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Abstract. The transmission of video data is a major part of traffic
on today’s Internet. Since the Internet is a highly dynamic environment,
quality adaptation is essential in matching user device resources with the
streamed video quality. This can be achieved by applying mechanisms
that follow the Scalable Video Coding (SVC) standard, which enables
scalability of the video quality in multiple dimensions. In SVC-based
streaming, adaptation decisions have long been driven by Quality of Ser-
vice (QoS) metrics, such as throughput. However, these metrics do not
well match the way human users perceive video quality. Therefore, in this
paper, the classical SVC-based video streaming approach is expanded to
consider Quality of Experience (QoE) for adaptation decisions. The video
quality is assessed using existing objective techniques with a high corre-
lation to the human perception. The approach is evaluated in context of
a P2P-based Video-on-Demand (VoD) system and shows that by making
peers favor always layers with a high estimated QoE but not necessarily
high bandwidth requirements, the performance of the entire system can
be enhanced in terms of playback delay and SVC video quality by up to
20%. At the same time, content providers are able to reduce up to 60%
of their server costs, compared to the classical QoS-based approach.

1 Introduction

Recent studies show that the streaming of video content has become a domi-
nating part of today’s Internet traffic, with a forecast of further increase for the
next years [4,19]. The support of a large number of users as well as a wide range
of heterogeneous devices and constantly changing conditions, such as sudden
user fluctuations or network congestion, make the provision of appropriate video
streaming mechanisms a challenging task. Based on these dynamics, an impact
on the provided service quality can sometimes be inevitable. This may become
visible to the user in form of degraded video quality or stalling during video
playback. The goal of content providers is to reduce both effects to a minimum
in order to maximize the service quality. This requires quality adaptations that
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allow for a flexible reaction to provide the individual users with a continuous
playback and a maximum possible video quality. In this context, the video codec
Scalable Video Coding (SVC) [20] is especially interesting as it allows for flexible
adaptation of the video quality in different dimensions. Furthermore, by limiting
adaptation decisions to only compatible quality layers, e.g., in terms of band-
width or screen resolution, heterogeneous clients with different capabilities can
be supported in an efficient way.

For quality adaptation during an SVC-based streaming process, the decisions
for appropriate layers are essential. Therefore, Quality of Service (QoS) aspects,
such as the throughput, are typically taken into consideration to select appropri-
ate quality layers during streaming. However, this approach follows a simplified
assumption about video quality and might not directly result in a maximization
of the video quality as perceived by a human user. Therefore, the idea proposed
in this paper is to extend SVC-based video streaming with the properties of the
human visual system in order to judge the influence on the perceived quality,
also referred to as Quality of Experience (QoE).

Since the human perception is a complex process and influenced by many
factors, only few viable automated metrics, so called objective QoE metrics, exist
that can be applied in a general context. At the same time, user studies, which
are considered the only reliable alternative to assess perceived quality [15], are
not applicable in most technical solutions. Therefore, although automated QoE
metrics can only approximate the perception of a user [22], they are a promising
approach to enable a more user-centric quality adaptation in SVC based video
streaming. In the context of the presented approach, the Video Quality Metric
(VQM) [18], a state-of-the-art objective QoE metric, is applied.

To investigate the impact of using objective QoE metrics for quality adapta-
tion, the focus of this paper is on a Peer-to-Peer (P2P) based Video-on-Demand
(VoD) scenario. Besides evaluating the adaptation mechanisms on its own, the
scenario also allows to study how such adaptations influence the dynamics of
a P2P system and the resulting overall performance. For large-scale streaming
systems, P2P technologies have proven to be a valid alternative to traditional
client-server (C/S) solutions. They allow to efficiently leverage resources of end-
user devices in order to remove bottlenecks and unburden the content provider
from high costs. In principle, the adaptation mechanisms presented in this paper
could also be applied in a C/S scenario, however, they were designed to meet the
specific requirements of a highly distributed scenario, with clients autonomously
deciding on adaptations according to their needs.

The remainder of this paper is structured as follows. In Sect. 2, an overview
about existing work in the field is provided. The QoE-aware adaptation mech-
anism, which is the main contribution of this paper, is introduced in Sect. 3.
Subsequently, in Sect. 4, the evaluation of the mechanism is presented. Finally,
the paper is concluded in Sect. 5.
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2 Related Work

The topic of quality adaptation in the context of multi-layer and SVC-based
video streaming has been broadly studied before. A number of researchers have
investigated the general applicability of multi-layer video coding and especially
SVC to P2P video streaming [6,14]. Others proposed concrete SVC-based sys-
tems to address specialized issues, such as low start-up or streaming delays, or
smooth video playback, while trying to assure a minimum video quality [3,12,16].
In contrast to the approach presented in this paper, none of these works considers
QoE characteristics of the content.

