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Aggregation 0f Heterogeneous tees pmvided on a per-flow basis are extremely desirable. On the other hand, from the network's penpective, the 
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Abstract: Aggregation of data flows has two majoradvantages. One is the reduction of state complexity within the 

network, the other is the saving of resources by statistical multiplexing between the aggregated flows. In this Paper, 

we show a simple, yet effective scheme to aggregate real-time flows which require a statistical guarantee on experi- 

currently broadly accepted general wisdom is that per-flow trafiic manapment does not scale up to the dimensions 

required in backbone networks of large-scale intemetworks as the Intemet. A straightfonvard solution to this dilemma 

is to aggregaie flows within the network in a controlled fashion such thai the individual guarantees can still be met, 

which allows to keep state information within the backbone only for the aggregates. In the case of statistically guar- 

anteed QoS. which for many of the above mentioned applications and many usage contexts is sufiicient. there is a fur- 

ther incentive to aggregate flows due to the potential to save resources by statistically multiplexing the individual 

flows. 

It is imponant to note here the difference between aggregation and multiplering. By aggregation we denote the 

grouping of flows over a sub-network in which only aggregates can be handled. By multiplexing the local aspea of 

enced loss and a deterministic guarantee on the maximum delay on an individual basis. The focus of our aggregation sending several flows over one outgoing link is generally described. Thus, aggregation can be considered as multi- 

scheme is on the reduction of state complexity. Therefore. we hy to maximize the number of flows to be aggrcgated 

by the consideration of hetemgeneous flows at the cost of maximally saving resources which would require homoge- 

nous flows 10 be aggregated. Our approach is to fint gain insight on the buffer occupancy distribution of a single flow. 

In practice, the buffer occupancy distribution function of a real-time flow can be considered as monotonic decreasing. 

We show that the uniform distribution, which is analytically very tractable. is always morepessimisiic than a monot- 

onic decreasing distribution. This allows us to aggregate hererogeneous flows by taking the uniform distribution as a 

wont-case bound for the individual flows' buffer disuibutions and exploiting its statistical pmpenies to save buffer 

plexing over a link, which represents an aggregate's path over the subnetwork, and which can be dimensioned dynam- 

ically. Seemingly insignificant, the difference between multiplexing and aggregation expresses iiself in the different 

goals they induce: while multipkxing only targets the efiicient use ofresources on a link, aggregation has as an addi- 

tional goal to rcduce the number of aggregates in o d e r  to improve on the sub-networks' scalability. As we will see. 

these w o  goals of aggregation need to be traded offagainst each other. In pariicular, many good multiplexing schemes 

only wnsider homogeneous flows (with respeci io delay, loss, and bandwidth requirements) since this restriction al- 

lows for more efiicient resource usage. Yet, from an aggregation penpective this may be prohibitive due to restric- 

resources by statistical multiplexing between the individual flows of the aggregate. Finally. we discuss at which rate iions on the number of aggregaies ihat can be supponed by a sub-network. Thus our fint-order goal is to reduce the 

such an aggregate of heterogeneous flows has to be served while maintaining the statistical guarantees given to indi- 

vidual flows. 
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number of aggregates by allowing the aggregation of hererogeneous flows and only as a second-oder goal do we hy 

to save resources for the aggregate. 

While there is a lot of basic work on controlled multiplexing to achieve statistical QoS guarantees for individual 

flows (which is discussed as related work in the next section). there is only linle work on how to aggregate statistically 

1 Introduction guaranteed flows [I]. In panicular. [ I ]  focused on a class-based form of aggregation which still required the subnet- 

1.1 Motivation 

Many new applications especially in the field of multimedia require Qualiry ofService (QoS) assurances in order to 

work to reaci io each individual flow request. In our work, we rather extend the topological aggregation scheme inves- 

tigated for deterministic sewices in [2]. This scheme is based on aggregation behveen flows sharing the same ingress 

satisfy usen' expectations. Examples of such applications are interactive smaming media applications, IP telephony, and egress nodes for travenal over the sub-network 

or networked games to name only a few. They can usually be considered as sofi real-time applications with fairly strin- 

gent delay requirements, yet more relaxed loss requirements. From the penpective of these applications QoS guaran- 



1.2 Related Work 

Knightly and Shroff [3] give a very g w d  and comprehensive overview and evaluation of different admission control 

methods for statistical QoS provision. In the following, we briefly review the most important schemes following their 

classification: 

Average I peak rate combinatorlcs: In these models ([4], [5]) a source is described as an odoff source. In [SI. the 

admission w n w l  is done by computing the distribution of the aggregate arrivals at a bufferless multiplexer. in [4] by 

computing the probability for a delay-bound violation for an EDF (Earliest Deadline First) scheduler. 

