

Due to its application in the Integrated Services 
context, a prominent service curve is the rate-latency 
function. 

De$nition 3 (Rate-latency functions 

~ R , T  = R[t-T]+ = { f ( t - T )  otherwise i f t > T  (4) 

for some R > 0 (the 'rate') and T 2 0 (the 'delay'). 

We next introduce the Backlog Bound, which is one 
of the three basic bounds of Network Calculus. 

Theorem 2 (Backlog Bound): Assume a flow, con- 
strained by arrival curve a. traverses a system that 
offers a service curve ß. The backlog R(t) - RO(t)  
for all t  satisfies: 

We omit the proof as it can also be found in [3]. 

On a final note, a drawback of Network Calculus 
is that it deals with the worst-case behavior of 
traffic flows, which leads to severe under-utilisation 
in realistic environments. 

C. Related Work 

There are several approaches to extend Network Cal- 
culus into a stochastic setting. Bounds for the mul- 
tiplexing of flows are obtained by utilizing methods 
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such as the law of large numbers and the Chernoff 
Bound. Excellent overviews for this topic are [8] 
and [5]. 

A framework for statistically aggregating flows is 
given in [ l  11. However, there the focus is on reducing 
state complexity in the network. 

Liebeherr et al. [I01 introduced the concept of Sta- 
tistical Network Calculus. In the first incarnation this 
is based on the assumption that an arrival curve does 
not deterministically bound the incoming traffic but 
bouiids it only with a certain probability. Similarly, 
a statistical service curve [4] is a sewice curve that 
only offers the service with a certain probability. Sta- 
tistical Network Calculus is the most closely related 
work to our work. It can be Seen as an approach 
to the Same goal from a different angle. To recall, 
the goal is to obtain a model rnore strict than av- 
erage behavior but looser than worst-case. Statistical 
Network Calculus has Network Calculus as a starting 
point and enhances it with probabilistic methods. We 
Start with Queueing Theory, i.e. a purely probabilistic 
model, and enhance it with methods from Network 
Calculus. 

Schmitt [I21 compares Network Calculus and 
Queueing Theory results for priority queueing. Fur- 
thermore, based on the Network Calculus results. 
performance bounds can be obtained by enforcing 
admission control in each priority class [13]. 

In [I] a shaper is derived that ensures that the traf- 
fic has better stochastic properties than a reference 
process, for which they use the Poisson process. 
In contrast, our goal is not to derive a shaper, but 
to assume a Network Calculus based shaper being 
present and analysing its effect. 

To our knowledge there exists no work which is 
closely related enough to allow a comparison of our 
numbers. The closest to an analytical solution of this 
problem can be found in the book by Baccelli et 
al. [2], and there especially the chapter on Stochastic 
Event Graphs. 

In this section we introduce the System model. 
Figure 2 shows a traditional queue, consisting of 
a buffer and server. The input process is given 
by x( t )  and the output process by y(t). For the 
MIM11 case the input and output processes are 
both Poisson processes. We now introduce the basic 

Network Calculus elements to the queue. These are a 
shaper to manipulate the input process and a service 
curve enforcer to manipulate the sewice times. This 
is depicted in Figure 3. According to Equation 3, 
xl( t)  is obtained by the min-plus convoluiton of 
xl( t)  and the shaping curve, for which we use the 
Leaky Bucket from Equation 2. In other words, the 
shaper works as follows. When a packet arrives at the 
shaper, the shaper checks whether there are enough 
tokens in the shaper - without loss of generality we 
assume all packets to be of size 1 throughout this 
paper - to adrnit the packet. If that is the case, then 
the packet traverses the shaper infinitely fast and 
arrives at the queue. If there are not enough tokens 
to admit the packet, the packet is held in the shaper 
until enough tokens have been collected. Therefore, 
the shaper theoretically has an infinitely large buffer. 
Since packets are delayed, the shaper might decrease 
the rate of the process. We define a new arrival rate 

X' = 
# of packets 

duration of observation 
Note that in our model the shaper is only a con- 
ceptual model rather than an actual device hold- 
ing packets. We assume that a higher layer such 
as the application layer ensures that all traffic is 
conforrn. When a packet arrives at the queue it 
checks whether the server is available. If this is the 
case, it receives service iinmediately, otherwise it 
waits in a queue until the server becomes available. 
Upon arrival of a packet, the server assigns it an 
exponentially distributed service time. The service 
curve enforcer then checks whether the service time 
is less or equal to the maximum sewice time allowed 
by the sewice curve. If this is the case, the service 
time remains untouched, else the service time is Set 
to the maximum allowed service time. The service 
curve enforcer therefore increases the server rate. 
Accordingly, we define a new server rate 

= 1 
mean of the actual server rates 

Note that while the shaper can only delay packets, 
the service curve enforcer releases packets ahead 
of schedule. Therefore, its placement behind the 
server seems counter-intuitive as the transfer function 
mapping yl(t) to y(t) is non-causal. As shaper we 
use the Token Bucket. Our service curve of choice is 
the rate-latency curve from Definition 3, which we 
refer to as RLC hereafter. 