In a previous work, the authors evaluated the impact of quality adaptation
mechanisms in SVC-based P2P streaming systems [2]. These purely QoS-driven
mechanisms were considered and further extended in the context of the presented
work to allow for more sophisticated adaptations, also considering QoE aspects.

The QoE during streaming clearly depends on the visual quality of the de-
livered content. Furthermore, it is also influenced by characteristics of the video
streaming process and the quality adaptation mechanism itself. Zinner et al. [26]
derived dependencies between SVC quality layers of different videos and their
objectively assessed QoE in terms of the Video Quality Metric (VQM) [18]. This
paper is directly based on this work and uses the results as an input for the
presented adaptation mechanism. Lee et al. [11] conducted subjective studies
to model the dependencies between SVC quality layers and perceived quality.
Others, such as Gustafsson et al. [8], considered more streaming process related
issues and evaluated the impact of buffering events on the perceived quality.
Zink et al. [25] focused on the role of different layer adaptation characteristics.

Zhai et al. [24] proposed a centralized live SVC video streaming system for
wireless, heterogeneous clients that aims at maximizing the QoE. While this work
shares the objective of the presented approach to use objectively assessed qual-
ity, it greatly differs in its C/S scenario and the quality estimation by clients,
using own simple objective QoE metrics and local knowledge of the peers. In
the context of the presented VoD scenario, it is assumed that content providers
could do a pre-processing and this way profit from more sophisticated quality
assessments. Furthermore, Kim et al. [10] also proposed a SVC streaming sys-
tem to maximize the QoE of the users. This approach builds on a centralized
dissemination and decision taking approach, where a central entity estimates the
perceived quality of a client by using own specialized objective QoE metrics and
decides on switching to higher quality layers.

Menkovski et al. [13] described an adaptation mechanism for a distributed
streaming system to maintain acceptable video quality. Therefore, direct user
feedback and distributed machine learning mechanisms are used to detect unac-
ceptable quality and react by improving the streaming quality. In contrast to the
presented work, they do not consider the use of layered video coding but utilize
parameters of single layer codecs, including only limited means of adaptability
in quality. Furthermore, the approach is limited to two levels of perceived qual-
ity which does not allow accounting for heterogeneous clients and fine granular
adaption of the video quality.
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3 QoE-aware Quality Adaptation

This section presents how Quality of Experience (QoE) estimation of SVC en-
coded videos can be used by quality adaptation algorithms to achieve better
system performance. Therefore, QoE-aware quality adaptation mechanisms are
proposed, designed, and evaluated, that expand the use of classical QoS-driven
mechanisms to include other metrics that are closer to how users perceive video
quality. What is especially interesting for the performed analysis, is checking
whether using estimated QoE in quality layer decisions has any impact on the
dynamics of the P2P network and how this influences the performance. For the
best of our knowledge, this question has not yet been addressed.

In order to bring QoE to the quality adaptation algorithms in SVC-based VoD
systems, an approach is devised that constitutes two major steps: the Quality
Management running on a server and the Layer Adaptation running on the peers.
The first step is executed by the content provider to derive the QoE ratings for
a streamed video. The second step, the actual quality adaptation, takes place in
a distributed manner and is autonomously performed by the peers. The quality
ratings are disseminated at the beginning of the streaming process and are used
by the peers to decide on appropriate video layers during quality adaptations.

3.1 Quality Management

The Quality Management step calculates QoE ratings for all SVC layer possibili-
ties of the streamed videos, using an objective QoE metric. This step, depending
on the used metric, might be computationally intensive and it is assumed in the
considered VoD scenario, that the processing happens offline, executed by the
content provider. Currently, a fixed quality rating for a layer over the whole
streaming process is assumed, while for longer videos with changing types of
content, also multiple rating sets could be used to account for changing charac-
teristics in the quality rating of different scenes.

In the context of this work, the Video Quality Metric (VQM) [18] has been
applied to estimate the QoE for the different SVC layers of a video. This objective
QoE metric is considered to be state-of-the-art as it was independently evaluated
and has proven to correlate with the human perception of video quality for both
TV-like video resolutions [7] as well as for high definition videos [23]. Using
VQM, deriving the QoE ratings can happen offline without human intervention.

