
Nicolas Repp, Rainer Berbner, Oliver Heckmann, Ralf Steinmetz; A Cross-Layer Approach
to Performance Monitoring of Web Services; Proceedings of the Workshop on Emerging
Web Services Technology (in conjunction with IEEE ECOWS 2006), CEUR-WS, Zürich,
Dczember 2096. S. 17-27.

A Cross-Layer Approach to Performance Monitoring
of Web Services

Nicolas Repp, Rainer Berbner, Olivcr Heckmann, and Ralf Steinmetz

Tcchnischc Universität Darmstadt
Multimedia Communications Lab (KOM)

Mcrckstrassc 25,64283 Darmstadt, Gcrmany
repp@kom.tu-darrnstadt.de

Abstract. An incrcasing amount of applicaiions arc currcntly built as Wcb Scr-
vicc cornpositioiis bascd on thc TCP/IP+HTTP protocol stack. In casc of any
dcviations from dcsircd runtimc-bchavior, problcmatic Wcb Scrviccs havc to bc
siibstituicd and thcir cxccution plaiis havc to bc updatcd accordingly. Onc chal-
lcngc is to dctcct dcviaiions as carly as possiblc allowing timcly adaption of cxc-
cution plans. Wc advocatc a cross-laycr approach to dctcct bad pcrformancc and
scrvicc intcrruptions much carlicr than by waiting for thcir propagatioii through
thc full protocol stack.
This position papcr dcscribcs an approach to gain dctailcd rcal-timc information
about Wcb Scrvicc bchavior and pcrformancc bascd on a cross-laycr analysis of
thc TCP/IP+HTTP protocols. In this papcr wc focus cspccially on TCP. Thc rc-
sults arc uscd to makc dccisions supporting scrvicc sclcction and rcplanning in
scrvicc-oricntcd computing sccnarios. Furthcrmorc, gcncric architcctural compo-
ncnts arc proposcd implcmcnting thc functionality nccdcd which can bc uscd in
diffcrcnt wcb-bascd sccnarios.

1 Introduction

Almost every lnternet User has encountcred problems while using services in the Inter-
net, e.g., browsing the World-Wide Web or using Email. Long to infinite response times
due to congestion or connection outage, non-resolvable URLs, or simple file-not-found
errors are some of the most common oncs. Human Users tend to be flexible in case of
any sewice "misbehavior". Users wait and check back later or even select a different
scrvice if the originally requested service is not available. In contrast, computer Systems
as service consumers are not as flexible. Appropriate strategies to handle those runtime
events have to be implemented during design time of the computer System.

Serviccs are the key building block of service-oriented computing. A Service is a
self-describing encapsulation of business functionality (with varying granularity) ac-
cording to [I]. Following the service-oriented computing paradigm, applications can
bc assembled out of several independent, distributed and loosely-coupled services [2].
Those services can be provided even by third parties. One option to implemcnt services
froin a technical pcrspective is the use of Web Services. Web Services are based on dif-
ferent XML-based languages for data exchange and interface description, e.g., SOAP
and the Web Service Description Language (WSDL). For the transport of data and the

II I Processes
Discoveiy. Aggregation. Choreography. ... / I

Fig. 1. Modified W3C Web Services Arcliitecture Stack [3]

REST
XML-RPC

. . .

XML. DTD. Schema
. . . . ~ . - .

Hypertext Transfer Pmtocol
.- -.

~ ~ ... ~ - -

Transmission Control Protocol

lnternet Protocol

... 1

Web Service invocation mainly the Transmission Control Protocol (TCP) / Internet Pro-
tocol (IP) suite (e.g., RFC 793, [4], or [5]) as well as the Hypertext Transfcr Protocol
(HTTP - e.g., RFC 261 6 or [6]) are used. Figure 1 shows the W3C Web Services Archi-
tecture Stack enhanced by alternative Web Service technologies and the communication
protocols used. It will be the basis for our further considerations.

