
--

[RAR! 3001 Utz Roedig, Ralf Ackemann, Christoph Rensing, Ralf Steinmetz: A Distributed Firewall for
Multimedia Applications; Proceedings of the Workshop "Sicherheit in Mediendaten".

A Distributed Firewall for Multimedia Applications

Utz Roedigl, Ralf ~ckermann ' , Christoph ~ e n s i n ~ ' , ~ a l f ~ t e i n m e t z ' ~ ~

' Darmstadt University of Technology, Merckstr. 25, D-64283 Darmstadt, Germany
GMD IPSI, Dolivostr. 15,64293 Darmstadt, Germany

(~ t z . ~ o e d i g , Ralf .Ackermann, Chr i s toph .Rens ing , R a l f . s t e i n r n e t z)
@KOM.tu-darmstadt.de

Abstract. Firewalls are a widely used security mechanism to provide access
control and auditing at the border between "open" and private networks or
administrative domains. As part of the network infrastructure they are strong-
ly affected by the development and deployrnent of new communication par-
adigms and applications.Current1y we experience a very fast rise in the use
of multimedia applications. These differ in many aspects from "traditional
applications", for example conceming bandwidth usage, dynamic protocol
elements or multiple data flows for one application session. Corresponding
firewall mechanisms and techniques did not change with the same dynamics
though. Currently existing firewalls have problems supporting these new
type of applications because to some extent they try to map the new charac-
teristics to the manner of conventional applications which they are able to
handle. We strongly believe that new application types require new firewall
techniques and mechanisms. In this Paper, we identify typical characteristics
of multimedia applications that cause problems using traditional firewalls.
Based on this analysis we deduce enhancements to existing firewalls that can
be used to better adapt to a communication environment in which multimedia
applications are used. We describe these enhancements in general, show a ad-
equate Systems architecture arid present a implementation based on this de-
sign. The feasibility of that approach has been shown in the example scenario
that we finally present.

1 Introduction

Today, security aspects have become more and more important and access control at the
network border is considered essential. Therefore, most organizations replaced their ba-
sic intemet routers by devices that perform additional packet-filtering. This option is
cost effective, because rnost routers are able to perfonn packet-filtering tasks anyway
and the functionality has just to be activated. For some institutions, however, this level
of security may be insufficient. Packet filters usually just do a pattem matching on pre-
defmed fields within the packet (header) but do not pay attention on the semantics of
the packets payload which represents application specific data. A more sophisticated
rnethod that can be used to control the communication over a network border are so
called "stateful filters". They act like a filter, but they are also able to extract informa-
tion fiorn the application layer and most significant - may change their behavior accord-
ing to what passed through them in advance.

For higher security Users must consider additional options and have to augment
packet filter security with proxying. A proxy Server offers additional security because
the session flow is retained, inspected and forwarded at the application layer. Many fire-
wall vendors prefer stateful filters instead of proxies because that way it is easier to im-
plement Support for new protocols. Furthermore filters generally allow for better per-
fonnance. However, there are strong claims that stateful filters are less secure than
proxies [I]. To combine the advantages of all these firewall techniques [2] a mix of
packet filters, stateful filters and proxies is often utilized. We call the combination of
these elements as shown in Figure 1 firewall system.

Packet- Packet-
Filter 1 Filter 2

I I

Proxy
L J -

Firewall -System
dala and a>nur>l paih

Figure 1: Firewall System

In this scenario, comrnunication between the intemal and the extemal network is
only possible by passing data through both filters and the proxy. TO enforce the hosts
to not comrnunicate directly but only via the proxy, the filters are configured in a way
that only packets sent from or to the proxy server are forwarded. Applications that ac-
cess a server in the 0 t h network have to be configured to use the proxy server either
explicitly or by means of an element doing address or port translation. The area between
the tw0 filters is usually called demilitarized Zone (DMZ) [3]. The described structure
is often used for firewalls and is in general considered to provide a secure configuration
to protect the intemal network. Therefore, we use it as a reference scenario.

