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ABSTRACT

Today, mobile nodes use multiple Internet access networks ineffi-
ciently. State-of-the-art network selection strategies distribute data
traffic to available networks, but ignore an important second di-
mension: time. Time selection offers the opportunity to plan us-
age of future-available networks for delay-tolerant data traffic. We
hypothesize, that concurrent selection of network and time leads
to synergy effects, which reduce transmission cost and boost con-
nectivity performance. To assess data distribution to wireless net-
works and time, we propose a novel rating model for joint network
and time selection. The proposed model rates the satisfaction of
Quality-of-Service (QoS) application requirements and trades off
conflicting optimization goals. Moreover, we analyze the impact
of time in network selection and present three network selection
schedulers, which differ in their time selection strategy. Evalua-
tion of the results reveals a strong impact of time selection on net-
work performance. This gives evidence, that our initial hypothesis
holds and forward-looking scheduling strategies provide a substan-
tial benefit over state-of-the-art approaches.
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1. INTRODUCTION

Mobile devices are commonly equipped with multiple network
interfaces, e.g. WiFi and cellular network. A method to switch
and use them in parallel is provided by multi-homing capable han-
dover schemes, which enable dynamic distribution of data flows
over available networks [9][11]. This leads to the question: Which
networks suit best to transmit application data?
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Network selection ideally aims on QoS requirement satisfaction
of data flows. These QoS requirements are defined as flow-specific
limits whose violation causes user-perceived service quality degra-
dation. QoS requirement satisfaction benefits from flow distribu-
tion through qualified network selection. Networks are selected
that match best to application QoS requirements. This contributes
to our superordinate goal: user-perceived network quality improve-
ment [10].

Considering a scenario of fast moving mobile nodes, network
availability and transmission characteristics change frequently. Such
dynamics impose challenges but also provide opportunities for sub-
stantial improvement. The question of network selection expands
in time dimension: Which of the now or future-available networks
suit best to transmit application data?

However, related work limits the problem to pure network se-
lection and ignore the time selection. In contrast, the selection of
proper transmission time without a view on network selection is
often named resource allocation. Existing approaches usually fo-
cus on a single network connection and homogeneous data traf-
fic. However, even these simple scenarios cover a huge optimiza-
tion potential. Transmission of application data is coordinated to
preload data or to use prospective available network resources. How-
ever, state-of-the-art QoS rating functions on resource allocation
are not flexible enough for heterogeneous data traffic. Furthermore,
no parallel networks are considered.

To the best of our knowledge, network selection and resource al-
location are only considered separately in existing approaches. We
hypothesize, that time selection in network selection has a strong
impact on user-perceived network performance. To illustrate the
impact of the time dimension, we give an example: Data trans-
mission of a flow may be delayed to use a better-suited network,
which will be available soon. Furthermore, delaying transmission
or handover to another network can free up resources to finish trans-
mission of concurrent data flows before a certain network gets out
of reach. Consequently, the scenario requires tight coordination of
data flows in network and time selection.

To answer our hypothesis, we need a schedule rating function
that enables assessment for joint network and time selection sched-
ulers. In this paper, we present three contributions:

1. A rating model to assess schedule quality in joint network
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and time selection. It considers satisfaction of application
QoS requirements and monetary cost in heterogeneous net-
works with heterogeneous data traffic.

2. An analysis on the impact of time in network selection. There-
fore, we present three schedulers differing in time impact
of their search strategy. (1) A classical Network Selection
(NS) without time impact. For each data flow, it selects the
best matching now-available network. (2) An Opportunis-
tic Network Selection (ONS) with statistical time impact. It
extends NS by the opportunity to delay transmission, if no
well-matching network is available now. (3) A Transmission
Planning (TP) with explicit time impact on search strategy. It
selects the best matching network from now and future avail-
able ones and decides about transmission time in a second
step. Using these three schedulers and the proposed rating
model, we investigate the impact of time selection in network
selection schedulers on user-perceived network performance.

3. We provide the code sources of the schedulers and our evalu-
ation framework including the novel rating model to encour-
age future development of advanced schedulers.'

In the following section, we discuss related work and give an
overview on our schedule rating approach in section 3. Subse-
quently, we explain the parameter space in section 4 and the rating
model in section 5. These sections belong to our first contribu-
tion, the schedule rating model. The following sections focus on
our second contribution, the investigation of the impact of time in
network selection. To demonstrate the joint network and time se-
lection problem complexity, we analyze it in section 6 and discuss
why existing heuristics are not applicable. After that, we present
three heuristic schedulers in section 7. Finally, we apply our novel
rating scheme to them in section 8 to investigate the impact of time
in network selection.

2. RELATED WORK

The related work in this topic is split into two domains: network
selection and resource allocation. In fusion, we call it scheduling.
This split preempts work from evolving synergy benefits.

2.1 Network Selection

Network selection algorithms try to select the best network to
connect to and a good point in time for a soft or hard handover.
Mathematical models are analyzed in [14]. We further divide the
related work into network-controlled and client-controlled selec-
tion. The difference is firstly the location of the decision making
and triggering and secondly the environmental knowledge that de-
cisions are based on.