In order to build applications from different existing Web Services the following
generic phases are needed [7]: First, suitable Web Services have to be selected accord-
ing to the functional and non-functional requirements of the application. Second, the
selectcd Web Services have to be composed to an execution plan. Hereto, a coinpositioii
can be described, e.g., on basis of the Business Process Execution Language (BPEL)
[8]. In the next step the execution plan can be processed. During the execution phase
it is possible that parts of the composition do not act as expected with regard to the
non-functional requirements. Reasons for misbchavior of Web Services are manyfold,
e.g., Server errors while processing a request, network congestion or network outages.
Therefore, it is necessary to select alternative Web Services and to replan the Web Ser-
vice execution [9]. Replanning is always a trade-off between the costs of creating ncw
plans to fulfill the overall non-functional requirements and the costs of breaking the
requirements [IO]. Timely action is required to reduce the delay in the execution of an
application due to replanning and substitution of Web Services. Hence, we propose a
proactive approach initiating countermcasures as soon as therc is evidence that a de-
viation might occur in the near future with a certain probability 1,. To Start replanning
before the deviation happens allows replanning to be carried out in parallel to the ser-
vice execution itself. The results of replanning have to be discarded with probability
1 - p as the alternative plans are not needed.

Furthermore, current approaches often lack detailed information about the Status
of a Web Service due to the information hiding implemented in the layer model of

5 3
ul
LD

2
T

the TCP/IP+HTTP protocol stack underlying Web Services. For this, we advocate a
cross-layer approach to detect bad performance and service interruptions. Cross-layer
analysis allows decisions based on decper kiiowledge of the current situation as well as
dccisions made much earlier than by waiting for information propagating through the
full protocol stack.

The rest of this position paper is structured as follows. In the next section we de-
scribe Quality-of-Service (QoS) and its meaning for Web Services. We especially fo-
cus on performance as a part of Web Service QoS. Afterwards, the relation between
TCP/IP+HTTP and Web Service performance is discussed. Our cross-layer approach to
performance monitoring an performance anomaly detection of Web Services is intro-
duced thereafter. The paper closes with a conclusion and an outlook on future work.

2 Quality-of-Service and Performance of Web Services

In this section we discuss QoS with rcgard to Web Services and Web Service composi-
tions with a focus on Web Service performance.

2.1 Quality-of-Service with regard to Web Services

Similar to QoS requircments in traditional networks, there is a need to describe and
manage QoS of Web Services and Web Service compositions. Generally, QoS defines
non-functional requircments on serviccs independent from the layer they are related to.
QoS can be divided into measurable and non-measurable parameters. The most com-
mon measurable parameters are performance-related, e.g., throughput, response time,
and latency. Additionally, parameters like availability, error-rate, as well as various non-
measurable parameters like reputation and security are of importance for Web Services
[I 01 [I I]. The ineaning of QoS requirements can differ between service providers and
service requesters in a service-oriented computing environment [I I]. From a service
providers' perspective, providing enough capacity with the quality needed to fulfill
Service Level Agreements (SLA) with different customers is a core issue. Service re-
questers are inore focused on managing bundlcs of Web Services from different ven-
dors in order to implement their business needs. Therefore, management of QoS re-
quirements is done on aggrcgations of Web Services, to a lesser extend on single Web
Services.

There is a variety of other definitions of Web Service QoS. A more extensive ap-
proach identifies the following requirements [I 21: performance, reliability, scalability,
capacity, robustncss, exception handling, accuracy, integrity, accessibility, availability,
interoperability, security, and network-related QoS requirements. Especially the last re-
quirement is of further interest. As many requirements of Web Service QoS are directly
related to the underlying network and its QoS, iinplementations of network QoS mech-
anisms, e.g., Differcntiatcd Services (DiffServ) or the Resource Reservation Protocol
(RSVP), are also covered by the dcfinition as well.

2.2 Performance of Web Services

Performance of Web Services is not a singular concept. Rather, it consists of several
concepts which themselves are connected to different metrics and parameters. Again,
there are several definitions of' Web Service performance. We will use the definition
provided by the Web Services Architecture Working Group of the W3C as a founda-
tion for our own defintion. According to the W3C, performance is defined in terms
of throughput, reponse time, latency, execution time, and transaction time [12]. Both
execution time and latency are sub-concepts of the W3Cs definition of response time.
Transaction time describes the time needed to process a complete transaction, i.e., an
interaction consisting of several requests and responses belonging togcther.

For this Paper, we define performance in terms OS throughput and response time.
Response time is the time needed to process a query, frorn sending the request until
receiving the response [13]. Response time can be further divided into task processing
time, network processing time, i.e., time consumed while traversing the protocol stacks
of source, destination, and intermediate systeins, as well as network transport time itself.
In case of an error during the processing of a request or a response, the response tiine
measures the time from a request to the notification ofan error. We define response time
as follows:

A large fraction of a web service's response time is determined by the processing time
for requests and their respective niessages in both intermediate systcms and end-points.
For the measurement of the response tiine, the encapsulation of data into XML nies-
sages and vice versa, compression and decompression of data, as well as encryption and
decryption of messages also have to be taken into account. Furthermore, time for con-
nection setup, for the negotiation of the connections parameters as well as the amount
of time used for authentication are Part of the response time as well.