Under certain circumstances, however, the protection is consciously weakened -
hazarding obvious security risks. This is usually done if such a practice seems to be the
0nly applicable short-tenn way to use a certain service at all. Some non-representative
examples are given below:
- Some applications complicate the use of a proxy since they were designed and im-

plemented with end Systems communicating directly in mind. So they do for in-
stance transmit lower layer addresses as part of their application specific payload
data again. In this case, the firewall filters may be configured to selectively pass data
streams directly to the external net and vice versa. The same is necessary if no proxy
is implemented (yet) for an application.

- Most firewall components that are used today are not designed to support multicast
communication. To use applications which demand multicast the security policy of

the firewall must usually be weakened on a "all-or-nothing" basis. This conflicts
with the intended policy to handle data strearns at a firewall individually and with a
fine-grained granularity. Approaches are currently made to remedy that drawback
[41.
In this paper we deal with the ever increasing class of multimedia applications

which lead to serious problems. For many of these applications, the fuewall system has
to be configured in a way that it does not provide the maximum possible protection for
the intemal network. In section 2 we describe characteristics of multimedia applications
as well as the resulting problems. Based on these considerations, we present a new ap-
proach, the Distributed Dynarnic Firewall Architecture, which may solve the specified
problems, in section 3. Further, we describe our firewall system implementation based
on the architectural ideas. To demonstrate the usability of it we show an example of an
appropriate multimedia application in section 4. in section 5 we discuss related work
and then conclude the paper.

2 Multimedia Applications and Firewalls

We concentrate on a special type of applications - multimedia applications. These use
continuous media and discrete media data [5] , with the continuous media being audio
andlor video streams that demand a high throughput and compliance to real-time spe-
cifics like a bounded delay or jitter. The discrete media usually consists of conhol data
streams for the audio and video data strearns and additional information (e.g. meta da-
ta).

2.1 Communication Principles
In order to describe cornrnunication scenarios, we define the following terms to distin-
guish the granularity at which an application's data stream is considered. Aflow is a sin-
gle data stream, identified by a tuple of characteristic values (source address, source
port, destination address, destination port, protocol number). The term channel is often
used to describe a single data stream and will be treated synonymously throughout this
paper. A session describes the association of multiple flows that together form an appli-
cation's data stream.

The protocol behavior of most multimedia applications may be generalized in the
following manner. A client typically connects to a server using an initial direct TCP or
UDP "connection", often called control channel. After control channel setup, the mul-
timedia application Opens one or more data channels to transmit audio or video data.
The port numbers used for these data channels are dynarnically negotiated on the con-
trol channel. Detailed examples for that behavior will be given in section 4.

Some multimedia applications do not only use a unicast data channel to send the
requested data but make use of multicast mechanisms to reach several clients in a very
effective manner. Additionally, if the intermediate network supports these option, the
server and client could negotiate QoS Parameters to ensure that time critical content can
be transmitted through intermediate nodes as desired.

L
"

.;

=
C

C

d
,
5
5
3

z
,

g
E

5

G
Z

J
=

2

g
s

s

2
U

.
3

3

. C

-

2
3

2

y

m
E

'E

2
Y

2
2

:
$

E
2

-
0

3

$
2

2

,o
G

a
w

 - rn
2s.g

3

m
.
3

5

o

Q

O
.
0

2

2
g

E

2
. - z

0
;;i

5
%

g
 :

&

.=.
2 g

E
S

i?

Z
U

'd

-
 .
2
5

8
"

"

2
"

x
m

y
S

2

0
3

o
z

U
 a

g

e
>

2
U

o

T $aB
 P

Y

g
c
;
:
;

0
,s

Y

C
 m

z
s

 2
3

5

,

rn-3
0

 3

$
S

E
0

 3
0

0

8
3

%
 8

5

>

C

g
v
l a 2d=

=
E

-
3

a

m

r
n

o

0

.-
U 5 2

 s .C
2

o
k

a

o

'd
C

,s
 0
 5

5

5

C

Cd

Second, the communication between the components can be enabled. By commu-
nicating, a component can distribute information (about a stream, or commands to adapt
t0 a stream) to other components. In this case the configuration of all components can
be adaptd by themselves or by otlier components. Therefore, the components can use
information that they retreive themselves from the observed communication paths (if
this information is sufficent) or information that is retreived from another component
arid is distributed to them.