Network-controlled: In network-controlled approaches, network
operators manage selection. In general, network operators aim to
maximize overall throughput and their revenue. Network-controlled
approaches benefit from top-level knowledge about user devices,
which enables access coordination inside the controlled network
[4]. Competitive and collaborative design using game theory [13]
or predictive models and lead to remarkable results [7].

Client-controlled: In contrast, client-controlled approaches bene-
fit from network operator independence. The network selection is
not limited to those of the network operator. The selection uses
detailed information about the user’s needs. However, in the client-
controlled domain, there is a lack of information about other users
and the current network state. Therefore, algorithms are usually
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based on assessment of estimated network performance [15]. Many
approaches use map-attached aggregated historical data and move-
ment estimation to derive future network availability and perfor-
mance. The assessment measure in several papers is satisfaction of
application QoS requirements. Popular methods are Multi-Attribute
Decision Making (MADM) functions [8, 1], which apply weighted
sums to assess the networks. MADM approaches provide linear
models, which enable linear replacement of violations. However,
linear replacement implies, that a strong violation of one require-
ment, is as severe as many slight or even negligible violations. Fur-
thermore, normalization of requirements leads to fairness between
data flows. However, a data flow with hard requirements should
not be assessed equally to one with soft requirements, e.g. a voice-
over-IP flow in comparison to a background download.

2.2 Resource Allocation

Resource allocation decides at which rate and which time data is
transmitted. It focuses on collaborative link capacity use and packet
preference. It is usually applied on data link layer and focuses on
fairness of transmission. A well-studied subject is packet prioriti-
zation in WiFi within send buffers, to optimize transmission via a
single link [5]. In contrast to this, we target collaborative use of dif-
ferent network interfaces. A simple L2 approach distributes pack-
ets to available networks in round robin fashion [16]. It reduces
QoS requirements to interface preference and ensures fairness for
scheduled flows. However, this scheduling covers only short-term
delivery plans for the next few packets. The rating model is static
and does not cover long-term optimization potential.

Bui and Widmer focus on bufferable video delivery [2]. They re-
duce device energy consumption and avoid buffer under-run. There-
fore, flow control is planed for up to several minutes. Moreover, the
scheduling tolerates hazy network prediction. This proactive long
term scheduling provides good transmission time planning. A simi-
lar approach using opportunistic algorithms has been studied in [6].
However, authors of both papers limit their approaches to a single
network and bufferable video traffic. Its QoS requirements are un-
challenging and therefore mostly neglected. Thus, their schedule
quality rating models lose general validity.

2.3 Discussion

In network selection, network-controlled and client-controlled
schemes are often discussed as competitive approaches. In con-
trast, we argue that both should be applied concurrently. This way,
network operators optimize performance with collaborative client
information for their own network. Concurrently, users choose be-
tween optimized networks of different providers. For our schedul-
ing, we assume this two-fold network selection model and focus on
the user-controlled one.

Network selection and resource allocation both suffer from is-
sues in rating functions. Those functions often lack validity for
heterogeneous data traffic or provide only linear models. Linear
models make QoS requirement violations interchangeable, regard-
less of their strength. A better model would avoid severe violations.

In addition, network selection and resource allocation provide
only limited optimization potentials when regarded separately. Syn-
ergies evolve in a combined approach that plans both together. To
assess such scheduling models and to analyze synergy effects, a
combined rating model is required.

3. RATING MODEL OVERVIEW

Rating of schedules is fundamental for scheduler development.
Therefore, we present a novel, well-elaborated metric that supports
detailed schedule assessment for heterogeneous data traffic in joint
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Figure 1: Schedule rating overview

network and time selection. It focuses on application QoS satisfac-
tion with heterogeneous data traffic using heterogeneous networks.

To rate a schedule, we define a model of opposing forces. Firstly,
we model an attracting force that pushes data to available networks.
Secondly, we add a repelling force that pushes application data
away from networks and time that violate application QoS require-
ments. Hence, a schedule has a certain tension of forces, for exam-
ple from violation of a deadline or a minimum throughput require-
ment of a data flow. We express this tension in a cost function. The
cost function serves as quality metric to assess schedules. A lower
cost means that requirements of applications are satisfied better,
and thus indicates higher schedule quality.

In a perfect schedule, data is pushed especially to QoS-matching
networks. Moreover, delay tolerant data is moved to a point in time
in which a matching network is available. Severe violations are
avoided. As a result, the forces balance out transmissions of differ-
ent applications according to user preference and to their integral
QoS-defined priority.

A highlight of our schedule rating model is our novel throughput
continuity model. To target the potential of time selection, it de-
fines throughput requirements with tolerance to bursts and pauses.
Bursty transfer may be more efficient in the dynamic scenario of
mobile devices with fast changing network characteristics [6]. It
enables data flow distribution to networks, which are available for
a short time. As part of our novel schedule rating model, we there-
fore introduce an innovative throughput continuity model based on
sliding windows.

However, the absolute cost function value provides no quanti-
tative rating for schedule quality. For example, a scenario may
have rare network capacity, which enforces violations. In this case,
even the optimal schedule has a high cost function value. To make
schedule quality assessable, we therefore provide a scoring system,
which we call Normalized Rating Score (NRS). Instead of using
absolute values, it states how much of the overall optimization po-
tential of the scenario the scheduler exploits. This potential is de-
fined by a relative value between two borders: the optimal score
and the average score of a random scheduler as reasonable lower
bound.