Additive effective bandwidths: Another way to conduct statistical multiplexing ([6], [7], [8], [9]) is to assign each 

flow a bandwidth between its average rate and its peak rate. This is referred to as eficrive bandwidth and is a function 

of the required loss probability and the panicular flow's statistical propenies (e.g., autocorrelation function, or peak 

and average rate together with mean bunt duration). 

Engineering the loss curve: The loss nrrw is the relationship between loss probability and buffer size. In this a p  

proach finding a model for this relationship that best resembles experimental results is targeted. In [IO], the loss curve 

is modelled as P(S> z )  - e-Kz for large buffer sizes and with the histogram model from [I I] for small buffer sizes. 

This is referred to as hybridscheme. 

Maximum variance (MV) approaches: MV approaches [I21 are based on the observation that aggrcgate arrivals at 

a node are Gaussian. This is a reasonable assumption if the number of flows to be aggrcgated is large. 

[3] evaluates the most prominent schemes with a collection of MPEG haces from [I 31 and Markov modulated odoff  

sources. Only strictly homogenous sources are evaluated here. which is typical for such a shidy. 

1.3 Outline 

In the next section, we investigate the buffer occupancy distribution function for regulated real-time flows. We argue 

that their density is typically monotonic decreasing by showing empirically that for realistically shaped wffic sources 

with a stringent delay consüaint the buffer histogram in a simple single-sewer queuing System exhibits the corre- 

sponding shape. Motivated by this observation, we then propose in Section 3 the uniform distribution as a wont-case 

buffer occupancy distribution and then show that it really can be wnsidered as a worstcase distribution for monotonic 

decreasing density functions. In Section 4 this result is then exploited in order to dimension the shared buffer of an 

aggregate of heterogeneous flows via a Chernoff bound on the individual flow's buffer occupancy distribution. While 

this allows 10 reduce the buffer requirements for the aggregate flow (apan from our first-level goal of reducing the 

state complexity within the sub-nehvork I backbone), we also briefly discuss in Section 5 how this can also lead to a 

reduction of the rate for the aggregate. Section 6 then concludes our work and outlines areas of future research. 

2 The Buffer Occupancy Distribution for a Single Flow 

Our method is to determine the buffer distribution function for a single flow and infer from it the behaviour of a shared 

buffer for an aggregate. The buffer occupancy of a single flow depends on the properties of the source and the server. 

As mentioned above. our main goal is to provide a method which allows to aggregate as many flows as possible. 

Of coune, the more different the flows are allowed to be. the more of them can be aggregated. A flow is characterized 

by its average rate, buffer space, delay and loss rate. We only rcquire the maximum delay and the packet loss to be 

approximately similar. This is a fuuy requirement which emerges since, aRer the aggregalion, all flows are treated the 

Same. In o d e r  to avoid unwntrolled QoS violations, we have to assign each flow the tightest delay and smallest loss 

rate that appear among all flows that are to be aggregated. Ultimately, it Comes down to an optimization problem, how 

many aggregaces are required given a Set of flows with individual Parameters. While this is an interesting issue, it is 

not subject of this Paper, buf we deal with the preceding step of how to dimension the resource allocation for an ag- 

gregate here. 

In order to aggregate heterogenmus flows, we need a description of a single flow that behaves wone than each one 

of ihe flows being aggregated. We refer to this as wont-case distribution. It is our s w n g  belief that for realistic delay 

constrained and regulated flows the buffer occupancy distribution is monotonic decreasing which makes the uniform 

distribution appropriate for this purpose as we will show in the next section. To make our point, we empirically show 

that the buffer occupancy distribution of a flow with the following properties is monotonic decreasing: 

I .  It is (B.r) constrained. 

2. The server rate is consiant and higher than the average amval rate. 

3. It has a fixed delay requirement. 

4. A packn that is dropped is not re-sent. 

A typical example of a flow with these properties is a real-time MPEG flow. We exemplarily show such a buffer oc- 

cupancy. From the wllection in [I31 the movie trace tenn-./PB is taken, which was enwded using the UC Berkeley 

MPEG-I encoder [14]. The trace is given in the form of a list of 40.000 frame sizes ai. The largest frame size is 

9.9 Kbyte. The next step is to fit a (Er) token bucket on it so that no data is lost. The average frame size E{aJ is 



1.36 Kbyte. The minimum service rate is E(aJ/&. where At is 40 ms, the time behveen hvo frames. With 25 frames 

per second. the minimum average seMce rate is 

2 5 E I A O  - R„, = - - 
sec sec 

Simulations show that using this service rate requires a buffer of size 1 / 0 0  Kbyre in a lossless System, which causes a 

wont-case delay of 

This, of Course, is not acceptable and we will target a delay d o f  less than 100 ms. 