TO choose between both approaches, the possible impact has to be considered. Our
main goal is that the provided security of the overall system should be enhanced.
Changes should not strength the system at a single point by weaking it at an other point.
The first approach therefore has serious disadvantages. The number of complex and in-
dependent policy engines is increasing. It is difficult to set up and maintain all three pol-
icy engines in a consistent and secure way. By using the second approach, the complex-
ity 0f the System also increases, but a central and consistent view of the policy engine
is maintained.

When comparing both approaches with respect to performance, the following facts
have to be considered. The first method reduces system performance because the de-
sired information must be extracted at least three times from the communication chan-
nels. The second method needs to extract the necessary information only once, but the
extracted information has to be distributed to the other components which also reduces
System performance. As shown, both approaches have an inferior performance than the
initial system shown in figure 1, but therefore an increased security. We believe that the
realization of our second criteria will outweight this performance drawback.

For securis reasons, we decided to use the second appmach. As described later, this
decision also allows the realization of our second criteria. To fulfil the first criterion we
specib requirements for the intemal firewall communication subsystem as follows:
- The firewall components, e.g. filters or proxies have to be enhanced so that they are

able to communicate with each other. That way they become enabled to receive
missing information about the communication state from another component and
may also act as an information source.

- All firewall components have to provide an interface, so that other components are
able to manipulate their behaviour if this is necessary. This changes the overall sys-
tem behaviour and must therefore be done in a secure manner.
The second of our criteria could be met in two ways. Fist , the "routing" could be

perfomed by the components at the edges of the firewall system. This requires that
these components are able to split and reassemble the flows of the rnultimedia sessions.
Therefore these components have to support a redirect function e.g. by means of re-
writing IP addresses. This redirect functions may act transparently and do not influence
the behavior of the involved end systems. To perform the Splitting and reassembling of
the session flows, edge components have to communicate with components which ob-
serve the control channels. The edge components have to split and reassemble the ses-
sion, the observing component (e.g. a proxy for the control channels) knows about the
dependencies of the single flows and has to distribute this information to the filters.

Second, the routing could be performed by the proxy. The proxy handles the control
flows of the multimedia session. Therefore this component is able to modify the data
transmitted on the control channels. By modifying the negotiated Forts on these chan-
nels, the proxy could inform the participating endsystems to send specific flows on dif-
erent ways.

Both methods can be used to split the flows of a multimedia session. The first meth-
od does this transparent for the endsystems, while the second method does not. The first
method is therefore practicable in all use cases, but more difficult to implement than the
second method. To support all communication scenarios, and to be able to keep it sim-
ple where possible, we use both methods. These thoughts lead to the following fuewall
design requirements:
- The same design requirements as derived from the fust criterion are also necessary

to fulfil the second criterion. Flow information has to be exchanged between the
components to split and reassemble the flows of the multimedia session.

- The components at the firewdl systems edges must be able to split and reassemble
packet streams individually according to specific logical sessions.

3.2 Systems Structure and Components
The intemal communication requirements can be met by interconnecting each compo-
nent with each other. Each of the boxes represents a fuewall component with the nec-
essary software enhancements for inter-component communication. A resulting sy stem
structure is shown in Figure 2a.