The schedule rating model needs information about its environ-
ment and about the data to transmit. Required information covers
network availability and QoS characteristics, application QoS re-
quirements and user preferences. A model overview is given in
figure 1. Estimation or potential sources for this information are
assumed to be available for offline analysis. We explicitly focus
on the rating function, which assesses QoS and user preference sat-
isfaction. This rating function enables detailed assessment of any
scheduler and can be used to investigate weaknesses in model de-
tails and parameter choice for scored schedulers.

4. RATING MODEL COMPONENTS AND
PARAMETER SPACE

Our schedule rating uses models for networks, data flows and
user preferences. We summarize the defined parameters in table 1.

4.1 Network Model

Our network model covers throughput, latency, jitter and mone-
tary costs. Network throughput is defined by bucket sizes in time
slots. Hereby, a time slot ¢ corresponds the time span of the current
time 7 divided by the time slot length A7. ¢ = 7/A7. The bucket
sizes S, represent the capacity that the network n € N can pro-
vide to the mobile node in time slot ¢ € T'. Furthermore, latency
L,, and jitter J,, are constant abstract parameters for each network.
Additionally, network use leads to monetary costs Wmon,n for the
user. We model this monetary cost as constant abstract parameter
for each network.

4.2 Data Flow Model

We define data flows by data amount, latency, jitter and through-
put requirements and time limits. Hereby, a requirement for prop-
erty x is defined in 7, e.g., L ¢ is a latency requirement for flow
f € F. The amount of data 5y to be scheduled is abstracted using
tokens that represent equally sized data chunks. During scheduling,
tokens are allocated to time-slotted network buckets.

4.2.1 Throughput

We model throughput requirements as the number of tokens,
which are allocated within a time window. We define a through-
put limit using firstly a window size A Tts length is measured in
number of time slots. Secondly, we define the amount of data in-
side the window in number of tokens o. Modeling throughput using
time windows and token amounts fl\’mm, §= {Afmm, £y Omin,f
enables the definition of transmission continuity requirements. For
example, a bufferable stream may be transmitted using large data
bursts that fill a buffer fast, followed by potentially long pauses. We
model it using a large window and many data tokens. In contrast, a
live-stream requires continuous data transfer that we represent by a
tiny window and proportionally less data tokens.

Transmission continuity follows from the integration of the new
dimension of time into scheduling. It relaxes hard throughput re-
quirements from alternative models that arose from imprecise static
throughput models.

4.2.2  Start Time and Deadline

Adding the dimension of time into the scheduling model imposes
timing requirements for known data flows. To model these timing
requirements, we introduce an earliest start time ?St, + and a dead-
line tAdl, ¢ for each data flow f € F'. They refer to the corresponding
time slots.

4.2.3 Latency and Jitter

Latency requirements L ¢ and jitter requirements J, + are con-
stants for each flow representing abstract upper limits. For rating,
they are compared to the corresponding network characteristics.

4.2.4 Weights

Data flows of applications have individual requirements that we
define through the previously introduced parameters. For each re-
quirement, we define a linear weight that determines importance
of the requirement for a flow. For example, latency requirement is
important for a voice call, but not for a background download. The
set of flow requirement weights is given in 1. Weights scale re-



Table 1: Model parameters and variables

Description Symbol
flow in flows to be scheduled ferF
time slot in overall planned time slots teT
network in available networks ne€N
network interface type 4 in interface types I el
number of tokens to be scheduled for flow f S
capacity of network n in time slot ¢ (network limit) St,n
scheduled tokens of flow f in time slot ¢ to network n Sf.tn
association € {0, 1} of flow f in time slot ¢ to network n aftn
unscheduled tokens of flow f uf
number of interfaces of type ¢ of the mobile node ki

size of max. throughput window of flow f in time slots Atmac, f
max. amount of tokens in max. throughput window of flow f | Grmax,f
size of min. throughput window of flow f in time slots AtAmin, f
min. amount of tokens in min. throughput window of flow f Cmin, f

violation of min. amount of tokens in min. throughput Tmin, f,t
window for flow f in time slot ¢
deadline requirement € T of flow f tai, s
start time requirement € T of flow f tAS,,V 7
latency requirement of flow f T f
latency of network n Ly,
jitter requirement of flow f f f
jitter of network n Jn
weight of parameter x for flow f W, f
total cost function value c
cost for model part y cy

quirement violations of minimum throughput Wrp o start time
w o deadline Wy, 4 latency wy, , and jitter wy, . )

This model leads to prioritization of flows with tough require-
ments. This behavior is intended. We explicitly do not implement
a normalization. Thus, application QoS requirement strengths bal-
ance flow prioritization.

Wf = {wﬁmin,f’w{st,f ) w?dl,f s wif’wjf 5 wuser,f} (D

4.3 User Preference Model

The user may prefer a specific application or flow. Therefore, we
introduce another linear weight wyser, s that influences prioritiza-
tion of flows. This enables personalization of application priorities.

To give users a trade-off trigger between network performance
and monetary transmission cost, we introduce the balancing pa-
rameter willingness-to-pay w.¢p. We define willingness-to-pay in-
versely. A low value results in a high willingness of the user to
pay for more network performance. It trades off accumulated flow
violations to monetary cost.