Throughput, measured in connections, requests or packets per second, dcscribes the
capability of a Web Service provider to process concurrent Web Service requests. De-
pending on the layer, different types of connections can be the basis for measuremcnts,
e.g. TCP connections, HTTP connections, or even SOAP interactions. We define tlie
throughput of a Web Services as:

Additionally, we have to define the concept of "perlormance anonialy" we will use
later On. Performance anomalies describe deviations from the performance expected in
a given situation. Performance anomalies do not havc to be exceptions or cven errors,
e.g., a response time which exceeds the value defined in a SLA is also a performance
anomaly with regard to business requirements. Furtherrnore, pcrformance bettcr than
expectations is also an anomaly.

3 A Cross-layer Approach to Performance Monitoring and
Anomaly Detection

In this section we describe an approach for performance monitoring and performance
anomaly detection based on packet capturing and the application of simple heuristics.
Therefore, we analyze IP, TCP, and HTTP data. The analysis of SOAP is not in scope
of this Paper, as we Want to stay independent of a certain Web Service technology. Our
approach can be applicd to various alternative Web Service technologies as well, e.g.,
XML-Remote Procedure Call (XML-RPC) or Representational State Transfer (REST).
Nevertheless, in our examples we use SOAP as it is the most coinmon Web Service
technology in use.

3.1 Protocol Parameters for Performance Monitoring

Consider thc siniple Web Servicc invocation of a single Web Service as dcpicted in
Figure 2. A servicc requester generates a SOAP request and sends the message using
HTTP to thc service provider for further processing. The message has to pass several in-
termediate systems on its way bctween the interaction's endpoints. The SOAP response
message is again transported using HTTP.

Service S C N ~ C R -. --
Requesler Provider

SOAP request
L'

4
SOAP response

Fig. 2. Simplc Wcb Scrvicc intcraction

During data transfer several problems can occur, which all have an impact on Web
Service execution. Beginning with the network layer, we may face routing problems,
e.g., hosts which are not reachable, congestion in Internet routers as well as traffic
bursts. Additionally, on transport layer there are also potential pitfalls like the retrans-
mission of packets due to packet loss or connection setup problems generating delays.
Finally, there are also some potential problems on application laycr with regard to Web
Services for example in form of resources, which are not existing or not accessable for
HTTP or problems in processing of SOAP messages due to incomplete or non-valid
XML data.

Although, many of the above problems are solved in modern protocol stack imple-
nientations, we can use thc knowledge about them to define measurement points for
perforinance monitoring. Depending on tlie problems in scope different protocol pa-
rameters have to be uscd. Tablc 1 gives an overview of measurement points on different

protocol layers. We will use the transport layer parameters as an example to derive
metrics and heuristics for performance anomaly detection in the following section.

1 Protocol IMcasuring Point / Paramctcr 1
I

IP IICMP rncssagcs
ISizc of advcrtisitia window

TCP

3.2 Metrics and Heuristics for Performance Anomaly Detection

Roundtrip tiiiic (RTT)
Scquciicc nunibcrs in usc

HTTP

As noted in Section 2.1 wc can differentiate betwecn thc requirements of service re-
questers and sewice providers. To visualize our concepts we will focus on the service
requester's perspective in this position Paper. Before basic heuristics arc proposed we
present metrics based on the parameters presentcd in Table I, which will be the founda-
tion of our heuristics. We propose several metrics based on parameters of the transport
layer protocol:

Flags uscd in packcts
Informaiion about timcrs
Hcadcr infoimation

- MI - Average throughput in bytes pcr second (BPS).
- M2 - Throughput based on a nioving average over window with size n seconds in

BPS.
- M3 - Throughput based on exponential smoothing (first degree) with (i varying in

BPS.
- M4 - Roundtrip time based on a moving average over window with size n Segments

in seconds per Segment.
- M5 - Number of gaps in sequence numbers based on a moving averagc over window

with size n seconds in number of gaps pcr sccond.