Such a design has some serious drawbacks though. There is a problern for the com-
ponents to learn about the overall system state. Components have to find each other and
keep track about the state of each component. Additionally we need to support the max-
imum number of possible communication relations. Those can not be assumed to be
unique and homogenous. A component can easily become over-featured and therefore
over-sized and difficult to implement on different systems. That directly leads to port-
ability problems. The whole complex software enhancement has to be rewritten every
time it is ported to another system type. To avoid these problerns we use system stmc-
ture as shown in Figure 2b.

ab)
fully meshed
configuration

u bb) U
core - based
configuration

Figure 2: System Structure Alternatives

A central component (we further on call it DDFA-core) f o m the central part of our
firewall system. This component provides registration mechanisms which allows com-
ponents to announce theire presence within the system. The core is then able to provide
a location mechanism which enables the components to find each other.

The system enhancement for each firewall component are split in two parts.
- The system-dependent part is located on the component itself.
- The system-independent part is located within the core component.

That way a Special additional adaption layer is inserted, which makes it easier to tai-
lor the Software. It allows to use different types of components providing the Same func-
tionality. The core can also be used to maintain tasks which control and organize the
interaction of all interconnected components.

4 DDFA Prototype

The functional specifications and the derived system structure has been used to improve
the standard firewall scenario shown in figure 1. The enhanced version of the standard
scenario is shown in figure 3.

Figure 3: Standard Scenario with DDFA

This DDFA prototype system consists of two filters (FreeBSD 3.2 with IP-Filter
3.2.10) and a proxy host (FreeBSD 3.2 with a self implemented H.323 Proxy) and a core
hast. Therefore the prototype only Supports IP-Telephony apllications based on the
H.323 protocol.

4.1 Core Component
The DDFA core forms the main component of our system. The system independent
Parts of the software enhancements for the firewall components are also located there.
The following tasks are fulfilled by the core component:
- Location mechanism: The components which participate in the firewall system use

the core as a central contact point. The core registers the components and publishes
their presence so that they can be addressed by other components.

- Communication: The core provides a general communication mechanism, so that
the components can interact with each other. This communication is coordinated by

the core, so that requests are submitted and computed in a strict sequential order and
an atomic way.

- Authentication: The interaction between the components can be controled and re-
stricted. The core provides access control mechanisms and thus decides wiiich com-
ponents are allowed to participate in the system.

- Protocol specific features: Tasks that are usually located at separate firewall com-
ponents can dynamically be loaded into the core. This is an implementation detail
and allows for a higher Systems throughput through the efficient use of a Single ad-
dress space.

- Control tasks: System startup and individual control functions such as clean-up of
component specific data structures are also located at the DDFA core.

- System independent parts: The core provides mechanisms to load the system in-
dependent parts of the connected components.
The design of our system is modular to simplify enhancement of system function-

ality. The design is flexible to adapt to different firewall policies. The intemal mecha-
nisms and programrning details are described in [14].

4.2 Componen t Adapters
We now show two different adapters to integrate firewall components into the DDFA.
One adapter is used to integrate a filter, the other to integrate an IP-Telephony (based
on the H.323 protocol family) proxy. Every adapter consists of a system dependent part,
installed on the firewall component itself, and a system independent part which is load-
ed as described into the core.
IP-Filter Adapter:
An IP-Filter adapter is used to integrate "IP-Filter" packet filters hosted on a FreeBSD
operating system into the DDFA system. The system independent part provides a ge-
neric interface within the DDFA-core to access filters in a standardized manor. Other
components can reconfigure the filter, redirect streams or request flow information
from the filter by using this interface. The system dependent part is hosted on the filter
machines. This part is system dependent because it has to cornmunicate with the filter
software, the operating system and the network interfaces on the filter host. It translates
the standardized commands from the core into the specific language used for the partic-
ular filter. Therefore, parts of this system dependent component must be rewritten in
most cases when the target operating system or filter software is changed. System de-
pendent and system independent part are connected via a secured TCP link [14].

IP-Telephony Proxy Adapter: .
An P-Telephony-Proxy adapter can be used to make H.323 proxy functionality avail-
able within the DDFA system. The system independent part provides an interface,
which allows other components to modify the proxy behavior or to receive informations
about the flows processed by the proxy. In addition, the proxy .wes this interface to
communicate with other components. This proxy is described in [15].