4.4 Discussion

Our network and data flow models both integrate the dimension
of time. This enables accurate rating of transmission volumes and
flow shapes. In particular, the novel throughput model enables flow
continuity optimization, using flow rate adaption, continuous data
transfer or allowing bursts. Weights provide flexible requirement
definition, which enable modeling of heterogeneous data traffic
with time-dependent transmission constraints.

S. BEHAVIORAL MODEL DEFINITION

In the following, we introduce the equations that define the cost
function for rating and a set of schedule feasibility constraints.
Within these equations, we use the identity function I(z = y),
which is 1 if z is equal to y, else 0. Furthermore, we use signum
function sgn(x), which is 1 for positive z, 0 if z = 0 and —1 for
negative x. Furthermore, all parameters and decision variables are
of type integer. In addition, ay¢,», is limited to [0, 1].

The core of our model is the cost function. We define it ac-

cording to an analogy to opposing forces. The attracting forces
foster token allocation to networks. They cover a punishment for
unscheduled tokens and violation of minimum throughput applica-
tion requirement. In contrast, the repelling forces punish tokens
that are allocated at networks or time slots, which violate applica-
tion requirements. They cover firstly violation models for latency,
jitter, start time and deadline and secondly monetary cost model.

5.1 Token Allocation

This model regulates how tokens of a flow can be allocated, en-
abling dedicated network and transmission time selection.

5.1.1 Token Scheduling

A token of flow f can either be scheduled sy, ¢,,, to time slot ¢ and
network n or stay unscheduled uy. In sum, the number of tokens
of a flow is limited by 5¢. We model this constraint C1 in equation
4. Scheduled tokens sy, lead to data transmission, which implies
monetary cost ¢mon according to equation 5. This monetary cost
applies a repelling force, which pushes tokens away from expen-
sive networks. The force is scaled by willingness-to-pay wuyp. In
contrast, unscheduled tokens u lead to violation ¢,y as shown in
equation 6. They take effect in an attracting force, which pulls to-
kens to networks. Furthermore, the sum of scheduled flow tokens
st.t,» must not exceed available resources of networks, modeled by
the bucket sizeS;,». Constraint C2 in equation 7 ensures this limit.

5.1.2 Available Interfaces

In our model, the mobile node has a specified number of network
interfaces k; of the type ¢ € I, e.g. WiFi or cellular network. The
mobile node cannot connect to more networks of the same type ¢ at
the same time, than dedicated interfaces available. We model this
constraint C3 according to equation 8.

5.1.3  Flow Migration Model

Flow migration, or handover from one network to another, leads
to protocol overhead and might lead to performance degradation
during the process. It contributes to the repelling forces, pushing
tokens away from all networks except from the currently used. To
suppress frequent and unnecessary flow migration, often referred
to as ping-pong effects, each migration process contributes linearly
to the cost function. Flow migration is complex to detect from our
scheduling matrix, because scheduled flows can pause for a while.

5.1.4 Network Association Model

To detect flow migrations, we associate each flow at each time
slot to a single network that is used for potential transmission ay ¢,r,.
We ensure this by equation 9. To provide coincidence between net-
work association ay ¢, and scheduled tokens sy ; », we introduce
constraint 10. It ensures that token assignment presumes flow as-
sociation to the corresponding network. In contrast, an association
does not require an assignment of tokens. Therefore, a network
association for each flow exists in each time slot. This enables
a simple way to identify flow migration: checking of association
changes in consecutive time slots. We calculate the cost from flow
migration in equation 11. It counts the number of flow migrations
and weights it linearly by wiig to calculate flow migration cost
Cmig-

5.2 Throughput Model

Our throughput model defines window sizes and limits for the
number of tokens inside of them. The model assesses limits for
each time step, sliding the window along the planned time span.
This defines a crucial rating model for time slot selection and is
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Figure 2: Throughput model: window size is defined by A7,
number of required tokens by 7. #tokens stands for the num-
ber of scheduled tokens of a flow in the time window over all
networks.

shown in figure 2. Many data flows require a minimum through-
put. We add an attractive force to the model that pushes data tokens
to networks to affirm minimum flow throughput requirement. We
model this force in equation 13. It counts the number of scheduled
tokens sy ¢, inside each window over all networks. The sum of to-
kens in the window should at least be equal to the required number
Omin,f. Violation is allowed by the additional term of opin, ¢,
which contributes to the cost function and is therefore minimized.

Moreover, the model also requires an upper throughput model, as
shown in equation 12. This constraint C4 ensures, that a scheduler
does not plan a higher throughput than the source can deliver. An
example is a live-stream. Data cannot be transmitted earlier with
high throughput bursts because it has not been generated yet. It is
a hard constraint, which cannot be violated. Therefore, it does not
contribute to the cost function.