Next we fit a token bucket to the flow. There are many techniques to determine the Parameters for a token bucket 

1151. We do not go into detail here, but instead use a simple algorithm. In accordance with the form of the trace. we 

model the bufferas a discrete pmcess where 

b(k) is the cumnt buffer occupancy. a(k) is the frame size and CF) is the server rate per frame. lncorporating that it is 

bounded by 0 and B„ it becomes 

Now we have to determine feasible values for B and r. Recall the relationship behveen buffer sue, server rate and 

maximum delay. 

The buffer occupancy is calculated as follows. We set the buffer size to B = mar{aJ and fw the delay d = 96 ms, which 

is equivalent to 2.4 m. This leads to a rate of 104 Kbytds. The buffer variable is initially set to 0 and then iteratively 

calculated with Eq. 4. The resulting buffer is shown in Figure I.  

In Figure 2 the empirical buffer occupancy density function in form of a histogram with 25 bins is depicted. Note 

that the fint bin is lefl out of the plot. This is because the probability that the buffer is empty is 0.95. which would ruin 

the scale. The movie traces movie2.1PB and simpsons.lPB from the Same library are included as well. 

As can be seen, apart fmm a few statistical fluctuations the functions are rapidly decreasing. Note that the ordinate 

is scaled logarithmically. Figures 3 and 4 are analogous with d = 8 0  ms. 

Fipre I: Buffer for d =  96 ms. Fipm 2: Buffa occupancy density function for d = 
96111s. 

Fipm 3: Buffer for d =  80 ms. R p r e  4: Buffer occupancy density function for d = 

80 ms. 

Here, it can also be Seen that the increased rate causes the density function to decrease faster. In this panicular 

trace, the buffer never fills beyond half. This implies that rate and buffer could be optimized but that is not subject of 

this paper 

Our objective of this section has been to show that for realistic real-time flows. the buffer occupancy density func- 

tion is monotonic decreasing. We have shown it for a panicular case of an MPEG trace. It seems intuitive that this is 

the case for any flow where the server rate is considerably higher than the arrival rate. If the flow is self-similar, we 

notice that there are long stretches which have a rate higher than the average rate. To ensure a decent real-time trans- 

mission, the server rate has to be much higher than the average rate. which results in the buffer being rather emply 

most of the time. 



3 Worst-Case Buffer Occupancy Distribution 

In this section we will prove that 10 assume uniform distnbution is always morepessimisric than any one that is mo- 

notonic decreasing. A distribution that is more pessimistic than the actual one allows us to aggregate a large number 

of heterogenenus flows without worrying about the Parameters of the individual dismbutions. 

Let/„(x) and/,?(x) be two different density funnions for the buffer occupancy. The distribution function that the 

buffer is filled with B or less uniu. i.e. that P(;Y < B). is then given by 

N- l 

C x ,  = I 
1 - 0  

1 

The dismbution is then given by Xk = C xi 
i .. 0 

Now we show that Uk is more pessimistic than Xb In that case. according to Eq. 7, 

which becomes 

(Eq. 12) 

This we will prove by conhadiction. Let us first look at the first points, Xn and Un 

for i = 1.2; and with B„ h i n g  the maximum buffer size. 

Definition I: A buffer occupancy distribution FzI(x) is morepessimisric than ifthe probability that the buffer 

overfiows given Fz,(xJ is always greater or equal than given F&), i.e., when Now let us assume that 

xo = l-,<l 
N N  

where E > 0. Since xk >X, +, , in this case the sum over all x is upper bounded by 

I - Fx, , (X) 2 I - Fx, *(X) /or a l lx  (W. 7) 

In the previous section, we argued that realistic buffer occupancies of real-time flows are monotonic decreasing. 

Theorem I: The uniform dismbution is always more pessimistic than a dismbution with a monotonic decreasing den- 

sity function. 

P roo t  Let u be the sequence denoting the discrete uniform density function 
which clearly is a contradiction to Eq. 10. i h i s  line of argument can be extended to the first Mpoinu. Let 

The discrete distribution is then given by 

Analogous to the case above 

which again wnhadicts Eq. 10. 

Thus it was shown that the uniform distribution is always more pessimistic than a distribution obtained from a monot- 

onic decreasing density function. 

A dixrete distribution with a monotonic decreasing density function is defined as follows. Let xh with k= 0.1, ... .N- 

I be a sequence where for all k it applies that X, 2 X „ ,  . 

In o d e r  to be a valid density function, we have 



4 Efficiently Dimensioning the Aggregate's Buffer via a Chernoff Bound 

In this seaion, we present how we exploit the single now buffer occupancy distribution to dimension the aggregate's 

buffer efiiciently by applying a Chemoff bound on the sum of the individual fiow's buffer occupancy dismbution. In 

our scheme, we substitute the a c t d  buffer occupancy dishibution by the uniform dishibution as an upper bound 

which gives us two advantages. First, it allows to aggregate a large number of heterogeneous flows irrespective ofthe 

different shapes of their actual buffer occupancy distribution and second, the simple form of the uniform dismbution 

makes i u  analytical as well as numerical treatment much more practical. 