3.2 Layer Adaptation

The second step, called Layer Adaptation, extends the QoS-based adaptation
mechanisms presented in an earlier work [2]. These mechanisms decide on which
SVC layers and blocks to request, considering a client’s resources and maximizing
the throughput. Their decisions are limited by the static resources of the peers
and may change over time according to the available real-time resources to allow
for a continuous playback. In the presented work, quality decisions take also
into consideration the QoE ratings of the Quality Management step, to always
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select the quality layer that does not exceed the peers’ bandwidth and has the
maximum quality. These ratings depend on a specific video and are distributed
to the peers together with other meta data. This could be done by the tracker
as the overhead is very small and only transmitted once per video and peer. The
rating consists of a single numeric value for each SVC layer.

Quality adaptation in the VoD streaming system is done in two phases. First
using the Initial Quality Adaptation (IQA) strategy, an initial quality is selected
based on the peer’s static resources, for example its bandwidth and screen resolu-
tion. After the streaming starts, another set of algorithms called the Progressive
Quality Adaptation (PQA) makes sure that streaming and video playback are
continuous. If needed, the PQA increases or decreases the video quality when
the throughput increases or decreases respectively. Both adaptation phases are
extended to maximize the quality according to the QoE ratings.

Since the PQA is executed periodically, there is time between two execu-
tions for the adaptation process. Motivated by the fact that too frequent layer
variation can have an adverse effect on the quality of experience [25], mecha-
nisms were developed to switch the layer smoothly. Therefore, two steps have
been defined for the actual layer adaptation. The first step is the Layer Decision
while the second is the Layer Switching. Both take the QoE ratings as input so
that to select layers with the highest quality. The layer decision is executed as
part of the PQA in order to select a new layer, the so called target layer. The
layer switching step follows by defining an adaptation path that starts from the
current layer and smoothly changes the quality to the target layer.

Layer Decision. The Layer Decision mechanism decides on a layer that fulfills
a certain criterion. In the context of this work, two different strategies for this
are considered and compared. Additional strategies are presented in [1].

The first strategy, called DBw, has the goal to maximize the bandwidth
utilization at the peers and chooses the layer, out of the compatible ones, that
has the highest bit rate. This strategy is not QoE-aware as it does not consider
any implication on the QoE, rather it focuses on simply fetching the layers
with the highest bit rate. This is the state-of-the-art approach for SVC quality
adaptation so far and, therefore, used for the sake of comparison and analysis.

The second strategy, called DQoE , constitutes the major contribution of this
paper since it uses full knowledge about the QoE ratings of the different SVC
layers during quality adaptation. Using the derived QoE rating, as provided by
the Quality Management phase, the DQoE strategy works by selecting the layer
that maximizes quality and using it as adaptation target layer.

In Fig. 1 a simple example for DQoE based on VQM is presented. For the
sake of simplicity, the example is 2-dimensional, comprising only spatial and
temporal scalability. According to VQM, a QoE rating ranges between 0 (best
quality) and 1 (worst quality). The ratings start off with the lowest value for
the highest quality at the upper right most block. The values decrease in any
dimensions towards the base layer, which has the lowest quality. The selection
algorithm iterates over all layers within the illustrated dashed polygon, which
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defines the layers that do not exceed the peer’s resources, in terms of, e.g.,
bandwidth or maximum screen resolution. From these layers, the one with the
highest QoE rating and, therefore, the best video quality is chosen.
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Fig. 1: Examples for DQoE . Numbers represent the QoE ratings based on VQM

Layer Switching. Since the time between two adaptation processes can be
configured to span several seconds or even minutes, switching between two layers
can be done more smoothly by stretching the process over a longer time.

The Layer Switching mechanism defines how to switch to a new layer. In
other words, given an old layer A and a new layer B as calculated by the layer
decision mechanism, the layer switching algorithms defines the set of layers that
have to be passed when switching from A to B. The main reason that motivates
a smoother switch is the fact that the perceived video quality can be negatively
influenced by too frequent quality switches [25]. Therefore, a stepwise adaptation
allows to have quality adaptation with smaller steps in between. To avoid having
too much layer variation, the mechanism additionally samples the adaptation
path in order to put a limit on the amount of steps until the target layer is
reached. This process is described at the end of this section.