5.2.1 Throughput Violation Normalization

To derive the cost function impact for minimum throughput vio-
lation c=5  , we define a cost normalization for violation token
Tszn,f

count Opmn, f,: in equation 14. To treat flows equally from their
data amount, we normalize the violation cost to the number of to-
kens of a flow. Thus, we add the linear parameter G, in, s to the
cost function calculation. Additionally, a token gap, which causes
violation, is counted multiple times, while a window slides over it.
A long window covers the gap at more sliding steps and leads to
higher violation token count. To avoid violation strength depen-
dence on window size Afmm, £, we normalize cost to it and weight
it with parameter p. To counteract contradiction with start time
and deadline requirements, the minimum throughput requirement
is only active within the time slots in between. The latter normal-
ization underrates violation near start time and deadline, because
gaps are covered fewer times by the sliding window. For exam-
ple, the time slot at start time is covered once only: in the first
sliding step of the window. Accordingly, the model penalizes mini-
mum throughput violation at the start and the end lower than in the
middle. Indeed, this approximates reality. It provides two advan-
tages: Firstly, real flow control mechanisms increase throughput
gradually. The model error endorses lower throughput at flow start
that represents real transmission behavior. Secondly, decreasing
data rate towards the deadline implies that data should be transmit-
ted earlier. This favors conservative data buffer filling towards the
deadline, which helps to finish data transmission in time.

5.3 Start Time, Deadline, Latency and Jitter
Start time, deadline, latency and jitter violations create repelling

forces that push tokens away from non-matching time slots and net-

works. Violation contributes to the cost function with quadratic im-

pact, as shown in equations 15 - 18. Hence, a severe deadline viola-
tion causes a higher force than many slight violations. As a result,
the model avoids severe violations. Note that the quadratic impact
factors do not depend on the schedule, but can be pre-calculated.
Therefore, the model is still linear. Corresponding weights and the
number of violating tokens scale violations linearly.

5.4 Cost Function

The absolute cost ¢ reaches its minimum at an equilibrium of
forces with an optimal schedule. We define absolute cost in equa-
tion 2. It covers firstly monetary cost, secondly flow migration cost
and thirdly the flow requirement violation cost from equation 3 with
their user-defined weights.

Finally, the objective of the optimization is to minimize ¢, subject
to equations 3..18.
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Deadline, start time, latency and jitter models:
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6. COMPLEXITY ANALYSIS

Problem definition: Given a schedule S, a set of networks and a
set of data flows, is S a feasible schedule and is S of minimal cost?

The presented model defines a polynomial-time cost function in
equation 2 and sub-functions and additional polynomial-time con-
straints C1-C4. Hence, the feasibility and the cost of a schedule
s can be determined within polynomial time. However, it is not
possible to verify in polynomial time if s is of minimal cost, given
P # NP.

To analyze the problem complexity, we start with a separation.
The effect of the cost function parameters L, J, Wmon,» and w.y, ¢
follows from two factors. Firstly from the match between network
and flow and secondly from the number of scheduled tokens. Time
does not influence those equations. Thus, a time-independent solu-
tion subspace of the scheduling problem can be derived, when we
consider only sy 5, as shown in equation 19.

Sfn = Zsf’t’” 19)
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(20)

We are able to derive a time-constant value vy , from the sepa-
rated properties, as shown in equation 20. This separated part of the
optimization is equivalent to multiple-demand bounded multiple
knapsack problem. Flows with their individual network-matching
vy, represent multiple, different demands. Furthermore, the num-
ber of tokens of a flow is equivalent to the bounded number of equal
items. Limited knapsack sizes are expressed by limited network re-
sources, whereby multiple networks with individual capacity exist.
We argue that the defined scheduling problem is NP-hard, because
knapsack is a sub-problem that is NP-complete and the scheduling
is not in NP.

The presented scheduling problem contains an additional dimen-
sion that makes it harder to solve: time. However, the omitted,
time-dependent parts of the cost function may dominate the cost
value of a knapsack solution from the split-oft sub-problem. There-

fore, the time-dependent parts cannot be considered separately. These

parts are firstly our throughput violation model, secondly the start
time and deadline violation models and finally the flow migration
cost model. For scheduling, we therefore cannot apply the well-
known heuristics of knapsack problem.

7. HEURISTIC SCHEDULERS

To fill the gap of heuristic schedulers, we present three approaches
and a random baseline. To make the three scheduler approaches
comparable, we apply the same heuristics for flow prioritization
and network matching to all of them. Therefore, they only differ
in time selection in their search strategy. This decision follows the
goal of this work, to investigate the effect of the paradigm change
of integrating time selection as explicit part into network selection.
In the following, we firstly present the applied heuristics and con-
straint checkers and secondly explain the search strategies of the
schedulers.

7.1 Heuristic Design

Substantial elements in the scheduling process are flow prioriti-
zation and network matching. We present heuristics for these two
elements.

7.1.1 Flow Prioritization

For flow prioritization, we rely on the individual flow require-
ments. According to the well-known Most-Constrained-First the-
orem in search heuristics for Constrained Satisfaction Problems
(CSP), we schedule flows first, which are expected to be most re-
stricted ones. Therefore, we create a function that evaluates the re-
strictiveness 7'y of a flow f. In complexity analysis in section 6, we
already identified the time-invariant cost function terms. These are
latency, jitter, monetary cost and number of unscheduled chunks
of a flow. We use these cost function terms linearly in our restric-
tiveness heuristic. In addition, we linearize minimum throughput
requirement by the average throughput within the corresponding
time window. Our restrictiveness heuristic sums up all restrictive
flow requirements, multiplied by their corresponding weights, as
shown in equation 21.
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7.1.2 Network Matching

For network matching, we design a cost heuristic, which is based
on the cost function of the proposed rating model and approximates
time-dependent terms. It covers the same requirements as our re-
strictiveness heuristic but compares them to the characteristics of a
network to estimate their match. In addition, it covers the monetary
cost induced from network use. We bisect the terms into attracting
and repelling forces and give the attracting forces a negative influ-
ence on the result. The derived cost heuristic is shown in equation
22 and gives an estimation of the cost ¢, of a token assignment
of a flow f to network n. Note, that this estimated cost is usu-
ally negative, since token assignment is supposed to improve the
schedule.