4.3 Communication example in Detail
A representative example of a Multimedia Application supported by our system is Mi-
crosoft NetMeeting . It is used for multimedia conferencing and is based on the H.323
protocol suite [9]. Figure 4 shows the communication mechanism between two H.323
based P-telephony clients. In this figure the caller (later assumed to be on the internal
network behind the firewall) initiates an IP-phone call to the called (later assumed to be
On the extemal network) client. Only audio streams will be considered between both cli-
ents. If video streams between the clients are used too, two additional streams (RTCP
arid RTP) in each direction are added.

caller called party

TCP 4.931) -4 s : a l l y icnown

TCP (H.245)

jdynamically
lnegotiated ports

Figure 4: H.323 cornrnunication

In a H.323 session two TCP control channels are utilized. The first control channel
is employed for~e~-~rotocol. The ports used for the second
control channel are dynamicaly negotiated on the 4.931 channel. After the second
(H.245) control channel is established, this channel is used between the clients to estab-
lish the audio and video streams between both clients. The ports used for these flows
are negotiated dynamically on the H.245 control channel.

To show the difference between a standard fiewall system (shown in Figure 1) and
our extended DDFA system (shown in Figure3), we will explain how both Systems han-
dle a H.323 application. The H.323 Application is handled by a system shown in
Figure 1 in the following manner:

1. Boundary conditions:
- The calling H.323 client has to support a proxy. The application has to know that it

must route the call over the proxy.
- Filter 1 must pass the initialQ.93 1 (TCP, destination port 1720) connection from the

caller to the proxy, Filter 2 to must pass the initial Q.931 (TCP, destination port
1720) connection from the proxy to the called client.

- Filter 1 must pass the H.245 (TCP, destination port greater than 1023) connection
from the caller to the proxy, Filter 2 to must pass the H.245 (TCP, destination port
greater than 1023) connection from the proxy to the called client.

- Filter1 and Filter 2 must be configured to allow all UDP flows with a destination
port greater 1023 to and from the proxy.
2. Cornmunication:

- The calling host connects to the proxy via TCP at port 1720. The proxy then relays
this connection to the destination host. This 4.931 connection is now survied by the
proxy.

- The proxy recognizes that the H.245 port is negotiated on the 4.93 1 control channel.
The proxy also relays and observes this control channel between both endpoints.

- The proxy recognizes the negotiation of the audio channels. By modifying the sub-
mitted ports and P-addresses the proxy gets these audio streams and relays them be-
tween both endpoints. The bulk data transfered between the clients are relayed by
the proxy.
If the application is handled by our modified fiewall system, the boundary condi-

tions and the cornrnunication mechanisms change. The system configuration and the
session flows are shown in Figure 3.

1. Boundary conditions:
- Filter 1 must pass the initialQ.931 P C P , destination port 1720) connection from the

caller to the proxy. In addition, all TCP connection anempts, made from the intemal
client to the extemal client on port 1720 should be redirected to the proxy. In this
case, the application does not need to support a proxy, the proxy is transparently in-
serted in the communication path.
2. Communication:

- The calling client tries to connect to the called client via TCP on port 1720 to set up
the Q.931 connection. Filter 1 redirects this request to the H.323 proxy. The proxy
then asks via itscore connection the Filter 1 component about the state of this flow.
As result the proxy gets the information that this connection was pnmary made to
the destination client. The proxy now uses the core connection to inform filter 2 that
he will connect the destination client on port 1720 via TCP. Filter 2 adjusts his con-
figuration to allow this connection. The proxy now connects to the destination client
and relays and observes the 4.931 connection between both clients.

- By observing the Q.931 connection, the proxy recognizes the negotiation of the
H.245 connection. To negotiate the H.245 connection, the destination client passes
information about the target IP-address and port for the H.245 connection to the call-
ing client. This information is modified by the proxy, so that it will receive the con-
nection request for the H.245 connection. Before the proxy passes the modified rnes-
sage to the calling client, it uses the core connection to inform Filter 1 about the con-
nection that will be made to the proxy. Filter 1 adjusts his filter rules.