Table 1. Mcasuring points pcr protocol laycr

The aggregation of single metrics in combination with the usage of appropriate
thresholds allows us to build hcuristics in order to detect anonialies with performance
impact. The following two simple heuristics show the idea how to design heuristics
based on the metrics discussed. Both were derived from experinientations in our Web
Service test environment.

- HlReqiLWt„: MI (or M2, M3) in aggregation with M4, i.e., throughput combined
with RTT.

- H2R~.q11<.N1<:I.: M4 in aggregation with M5, i.e., RTT combined with the ainount of
gaps in TCP sequence numbers.

Singular metrics are in some cases not sufficient for robust monitoring, e.g., M5 without
any information about RTT does not offer useful information.

In addition to those transport layer based heuristics, further Parameters from other
protocol layers and the respectivc metrics can be combined in order to create different
cross-layer heuristics. Nevertheless, it is important that metrics and the related heuristics
have to bc calculatcd in an eIEcient way in order to keep additional processing times of
our approach low.

3.3 Exemplary Evaluation of Our Approach

To show the feasibility of our approach we set up an expcriment. Thc test environment
consists of a 1.4 GHz Centrino with 1.256 GByte RAM running Windows XP as ser-
vice rcquester and a 1.42 GHz G4 with 1 GByte RAM running Mac OS X as service
provider. Apache Tomcat 5.5.17 is used as an application Server. Both Systems use Java
1.5 and Axis 1.4 as SOAP implementation. They are connected by 100 MBit/s ethernet.
For packet capturing windump v3.9.3 is used.

First, we measure the response time of a Web Service in our test environment. As
payload we use SOAP messages of variable size. Table 2 shows the results ofmeasuring
20 individual runs both with and without network outage for a payload of 20 MByte, a
test scenario, which was already implemented in our test environment. Similar results
can bc observed with a payload of 150 KB. Network outages are equally distributed

L. I ' 1 . I '

W/ outagc 1601,204 1605,83 1 1604,186
Kable 2. SOAP rcsponsc timcs

in the interval [O;inax(t„.„„„„(ws) wlo outage)]. A network outage is modelled as a
permanent 100% packet loss, i.e., without a restart of the connection. Other scenarios,
e.g., varying or temporary packet loss, are not in focus of this position paper. As Table
2 shows, the response time of our Web Service varies between 8.9 seconds (without
outage) and 10.07 niinutcs (with outagc) for a 20 MByte payload.

Ii.11. [ins] ~iniiiiinu~n~maximun~~avcra~c

111 1 R,-O~LCSLCV 10.22 10.4 1 10.31
I I

Table 3. Roundtrip timcs

In a next step, we apply HIR,I„„.,~,,,. on our sample with network outages. Espe-
cially the roundtrip time extracted from TCP packets can be used as trend estimate for
tlie overall response time in our scenario. Table 3 shows the average roundtrip times of
all 20 runs. Using a moving average of the roundtrip tinies measured as a benchmark

for the roundtrip time of the packet in transfer, a warning to the replanning system can
be sent, e.g., if the estimated time (or a multiple) is exceeded twice or more in a row.
Unforiunately, throughput was not as good as the RTT as an indicator for perfornlance
anomalies in the given scenario.

3.4 Identificrtion of Required Architectural Components

In order to implement our idcas several architectural componcnts arc ncedcd. Thc key
building blocks are depicted in Figure 3.

y - i
- (Re-)Planning Component

Orchestration Engine

. ..

e.g., lnternet 0
Fig. 3. Proposcd architcctural componcnts

The upper part of Figure 3 describes existing generic components used for planning
and executing of Web Service conipositions. The Interface allows deployment of work-
flows and configuration, the (Re-)PlannUig Cornponent geiicrates and adapts execution
plans, which are thercafter executed by an Orchestration Engine. We propose the use
of our Web Service Quality-of-Service Architectural Extension (WSQoSX) as implc-
mentation means for the functionality needcd. WSQoSX alrcady supports planning and
replanning of compositions [7] [IO].