Cpin = Wuser,f - [wgz, - max(0, Jn — Tr)?

erif -max (0, L, — Ef)2 — Wy, f * Wyser,
(22)
—w

. p TPn,a’uerage - TPmin,f,average }
TP, P =~ =
min, f At”mzn,f * Omin, f

+wmon,n ° wwtp

7.2 Constraint Satisfaction

All presented schedulers rely on search algorithms for constrained
optimization problems. Constraints C1-C4 invalidate a large share



of the solution space. To stay within the valid solution space dur-
ing search, we apply a forward checking strategy for all four sched-
ulers. The forward checking disqualifies token assignments accord-
ing to the constraints of the optimization. C1, C2 and C3 limit the
token amount for an assignment. For each assignment, we apply
the minimum operator to remaining tokens of the flow, remain-
ing capacity of the network in time slot and averaged maximum
throughput of the flow. C4 constraints network selection based on
available network interfaces of the mobile node. For each network
selection, it validates if the network is already planned to be used
or if for this time slot a network interface of matching type is free.
In addition, we simplify start time and deadline violation model to
constraints. No data is scheduled outside these limits. In applying
forward checking, our search heuristics do not require a backtrack-
ing strategy for constraint satisfaction.

7.3 Schedulers

The schedulers apply the defined heuristics and differ in their
strategy of time selection. We follow this approach to investigate
the impact of time in search strategies on schedule quality and
thereby target the main goal of this work.

7.3.1 Network Selection (NS)

The Network Selection scheduler splits the search space by time
slot and treats each slot separately. Therefore, time has no impact
on its search strategy. This follows the usual state-of-the-art ap-
proach of network selection schemes. It starts with sorting of flows
to assess which flows should be prioritized during scheduling, us-
ing restrictiveness heuristic 7y according to equation 21.

For each flow, it sorts available networks according to their match
determined by cost heuristic ¢y ,, according to equation 22 and tries
to assign as many tokens of the flow as possible to the networks in
the sorted list, starting with the best match. For token assignment,
we apply forward checking to ensure that all constraints are satis-
fied and the resulting schedule is valid.

7.3.2  Opportunistic Network Selection (ONS)

Opportunistic Network Selection is based on the NS. In addi-
tion, it implements an opportunistic term for token assignment,
which enables the decision to refuse scheduling to bad matching
networks in the current time slot. It therefore introduces a new pa-
rameter, the cost limit ¢;;,,,. The algorithm only adds networks to
the sorted network list, whose cost heuristic result is lower than the
limit ¢¢,» < ciim. This change in strategy adds a statistical time
impact because some data, which could be scheduled in current
time slot, is delayed for potential later transmission. Time selection
of ONS follows state-of-the-art resource allocation approaches. In
addition, we combine their strategies with network selection.

7.3.3  Transmission Planning (TP)

Transmission Planning assumes to have further knowledge on
future available networks. Instead of splitting the search space into
independently scheduled time slots like NS and ONS, it first fo-
cuses on network matching.

TP starts with a flow prioritization. Like NS and ONS, TP ap-
plies 75 to sort flows according to their restrictiveness. Secondly,
for each data flow, networks are sorted according to their match in
network characteristics using the cost heuristic ¢f,,. As last step
before token assignment, it selects transmission time. It therefore
checks the overlap of network availability and the time window
between flow start time and deadline. This novel strategy focuses
on QoS satisfaction. Instead of ignoring optimization potential of
time completely like NS, or covering it statistically like ONS, TP

explicitly employs time selection as search strategy step.

7.3.4 Random Scheduler

The random scheduler follows the design of NS. Instead of ap-
plying heuristics for flow and network sorting, it uses a shuffle
function. During token assignment, forward checking still ensures
validity of the resulting schedules.

8. EVALUATION

In this evaluation, we give evidence that integrating the time do-
main into network selection is beneficial. As second contribution,
we show how to apply our novel rating scheme to identify strengths
and weaknesses of schedulers. In the following, we explain our
evaluation metrics and setup and discuss the results and improve-
ment potentials of the three heuristic schedulers.

8.1 Evaluation Metrics

Our rating model defines an appropriate quality measure in its
cost function. It creates a comparable rating measure for any sched-
ule. However, the absolute cost function values alone provide no
evidence on quality of a schedule. Depending on the scenario, a
schedule may have violations and therefore a high cost function
value, even though it is ideal. We therefore compare scheduling
cost function values to bounding values for the given scenario.