- The proxy now receives the H.245 connection request. It informs the Filter 2 via the
core about the outgoing connection to the destination client. Filter 2 adjusts its fil-
tering rules. The proxy now connects to the destination client and relays and ob-
serves the H.245 connection.

Next the audio data strearns are negotiated on the H.245 channel. The proxy ob-
serves this cornrnunication and informs both filters about the negotiated streams.
The filters then change the filter rules according toinformation passed by the proxy.
The bulk data are now sent directly between the clients. These data do not have to
be relayed by the proxy.
When the communication is going to be finished, Special messages are sent on the
control channels. This is recognized by the proxy, and it distributes this information
to the filters, so that all previous opened paths within the Filter d e s could be closed.
When the communication is finished, the system configuration is again in the state
described in the section "Boundary conditions".

4.4 Security Concerns
As we described, the main difference between the standard firewall and our DDFA sys-
tem is the initial configuration. In the standard system several predefined "holes" within
the filter configurations are necessary because an adaption of the system during the
comrnunication is not possible. The DDFA System does not need these predefined
holes, because the system can Open and close the actual necessary paths on all compo-
nents during the comrnunication. The DDFA System, therefore, allows a more secure
operation, regarding the filter configuration, than the standard system.

Finally we have to consider if the overall DDFA System is also more secure then
the standard system. The overall system is more complex then the standard one, but a
central and consitent view of the policy engine is maintained. An administrator of the
firewall system will not recognize the difference between configuring the central com-
ponent in the standard scenario or configuring the DDFA system. Therefore configura-
tion errors could be possible with equal probability in both Systems. Because the inter-
nal design and implementation of the DDFA system is secure, this system provides a
higher security level then the standard one.

4.5 Performance Concerns
As shown, in the DDFA system, the bulk data (audio and video flows) are sent directly
via both filters between the endpoints. In the standard scenario, the audio and video
streams are additionally processed by the proxy located between both edge filters.
Therefore our DDFA system has the following performance advantages:
- The bulk data are only processed by filters. By avoiding the usage of proxies for the

data flows, performance is increased [13].
- The bulk data are only processed by two components. By reducing the amount of

hops, the performance is increased.
As mentioned, the distribution of flow information within the DDFA system leads

to an inferior performance. This performance reduction only affects the control chan-
nels of the multimedia session. Therefore, theoretically, the usage of the DDFA system
leads to a slower session setup (and session tear down), because of the delay on the con-
trol channels. Subjective we could not recognize this delay during our first tests. The
theoretically proof proposition according the DDFA performance has to be verified.
Therefore measurements have to be done.

5 Related work

As the increased use of multimedia applications not only in the research cornmunity but
also in cornrnercial environments generates an increasing demand for adequate secure
and yet performant solutions - there is a lot of further research activity on that topic. An
approach to support the requirements of high data rates is described in [10]. The authors
propose parallel firewalls to support high performance networks. In their approach, the
connections are dynamically distributed to different proxies because the proxies repre-
sent the bottlenecks of firewall Systems. The distribution is done by one or several pack-
et filters at the edge of the system via network address translation. This approach allows
for scalability, yet at significant costs since the data streams are still routed through a
proxy, which is not necessary in our implementation.

Using the SOCKS protocol, specified by the Authenticated Firewall Traversal
Working Group [l l] of the IETF, a client that wishes to establish a connection to an
object that is reachable only via a firewall must Open a TCP connection to the SOCKS
server system and has to authenticate at the server. The SOCKS server evaluates the re-
quest and if that proceeded successfully - establishes the appropriate connection direct-
ly. This approach has some major disadvantages. The implementation of the SOCKS
protocol typically involves the re-compilation or re-linkage of TCP-based client appli-
cations to use the appropriate encapsulation routines in the SOCKS library. Often this
is not possible. Also it can be used only for communication between known Partners,
which restrict its usability.