In the following, the concrete realization of layer switching is presented.
The mechanism is referred to as Minimized Absolute Variation in QoE Ratings
(SQoE). For the sake of clarity, configurations without switching are referred to
as Simple Layer Switching (SSim). In this case, switching is done in a simple
step by directly jumping to the adaptation’s target layer.

The switching mechanism SQoE uses the variation in QoE ratings of the
traversed layers as its minimization metric. Therefore, the goal is to find a path
from the old to the new layer which would go through the layers that have the
closest QoE ratings. By doing this, the effective quality of the video is changing
smoothly between the two layers. In order to implement the switching strategy,
graph theory is applied by generalizing the SVC layer model into a graph. Using
classical and extensively researched algorithms from graph theory, determines
an efficient approach to the problem of minimizing the absolute QoE variation.
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The above described problem is related to the so called Single-Source Short-
est Paths problems. Prominent solutions to such problems are the well-known
Bellman-Ford and Dijkstra algorithms [5]. The Dijkstra algorithm has been cho-
sen as it exhibits lower complexity and can be easily applied to the presented
scenario where the edges between the SVC layers (the variation of QoE ratings)
are positive numbers. For the application of the algorithm, in the following the
old layer is used as source node while the target layer is used as destination.
Before the Dijkstra algorithm can be applied, required for the SQoE algorithm,
first a graph needs to be derived from the SVC layer model. The steps of de-
riving the graph, applying the Dijkstra algorithm, and interpreting the result as
adaptation path are illustrated in Fig. 2.

spatial

temporal

spatial

temporal

QSS,B,C QSS,B,C QSS,B,C
QSS,B,C

Fig. 2: The steps of interpreting the SVC layer model as graph, retrieving the
path with minimal variation from it, and interpretation as adaptation path

To start off, each SVC layer in the layer model is represented as individual
node in a graph. Since adaptation is only expected to happen within the set of a
peer’s compatible layers, in Fig. 2 referred to as QSS,B,C , only the nodes within
this set are connected. This way, only supported layers can be reached. Edges
are generated by connecting nodes. Since it is considered to switch one layer at
a time, each node is only connected to its neighbor nodes that can be reached by
adding or removing a single layer in any dimension. Furthermore, the weights of
the edges are derived by using the absolute value of the difference between the
QoE ratings of the SVC layers presented by the adjacent nodes.

The actual calculation of the switching path is performed by applying the
Dijkstra algorithm on the calculated graph. The Dijkstra algorithm ensures that
the retrieved path minimizes the switching variation of the QoE ratings.

Sampling the Retrieved Paths. Since the main objective of performing Layer
Switching is to have smooth transitions, it is essential not to overwhelm the
user with too many layer variations [25]. Therefore, it might not be beneficial
to switch through all layers along a derived switching path. Thus, a sampling of
the derived adaptation path has been introduced to limit the number of jumps
in a given time interval. Motivated by Ni et al. [17], a minimal time of 3 seconds
has been chosen per switch. Given a default adaptation interval of 10 seconds,
this allows for three steps per adaptation.
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Configuration of Strategies. For the sake of clarity, an adaptation strategy
is referred to by the name DxSy, where x denotes the used Layer Decision and
y the Layer Switching algorithm. This way, DBw SSim, for example, refers to
the mechanisms that combine Layer Decision maximizing bandwidth utilization
and the simple Layer Switching algorithm.

4 Evaluation Results

A VoD scenario was considered that comprises nine streaming servers and 100
peers with three different resource classes to reflect peer heterogeneity. The used
number of peers has been shown to be typical in content distribution scenar-
ios [9]. The peers differ in their static device properties such as the maximum
screen resolution and connection bandwidth. The VoD system uses a mesh-/pull-
based dissemination scheme. For an accurate simulation of the transferred video
streams, all properties of the videos were derived from real SVC encoded videos.
The length of the test video is 300 seconds, which is a typical duration of, e.g.,
a video shared at YouTube. Peers enter the system with an exponentially dis-
tributed arrival time with a mean of 90 seconds. They stay in the system after
finishing the streaming process with a probability of 40% for a random time be-
tween 0 and 300 seconds. During streaming, progressive quality adaptation takes
place every 10 seconds, which has been shown in a previous work to be a reason-
able value [2]. All simulations were conducted using the simulation framework
PeerfactSim.KOM [21]. They were repeated 10 times with different seeds for
each configuration, 95-percent confidence intervals are reported for all results.
Further details on the simulation parameters and the setup as well as additional
scenarios are described in [1].