An optimization determines a schedule of minimum cost for the
scenario, but has a long execution time. This is not convenient
for online execution. Nevertheless, it provides the upper quality
bound and is therefore a perfect candidate to analyze improvement
potentials of schedulers. To assess schedule quality, we addition-
ally require a reasonable lower quality bound. We select a random
scheduler for this purpose. It provides feasible, but low quality
schedules. Every reasonable scheduler should return results bet-
ter than average random. The two bounds enable relative quality
assessment.

We introduce the Normalized Rating Score (NRS) in equation
23. It provides a score from O to 1, which informs about the qual-
ity of the schedule s. O means, that it is as bad as average ran-
dom schedules. In contrast, a score of 1 means that the scheduler
reached optimal performance. From NRS, the overall optimization
potential of the scheduler can be estimated. To clarify which details
of the scored scheduler lead to this waste of potential, we introduce
Relative Detail Score (RDS) in equation 24. It provides cost in-
formation on the rated requirement satisfaction criteria of the cost
function. RDS determines the deviation of criterion v from this
of the optimal schedule, normalized to the absolute cost function
optimization potential of schedule s. A value of 0.2 means, that
criterion vy (e.g. minimum throughput requirement) contributes
20% to the wasted optimization potential. In contrast, a value of
—0.1 means, that the scheduler performs 10% better than the op-
timum in criteria v2. This gives hint, that the scheduler should be
less restrictive on criterion v in order to provide space for opti-
mization of other criteria. In these two cases, a parameter change
or model refinement on criterion v should be considered. A value
of 0 means, that the scheduler brings criteria v perfectly in balance
to reach optimal schedules.

Additionally, computational complexity of schedulers can lead
to long execution times, which could make them infeasible for real
world use. Therefore, we use execution time as last evaluation met-
ric to assess schedulers.

NRS(s) = _CRnd — Cs | (23)
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The three evaluation metrics of NRS, RDS and execution time
provide means to analyze firstly the overall scheduler performance,
secondly weaknesses and optimization potential of schedulers and
thirdly real-time applicability of schedulers.

8.2 Evaluation Setup

For evaluation, we generate randomized scenarios with 16 flows,
eight networks and vary the scenario size by the number of time
slots from 25 to 400. The simulated networks cover two cellu-
lar networks, which are always available and six WiFis, which are
available only for certain time windows. In comparison to WiFi,
simulated cellular networks provide higher latency, equal to lower
jitter, lower to equal throughput and cause higher cost. Data flows
are composed of four typical traffic classes: Live-stream, bufferable
stream, interactive and background with randomized requirement
values within typical ranges and traffic share [12, 3]. Mobile nodes
furthermore have one cellular network interface and one WiFi inter-
face. For each scenario size, we generate 30 randomized scenarios
and measure quality and execution time. For random scheduler, we
execute 100 runs for each scenario. The results show about normal
distribution (Anderson-Darling test: execution time p = 0.72, cost
p =0.78). We can therefore use average values of the 100 runs for
NRS. For optimization, we use IBM CPLEX Branch&Cut solver.
We implemented the random and heuristic schedulers in Java. For
each simulation instance, we use one core of a server machine with
Intel Xeon E5-2643 v3 @ 3.4GHz and 512 GB RAM.

8.3 ONS Opportunistic Parameter Tuning

The ONS scheduler delays token assignments when expected
cost Cy,n, is higher than cj;,,. Therefore, schedule quality of ONS
depends on this parameter. The lower its value is, the higher is the
probability to delay traffic. A too low value will always effect to-
ken assignment skipping. Figure 3 shows the cost function value
depending on c;;»,. We observe a relatively large window for opti-
mal choice of the parameter. For evaluation, we select ¢ji,, = —10.

8.4 Evaluation Results and Discussion

We first present absolute cost function values and execution time
to give an impression on the data set and then rate the different
schedulers using our novel rating scheme, consisting of the cost
function and the metrics NRS and RDS. We show the Optimal
Scheduler (Opt), the classical Network Selection (NS), the Oppor-
tunistic Network Selection (ONS), the Traffic Planning (TP) and
the Random Scheduler (Rnd). For all plots, we vary scenario size
in time slots on the x axis.

8.4.1 Absolute Cost Value and Execution Time

The absolute cost in figure 4 shows an overall increase of values
towards larger scenarios for all schedulers. For cost function value,
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schedulers keep in a strict order in every scenario. All heuristic
schedulers show approximately a linear increase of cost function
value with scenario size while the optimization scheduler result
shows a concave curve, slowly approximating to the other sched-
ulers. This admits the claim that our heuristic results converge to-
wards the optimum with increasing scenario size.

For execution time, we observe exponential increase for the opti-
mization, resulting in an average execution time of 98766s (27.4h)
for solving the largest simulated scenario size. In contrast, all
heuristic schedulers show an average execution time of less than
29s for the same scenario size. Note, that the two online schedulers
NS and ONS can distribute their workload over the real scenario
duration. All three of them provide real-time compliant solutions
for scheduling.

8.4.2 Rating Score Analysis

We propose to use our metric NRS in addition to absolute values
and RDS for detail analysis. NRS indicates how much of the overall
optimization potential the scheduler uses. RDS shows how much
the model sub-function violations diverge from optimal cost distri-
bution. This provides inference about which parameter choices or
models of a scheduler contain the main weaknesses. We use these
two metrics to analyze the three proposed heuristic schedulers.