The PIX fuewall system developed by Cisco [12] is based on a combination of
stateful filters and proxies. Their approach is to authenticate a User at a proxy and to
build up the initial connection. If this is successful all session flows are directly passed-
through between the two parties while rnaintaining control'of the session state. This ar-
chitecture reaches a high throughput but there is a lirnited possibility to configure addi-
tional components (e.g. packet filters) dynamically to adapt the whole frewall system.
We consider our approach at least as comparable and even more flexible for emerging
new multimedia protocols.

6 Summary and Outlook

We presented a distributed firewall architecture and implementation, which is targeted
to solve the problem of efficiently supporting multimedia applications in a secure man-
ner. The main idea of our approach is, to treat a firewall system as a distributed archi-
tecture of specialized components and to dynamically adapt all these as well as their in-
teractions to the current communication situation.

By implementing a Prototype we showed the general usability of our approach. In
a representative example scenario we described how the data channels are directly
passed through the system, whereas the control flow is handled by a proxy. The proto-
type system determines which connections are allowed by using P-, TCP- and UDP-
filter lists. Communication paths through the firewall system are opened on demand and
only when they are really needed. The proxy approach allows us to also implement sup-

port for a user specific authentication which will definitely be needed in a production
environmcnt.

Based on our irnplementation we actually measure the performance of the system,
using the utilities and methods presented in [13] in order to cornpare with other a p
proaches. Finally we plan to add features to both the Systems architecture and the user
interface to irnprove the usability of the system. In a future implementation step COR-
BA usage in the core system will be evaluated. Thereby we intend to transparently dis-
mbute the functionality of the core component over several hosts in order to increase
the resilience of the system and its overall performance.

7 References

[I] Network Associates: Application Gateways and Stateful Inspection.
http://www.avolio.comlapgw+spf.html

[2] Chapman, D.B.: Building Intemet Fiwalls, O'Reilly. Cambridge. 1995
[3] Cheswick, W.R.. Bellovin S.M.: Firewalls and lnternet Security. Addison Wesley. 1994
[4] Finlayson, R.: iP Multicast and Firewalls, Internet Draf draft-ietf-mbaned-mcast-fmwall-

02.txl1998
[5] Steinmetz, R.. ~ahrstedt, C.: Multimedia: Computing, Communications & Applications.

Prentice-Hall, 1995
(61 Corner, D.E.: Intemetworking wilh TCPIIP, Volume I. 2nd Edition. Prentice Hall. 1991
[7] Reed, D.: IP-Filter, http:l/coombs.anu.edu.aul-avalonl
[8] Progressive Networks: Real Audio, http:/lwww.real.coml
[9] ITU: ITU-T Recomrnendation H.323, Packet-Based Multimedia Communications Systems,

1998
[lO]Ellermann. U., Benecke, C.: Parallel Fiwalls: Scalable solutions for High-speed Networks

[Gennan], DFN-CERT Workshop Sicherheit in vernetzten Systemen. Harnburg 1998
[I llleech, M.. Ganis, M.. Lee, Y., Kuris. R., Koblas, D.. Jones. L.: SOCKS.Protoco1 Version 5,

RFC 1928,1996
[12]Cisco: Cisco's P E F iwa l l Senes and Stateful F iwa l l Security. White Paper, 1997
[13]Ellermann, U.. Benecke, C.: Tools for measuring the Performance of Proxies [German]. pub-

lished in MMB-Arbeitsgespräche: "Leistungs-, Zuverlässigkeits- und Verläßlichkeitsbewer-
tung von Kommunikationsnetzen und verteilten Systemen", Harnburg 1998

[14]Utz Roedig, Ralf Ackermann. Christoph Rensing. and Ralf Steinmetz DDFA Concept
Technical Report KOM-TR-1999-04. KOM, December 1999

[15]Utz Roedig, Ralf Ackermann and Ralf Steinmetz. Evaluating and Improving F iwa l l s for IP-
Telephony Environments. The Ist IP Telephony Workshop, Berlin 2000