We call packets, which are delayed by the shaper, 
shaper rnanipulated packets. Accordingly, we call 



packets, which are served earlier due to the service 
curve, server manipulated packets. 

Therefore, the parameters of our system model are 
(X, p, b, T ,  L ,  R ) ,  which denote the arrival rate, ser- 
vice rate, leaky bucket depth, leaky bucket rate, 
latency of the RLC and rate of the RLC, respectively. 

The analysis of the shaper manipulation itself is 
tedious. Many favourable properties, such as memo- 
rylessness and the stationarity, are lost by shaping 
the Poisson process. It is obvious that the server 
manipulation is even less tractable, as it depends 
on the state of the queue. Therefore, a mathematical 
analysis of this problem is beyond the scope of this 
Paper. 

Qualitatively, we expect the following behaviour in 
the simulations of the bounded queue. Trivially, the 
probability of the states higher than the Backlog 
Bound from Theorem 2 will be 0. The probability 
of state 0 will remain unchanged in the bounded 
queue. The reason for this is that the shaper and the 
service curve enforcer are both inactive when the 
system is empty. There will be a strong increase in 
probability mass at the state 1, due to the shaper. The 
shaper causes the inter-arrival times of packets at the 
queue to be more equally distributed than in a pure 
exponential distribution. Note that asymptotically, 
i.e., when r  « X, all inter-arrival times are $ 
after the initial tokens in the bucket have emptied. 
Both, the traffic shaper as well as the service curve 
enforcer, cause the probability mass to shift towards 
the lower states. Therefore, the higher states of the 
bounded queue will be less probable than the Same 
states of the M/M/1 queue. 

As parameters of the simulation we use 
( X , p ,  b, T ,  L, R )  = ( 2 , 3 , 6 , 2 , 1 , 2 )  Using Theorem 2 
we obtain that the maximum buffer state is 7 .  
There are 5000 arrivals per run and the simulation 
is repeated 30 times. The values are depicted in 
Figure 4. 

The average number of input and shaper manipulated 
packets are 4933 and 276.2, respectively. As a ref- 
erence, the state probabilities of the corresponding 
MIM11 Queue, i.e., with p' = 3 = = 0.58, are 
given. Since the difference to the MIMIIIN queue 
is marginal, we can neglect it. What is striking 
here is that the probabilities of the high states of 
the Bounded Queue are lower than of those states 
in the MIM11 case. The probability mass of the 
higher states is neither distributed evenly among 
the allowed states, nor is it collected in the last 
allowed state. This result c o n h s  our assumptions, 
that by putting structure in form of input shaping 
and service curve enforcement, the behavior of the 
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queue in the relevant buffer states becomes better. 
Being interested in the state 5, we find that the 
queue has a better behavior than a MIMII queue with 
Pmatch = 0.51. This gives us an adjustment factor 

We now analyse several Parameter Sets in order to 
get an insight on the adjustment factor. We hold the 
parameters X = g and p  = 1  and set the Token 
Bucket rate equal to the RLC rate r  = R  = 1. In 
order to compare the buffer occupancy distributions 
in a fair manner, we ensure that the Backlog Bound 
is constant at 7. We therefore Set b = 1 , 2 , .  . . ,7  and 
accordingly L  = 7 , 6 ,  . . . , l .  The buffer occupancy 
density functions are shown in Figure 5. In Fig- 
ure 6 some interesting values are shown. These are 
P', X', 1.1' and pmatch. As reference, X and p  are also 
shown. It can be Seen that when the bucket depth is 
low, and consequently the latency is high, p' is close 
to p. The Same applies to X' vice versa. In Figure 7 
the adjustment factor is plotted. It can be Seen that 
it is lowest for the endpoints. This implies that 
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tight shaping or tight service curve enforcement have 
a stronger influence on the adjustment factor than 
some shaping and some service curve enforcement 
combined. The influence of tight shaping is stronger 
than that of tight service curve enforcement. 

IV. CONCLUSION 

In this paper we analyse the impact of traffic shaping 
and service curve enforcement on a MIM11 queue. 
We show how the probability mass of the higher 
buffer states of the MIM11 queue distributes over 
the lower buffer states. We show that the probability 
mass of the bounded queue strongly shifts towards 
the lower buffer states. The higher states of the 
bounded queue are less probable than the Same states 
in the MIM11 queue. This is a key contribution of 
this paper as it can be utilised when dimensioning 
aggregate buffers for multiplexed flows. With the 
knowledge of the queue being bounded, a lower 
utilisation than the reference MIM11 queue can be 
used. Unfortunately, it was not possible to quantify 
this effect, due to the complexity of the System. This 
will be subject of future work. Another obvious issue 

is an analytical solution to this problem. Further, 
as the Parameter space is large, arbitrarily many 
simulations can be mn. An especially interesting 
issue would be the impact of different traffic shapers, 
such as a TSpec, and different service curves. Finally, 
the setting can be expanded to Queueing Networks, 
starting with a simple concatenation of queues. There 
the question arises how simulating the network with 
a concatenation of nodes, each enforcing a service 
curve, compares to assuming one node whch offers 
the network service curve. A long shot is considenng 
complex networks with feedback to model flow 
control. 
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