Let G be a set (g,. g2. .... gJ of (B.r)-shaped fiows. The fiows are heterogeneous, i.e. each fiow gi has a different 

bunt size Bi and rate ri. Here. we discuss the aggregation of such fiows with statistical guarantees. Aggregating deter- 

ministically, we would need a buffer of the size 

According to [16], a loss probabiliiy in the magnitude of l e t o  lu9 is targeted. Ifall fiows act independently*, it be- 

Comes unlikely that they will bunt at the same time. From the derivation of the Chemoff bound [I71 we take the fol- 

lowing equation. For any random variable Y with the density function/,@) 

M,(v) is the characteristic function of/y0>l. 

Recall that the density of a sum of random variables corresponds to the convolution of their density functions. Further. 

the wnvolution of hvo functions in the time domain corresponds to their multiplication in the frequency domain. We 

now define the random variable Yas the sum of the insiantaneous buffer occupancies. 

Therefore. the density function of Y is the convolution of all density functions &. The characteristic function M#) is 

then the product of h e  characteristic functions of the individual buffer occupancies. 

Hence, the overflow probability of an aggregated buffer B, is bounded by 

Since this bound holds for all V 2 0,  the tightest bound is 

For the individual flow we have to assume the wont case. which is that in the event of a loss the entire buffer of the 

fiow is lost. Adding an additional layer of statistics to find a relationship between the aggregate's loss probability and 

individual loss probability is subject to further research 

In Figure 5. we show a numerical example for resource usage. The abscissa denotes the number of fiows and the 

ordinate denotes the relative buffer size compared to a buffer of size I, which is the detenninistic case. 1.e.. this graph 

shows. how large the buffer needs to bc to ensure the given loss probability for a given number of fiows. Eq. 24 is 

solved for Es, which obviously can only be done numerically. By toggling the abscissa and ordinate. i.e.. solving Eq. 

24 for n, we obtain an admission control graph: how many fiows can be allowed given the loss probability and the 

buffer size. 

Figure 5: Numerical example. 

M,!<V> = n : M b , ( v )  (Eq. 22) 

Evcn ihough ihir a~surnwion may be quable.  i c  ir madc in all mlevani approacher io siaiistical multiplering knoun to us. 



5 Dimensioning the Aggregate's Rate 

In this senion. we briefly discuss the dimensioning of the rate with which the aggregate has to be served. Again we 

fint wnsider detenninistic aggregation. Recall that we allow heterogeneous flows, i.e.. flows with different delays. to 

be aggregated. Since the flows are not handled individually afier the aggregation. we must assume each flow to have 

the minimum delay of all flows and assign it the according rate. With Eqs. 5 and 18, this is 

r D  = B, 
min { d , }  

This rate is larger than the sum of all rates. 

This waste of bandwidth is unavoidable if the aggregate is strictly to be treated as one flow. But applying Eq. 5 atier 

the aggregation, we find that the minimum delay is 

- B s - ß s  . 5 - - - -min { d ; ]  l min { d , }  
r~ ßD , 

This result, which states ihat the delay is always bener than required. implies an avoidable w a t e  of resources. Inhii- 

tively. it seems that this can be solved by just reducing the rate so that the desired delay is obtained. But it has 10 be 

ensured that it is at least the sum of the initial rates, i.e., that not more is taken away than what was added. 

I1 is not clear whether this step is allowed. Ir is an issue that so far has not come up as it only appean d e n  aggregating 

flows with heterogeneous delays and requires funher research. 

6 Conclusion and Outlook 

In this paper we showed a mnhod to aggregate data flows with statistical guarantees while puning the emphasis on 

reducing the wntrol complexity. We introduced the concept of a wont-case distribution which is a property that al- 

lows many heterogeneous flows tobe aggregated. The uniform distribution can be used as a worst-case distribution if 

the buffer occupancy density function is monotonic decreasing. We believe that this is the case for all (B.r)-shaped 

real-time flows. but coiild not generally prove it due to the vast amolint of degrees of freedom in the nodcl. Wc thcn 

pointed out how some resources. namely buffer space, can be saved by applying large deviation statistics. This uncov- 

ered the question what the required server rate is, which is subject io further research. 

Several more issues which are subject to further research were revealed during this project. It is not optimal to treat 

all flows like the one with the tightest delay bound when aggregating heterogeneous flows. The relationship between 

the aggregate and individual loss probability has not yet been addressed. Finally. the wmplexity and applicability of 

the method introduced in this paper have to be studied in more detail. 
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