The lower part of the figure describes the two core components of our approach
in addition to the protocol stack. This enhanced architectural blueprint is namcd Web
Service - Service Monitoring Extension (WS-SMX). The Monitor specifies a compo-
nent capable of eavesdropping of the network trafiic between service requester and
provider. It also implements pre-filtering of'the data passing by reducing it to the pro-
tocol data of interest. Its data is passed to a Detecfor component, which is responsible

for thc data analysis and therefore the performance anomaly detection. The Detector
component will iinplement thc heuristics discussed in Section 3.2. The Orchestration
Engine initializes the Defecfor, which itsclf prepares the Monitor. The Detector analy-
ses the data received by the Monitor and triggers the (Re-)Planning Cornponent in case
of any critical findings. Additionally, the Detector component can be configured using
the IntcijCace. Both Monitor and Detector are implemented in a first version in our test
environment based on Java 1.5 in combination with libpcap for packet capturing.

4 Related Work

As our approach is based on rescarch of various domains this section gives an overview
of related work in those dornains. Gschwind et al. [I41 describe WebMon, a perfor-
mance analysis system with focus on Web transactions, i.e. transactions between a Web
browser and a Web servcr. Monitoring is done on basis of HTTP. Web Services as re-
mote inethod invocations as well as a furtlicr processing of the results of the analysis
are not in scope of thcir papcr. Similar mechanisnis as the ones proposed by us are iin-
plemented in the commercial software package VitalSuite by Lucent, which is used for
capacity planning and QoS management in large networks. VitalSuite can also analyze
diffcrent protocol layers simultaneously. In contrast to the system we propose, Vital-
Suite's focus is on reporting for end-users instead of automated management. A more
detailed view on performance management of Web Services is discussed by Schmi-
etendorf et al. [15]. The Web Services Trust Center (WSTC) allows Web Services to be
registered at and measured by an independent third party for SLA management. WSTC
enables the monitoring of performance and availability of Web Services, but not under
real-time requirements.

The management of Web Service compositions, their orchestration as well as their
optimization and planning is emphasized in various Papers, partly mentioned in the
introduction. Of further interest in that domain is the Web Service Manager (WSM)
introduced by Casati et al. [I61 focusing on the business perspective of Web Service
management, e.g., detecting and measuring SLA violations.

Fundamental work in the area of packet capturing, its justification and optimization
was carried out e.g., by Feldmann [I 71 and Mao et al. [I 81. Both do not focus on poten-
tial areas of application for packet capturing but on measurement itself. Feldmann uses
cross-layer capturing and analysis of TCP and HTTP for later Web performance studies.
Mao et al. describe both drawbacks and advantages of performance analysis of Web ap-
plications based on packet capturing mechanisms. Furthermore, a reliable and efficient
approach for monitoring in distributed Systems based on dispatching is discussed.

The idea of anomaly detection to predict certain critical situations is already used,
e.g., in the area of network security, especially in network intrusion detection. Mainiko-
poulos ct al. describe the usc of statistical methods applied to network usage traces for
anomaly detection, e.g., an attack on a networked system [19]. Another area of appli-
cation is discussed by Yuan et al. [20]. They propose a system for automated problem
diagnosis in applications based on system event traces. The correlation of current traces
and Patterns of wcll known problems allows an automatic identification of problem

sources and prediction of possible system errors. Furthermore, the authors use statisti-
cal learning and classifying methods to dynamically adapt and improve their system.

5 Conclusion and Future Work

In this position paper we show that it can be beneficial to use information gathered
on different protocol layers for decision support. Wc present an approach and several
architectural components, which use hidden, low layer technical information for proac-
tive replanning of Web Service compositions. As this is a position paper there are still
some Open issues we are researching. We are currently testing machine learning algo-
rithms for anotnaly detection. Furthermore, we are working on enhancements of ex-
isting optimization models for Web Service compositions to support replanning [IO].
Additionally, we will test our approach froin a service requester's perspective in real
world scenarios, using Web Services available to the public, e.g., froiii Amazon or via
Xmethods.

Using our approach for proactivc replanning is not limited to SOAP Web Services.
As we are collecting our data on lower layers, the type of Web Service can be ex-
changed, e.g., REST and XML-RPC based Web Services can also be supported. But wc
are not even liniited to Web Services as an area of application. The approach can be of
benefit, e.g., to enhance Web browsers to detect network problems in a faster way.

Acknowledgments

This work is supported in part by E-Finance Lab e.V., Frankfurt am Main.