Evaluation Metrics. For the evaluation, two classes of metrics were used:
session metrics, describing characteristics of the streaming process, and SVC
video quality metrics focusing on the quality of the delivered video content.

The class of session metrics includes the start-up delay, the total stalling
time, the number of stalling events, the number of SVC layer changes, and the
SVC layer change amplitude. The start-up delay is the time between starting the
streaming process and the time until enough initial data were received to start
the playback. The total stalling time is defined by the sum of all stalling event
durations over the playback process, including the start-up delay. The number of
stalling events describes how often the playback was paused due to missing data.
The number of SVC layer changes and the change amplitude describe how often
quality layer changes happened and how far jumps between two layers were. The
SVC layer change amplitude is defined as follows:

Amplitude (l1, l2) = |d1 − d2|+ |t1 − t2|+ |q1 − q2|, (1)

where l1 = (d1, t1, q1) and l2 = (d2, t2, q2) describe the two involved SVC layers
as triple of their spatial (s), temporal (t), and quality (q) layer dimensions.



9

For the class of SVC video quality metrics, the relative received layer and
the VQM rating were used. The relative received layer describes the ratio of a
peer’s received SVC layer to its requested maximum layer. A value of 1 denotes
that a peer received the video with the maximum requested quality. The VQM
rating describes the estimated QoE for the received SVC layers, derived using the
objective QoE metric VQM [18]. For this metric a lower value denotes a better
quality rating. For clarity, the mapping to the Mean Opinion Score (MOS) is
included in the evaluation figures as described by Zinner et al. [26].

System Capacity. In a first step, the impact of changing server resources on the
system performance and the streaming process were assessed. Good provisioning
of server capacity is essential for content providers who want to provide good
performance but still keep costs low. For the experiments, the upload bandwidth
of the streaming servers was used as target parameter. In Fig. 3, a subset of the
results are presented, including the start-up delay, total stalling time, relative
received quality, and played-out VQM rating.

The following observations can be made for the session quality: Increasing the
server capacity yields almost an exponential decrease in the start-up delay for
both mechanisms. The QoE-aware mechanism DQoESQoE shows clear advantage
(of one second) over the QoS-based DBwSSim mechanism. Starting from 25 Mbps
server capacity, a saturation effect can be observed, where adding more capacity
does not further decrease the start-up delay. This can be attributed to the time
the buffer has to be filled, which is limited by the download speed of the peers and
the server capacity. A similar observation can be made for the total stalling time,
where both mechanisms show a saturation effect for capacities above 25 Mbps,
with the QoE-aware mechanism constantly having a slightly better performance.

For the SVC video quality the following observation can be made: First of
all, increasing server capacity enables the peers to better maintain the initially
selected layer and this way achieve high relative received quality values. When a
content provider is offering a high server upload capacity of 55 Mbps, the rela-
tive received quality reaches 80% and 90% for the DBwSSim and the DQoESQoE

mechanisms respectively. For the QoE-aware adaptation mechanism this is al-
ready achieved starting from 25 Mbps. For content providers it is possible to save
precious server resources using the proposed QoE-aware mechanism. Assuming,
for example, a target average received layer of 80%, for DBwSSim this would
require server resources of 35 Mbps, whereas for DQoESSim 15 Mbps would be
sufficient, resulting in up to 60% reduced server resources. This can be explained
by the fact that since the peers are favoring layers with higher VQM ratings,
those layers are better replicated, making it easier to retrieve video data from
other peers rather than from the server. For the VQM rating, it can be observed
that, starting from a 15 Mbps server capacity, the DQoESQoE mechanisms yields
an average played VQM quality of 0.2. This maps to an excellent perceived qual-
ity on the MOS scale. DBwSSim only achieves a good level of quality.

To sum these results up, it can be concluded that using the QoE-aware
mechanism a great reduction of server capacities by up to 60% is possible in
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(a) Average start-up delay per peer (b) Average total stalling time per peer

(c) Average relative received quality (d) Average played VQM quality

Fig. 3: Comparison of session and video quality for changing system capacities

comparison to the used non-QoE-aware mechanism, while providing a high level
of relative received quality of 80% and improving the VQM to the highest quality
level on the MOS scale. Using these results, enables content providers to define a
threshold for the relative received quality, or even better the estimated perceived
quality in terms of the VQM rating, and provide additional server capacities on
demand, if a certain critical limit is about to be violated.