References

I . Papazoglou, M.P.: Scrvicc-oricntcd computing: Conccpts, charactcristics and dircctions. In:
Procccdings of thc Fourth International Confcrcncc on Wcb Iiiformation Systcins Enginccr-
ing (WISE03). (Dcccmbcr 2003) 3-12

2. Bichlcr, M., Lin, K.J.: Scrvicc-oricntcd computing. IEEE Coinputcr 39(3) (March 2006)
99-10 1

3. Booth, D., Haas, H., McCabc, F., Ncwcomcr, E.,Champion, M., Fcrris, C., Orchard, D.: Wcb
scwiccs architccturc (2004. http://www.w3.org/TR/ws-arch/, acccsscd: 2006/07/02)

4. Stcvcns, W.R.: TCPIIP illustratcd (vol. I): thc protocols. Addison-Wcslcy Longinan Pub-
lishing Co., Inc., Boston, MA, USA (1994)

5. Tancnbaum, A.S.: Computcr Nctworks, Fourth Edition. Prcnticc Hall, Indianapolis, Indiana,
USA (August 2002)

6. Mogul, J.C.: Clariiying thc fundamcntals of http. In: WWW '02: Procccdiiigs of thc I Ith
intcmational confcrcncc on World Widc Wcb. (May 2002) 25-36

7. Bcrbncr, R., Grollius, T., Rcpp, N., Hcckmann, O., Ortncr, E., Stcinmctz, R.: An approach
for thc managcmcnt of scrvicc-oricntcd architccturc (soa) bascd application systcms. In:
Procccdings of thc Workshop Entcrprisc Modclling and Information Systcms Architccturcs
(EMISA 2005). (Octobcr 2005) 208-221

8. Curbcra, F., Khalaf, R., Mukhi, N., Tai, S., Wccrawarana, S.: Thc ncxt stcp in wcb scrviccs.
Commun. ACM 46(10) (2003) 29-34

SEE-I SE
(0002) (9-1)ES SyJOW3N 'induio3 'dyd31 pue dilq JO 8u!3~.11~3Le1-!g :]I8 :'V 'uueuipl3-~ 'LI

OYCS (EOOZ) (0 1)9~ W3V .unuiUo3
.s~~!A.I~s q3M JO iu3~1~4eueui ~~~u~!Jo-ss~u!s~~ :'3'w 'ueqs '.n 'ienea "3 'ueqs "d '!lese3 .9l

ZSI-LEI (500~ ~IV) 'SOOZM3d)In
- doqsy~o~ Bu!~a3u!4ug CJ~U~UIJOJJ~~ yn ISIZ 341 jo .30.1d :UI .suo!inIos uo!lt?.1431u!
P3Seq-33!AJ3S q3M U! SI~~~SI? 33UBuiJOJJ3d 1's 'AOU~~~O~S ">I '3yulna "V 'J.'oPu~I~!L[I~~S .EI

9L 1-1 L I (2002 3uni) '7.002 S1M33M - sui3lsK~ uo!leui.ioJul P3se€l-q3M Plie
33J3WLU03-3 J0 S3nSSI p33USAPV U0 ~O~S~JOM 1<1111 3331 qlp 3q) J0 '3OJd :L11 'SUO!l3l?SlIB.11
qaM JOJ ~alyo~d ~~LWUUOJJ~~ V :UOuiq3M :'X 'J3lSJnM ")1;1 '8.ief) ">1 '!q8Llsg ''L 'P~l!Mq3Sf) 'PI

(1661) vsn
'AN '~JOA M~N '311 'SUOS T A31!~ uqor .4~!13poui pue 'uo!lelnu!s 'luoui~~nse~ui 'u8!sap
leiuaui!~3dx3 JOJ s3nb!uq331 :s!skleue ~~UEUIJOJJ~~ SW~~SLS ~3lnduio3 jo bie 341 :'>I 'u!B~ 'E 1

(EO1~01900Z :P3SS33
-3E '~O~-SM/~OO~/~~~~~O-J>VJ~~~O~~~M~MMM//:~ '~00~) S~LI~UOJ~~I! ~I~!SSO~ Pile SlLi3ui

-3~!nb38 :S33!AJ3S q3M JOJ SO() :'M'S 'y~ed "H'S '8~03r "S'M '331 "H'r '~03f '.3'y '331 '21
SL-ZL (~00~) (9)9 %u!induio3 i~w3iul 3331 .s~~!AJ~s q3~ U! S~~SS! SO() :.v.a '?3seu3~ .I I

(9002 lsnznv) '(~o,sI~wv) sui3lsAs
UO!l~UUOJUl U0 33U3J3JU03 SE3!JaUlV l(lZ(aql J0 s8u1paa3o~d :U1 'SMO(lVJ0M a31NaS q3M J0