Adaptation Strategies. In a second step, the impact of using the proposed
QoE-aware mechanism with and without Layer Switching was evaluated. As
described before, the concept of Layer Switching was introduced to allow for a
smooth change in layers by using an adaptation path and a stepwise execution.
For the evaluation, again the default configuration was used, this time with a
fixed maximum upload bandwidth for each server of 25 Mbps.

In Fig. 4, the observed impact of the different adaptation mechanisms on
the session quality is shown. As already observed before, using the QoE-aware
mechanisms, the total stalling time of the peers can be reduced. While for the
non-QoE-ware mechanism DBwSSim an average value of about 12 seconds is
observable, DQoESSim and DQoESQoE allow for a reduction of more than 2
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seconds. The high degree of improvement becomes further apparent in the second
used session metric, the number of stalling events. Here reductions of observed
stalling events over the whole simulation from values of about 110 for DBwSSim,
to about 40 for DQoESSim, and about 50 for DQoESQoE could be shown. For
DQoESSim and DQoESQoE , this relates to a decrease of more than 50%.
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Fig. 4: Comparison of the session quality for different adaptation mechanisms

In Fig. 5, the impact on two further session metrics is shown. For the num-
ber of layer changes due to adaptations, a reduction of more than 50% from the
non-QoE to the simple QoE-aware mechanisms is observable. The introduction
of Layer Switching, in contrast, led again to a slight rise. This and the results
presented before imply that using Layer Switching leads to a reduction of the
session quality. In order to, nevertheless, show the impact of this mechanism,
the layer change amplitude has been introduced as session metric. The motiva-
tion for this was the observation that not only the number of changes but also
the step width of changes has an important impact on the perceived quality
and should be kept as small as possible [25]. The metric was defined at the
beginning of the section. In Fig. 5b, the result for the layer change amplitude
is presented. Compared to the DBwSSim mechanism, an increase for this met-
ric can be observed using the simple QoE-aware mechanism. Additionally, using
Layer Switching allows to reduce the amplitude to a value even below the value
of the non-QoE-aware mechanism. Layer Switching, therefore, may further help
to improve the perceived quality.

To understand the relevance of the different adaptation mechanisms for the
QoE, the average received VQM rating for the delivered content is presented
in Fig. 6. The two most important observations are that, using the QoE-aware
mechanisms, the objective QoE rating can be improved from a good to an ex-
cellent level and that, in contrast to the non-QoE-aware mechanism, peers with
more resources are able to retrieve content with a better quality rating. For the
non-QoE-aware mechanisms the opposite was the case.
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(a) Played VQM quality (b) Played VQM quality per peer group

Fig. 6: Comparison of the VQM quality for different adaptation mechanisms

5 Conclusion and Future Work

This paper investigated how objective assessment of perceived video quality can
be used to realize quality adaptation mechanisms for SVC-based video streaming.
Therefore, the design of a QoE-aware quality adaptation mechanism using the
state-of-the-art objective QoE metric VQM has been presented. Furthermore,
the approach was evaluated in the context of a P2P VoD streaming scenario.

The evaluation results show that by applying the proposed mechanisms, a
content provider could benefit from lower costs due to a decrease in required
streaming server resources by up to 60%, compared to traditional QoS-driven
mechanisms. The QoE-aware adaptation mechanism showed superior advantages
over the non-QoE-aware mechanisms in terms of lower total stalling event counts
by up to 50%, as well as the relative received quality of the single peers by
up to 20%. Besides, it could be shown that the proposed mechanism succeeds
in maximizing the objectively estimated perceived quality, which is the target
metric of the mechanism. By additionally using Layer Switching mechanisms
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for smooth transitions during layer changes, the average layer change amplitude
can be reduced, at the cost of an increased total number of layer changes. For
the latter result it is assumed that subjective studies have to be conducted to
further evaluate the two parameters’ impact on the perceived quality by human
users. The results then can be applied to decide on how these parameters have
to be weighted to maximize the QoE during the streaming process.

As future work, the consideration of longer videos is planned. Therefore, it
has to be investigated how one can account for changes in the video content, as,
e.g., implied by different scenes in a movie. As the perception of video quality
is highly dependent on the content, it is assumed that different quality ratings
are necessary for different parts of a longer video. Additionally, a more detailed
analysis of the adaptation strategies’ impact on the perceived quality is planned,
including the consideration of the QoE for single users. In this context, it is of
particular interest how the strategies affect the users with the worst QoE in
the system. Finally, it is planned to perform a prototypical evaluation of the
presented adaptation mechanisms in a testbed to investigate their applicability
in real-world environments.
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