Normalized Rating Score (NRS) Analysis.
In figure 6, we show the NRS of the three heuristic schedulers
NS, ONS and TP. Like in absolute cost value comparison, we ob-
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Figure 6: Normalized Rating Score (NRS) over scenario size

serve a strict order in performance of the three schedulers and a
convergence towards the optimum with rising scenario size.

In contrast to figure 4, the used optimization potential of each
scheduler gets obvious. TP uses in average 18% more of this po-
tential than ONS and 26% more than NS. Note, that improvement
of NRS gets harder with rising absolute NRS score. Since all three
schedulers only differ on the impact of time in search strategy, this
observation confirms our initial hypothesis: For the given scenario
with non-constant network characteristics, there is a substantial im-
pact of time in network selection.

But why do the schedulers’ NRS converge towards the optimum
with rising scenario sizes? The answer originates from the fixed
number of networks in the scenario. With rising scenario dura-
tion, the relative number of network-changes decreases linearly. If
network-changes are rare, the overall optimization potential of joint
network and time selection decreases and the simplified throughput
heuristics converge towards the optimum. To show this effect, we
vary the number of networks and, hence, adapt the frequency of
network-changes over time. This is illustrated in figure 7. The one-
network case depicts the limited optimization potential of state-of-
the-art resource allocation. Moreover, we see how the optimiza-
tion potential, i.e. the difference between the optimal and averaged
random-scheduler cost function values, increases with the number
of networks. This affirms our initial hypothesis, that joint network
and time selection for mobile nodes leads to synergies which pro-
vide unknown optimization potentials. However, the performance
of the three heuristic schedulers stay nearly identical. This leads to
a relative decrease of performance in NRS score towards scenarios
with high optimization potential. The heuristic schedulers’ behav-
ior clarifies the challenge in development of new schedulers, which
use the new identified optimization potential in a better way.

Relative Detail Score (RDS) Analysis.

To identify the origins of the weaknesses of the schedulers and
to find out how to improve them, we analyze the RDS for the three
proposed schedulers, shown in figure 8. Note that RDS is normed
on individual scheduler performance and should therefore not be
used for comparison of schedulers to each other. Keep in mind that
the heuristics are kept simple by intention to be able to apply them
equally to all three schedulers in order to investigate the impact of
time in network selection. The development of more elaborated
schedulers exceeds the scope of this paper.

We can observe a good balance of the heuristics for the latency
and jitter model. Their performance turn out as expected since we
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reuse the original rating model for the heuristic.

Unsurprisingly, time limits model, namely start time and dead-
line violations, overperform slightly because the heuristic sched-
ulers forbid violation of start times or deadlines. However, any
overperformance can have essential impact on other categories. For
example, the heuristic schedulers always hold even soft deadlines.
Nevertheless, their violation provides high potentials to assign ad-
ditional tokens to well-matching networks. To cope with this weak-
ness, a trade-off heuristic for time limit violation is required.

Unscheduled tokens and throughput violation play a major role
in wasted optimization potential. For the two network selection
strategies NS and ONS, unscheduled token violation impact de-
creases with rising scenario size. This is the case because the prob-
ability for existing later time slots with free capacity in matching
networks rises with higher overall scenario duration.

In addition, the heuristics select networks based on restrictive-
ness values of single flows only. Therefore, especially live-streams
with high restrictiveness dominate the network selection and net-
work interfaces get occupied early in process from this strategy.
This behavior seems to underrate the selection of high through-
put networks and causes throughput shortage. As observed, this
leads to many unscheduled tokens especially from high bandwidth
flows with low restrictiveness like bufferable streaming applica-
tions and background traffic. A better approach could use a col-
laborative throughput demand assessment to select networks based
on peek demands. However, this collaborative assessment also re-
quires new decision models for arising questions including: Which
flows should share a medium in a time slot?

For ONS and TP, monetary cost contributes to the strategy of op-
portunistic respectively explicit time selection. We suppose that its
overperformance for the two schedulers correlates with the num-
ber of unscheduled chunks. Since less chunks are scheduled from
both strategies, the overall transmission cost drops as well. In NS,
this effect is dominated by a much worse network selection due to
the lack of time selection. The rising impact over time can be ex-
plained by the nature of the scheduler. NS assigns tokens to the best
matching network available as early as possible. If suiting, cheaper
networks are available at a later point in time, the optimization po-
tential rises but stays unused by NS. Therefore, monetary cost im-
pact rises with increasing scenario size for NS.

9. CONCLUSION

We hypothesized, that in rapidly changing network environments,
time selection within network selection has a notable impact on
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user-perceived network performance. To the best of our knowledge,
time selection and network selection have only been considered
separately so far. To investigate our hypothesis, we define a rating
scheme able to assess joint network and time selection. Our novel
schedule rating scheme assesses application QoS-requirement sat-
isfaction and provides an innovative throughput model, which in-
tegrates the impact of bursty data transfer. This novel rating scheme
is flexible enough to model extensive application QoS requirements,
network characteristics and user preferences. It acts as a tool to in-
vestigate our initial hypothesis and is the first contribution of this
work.

To approach our second contribution, the time-impact analysis
on network selection for mobile nodes, we present three heuristic
schedulers, which differ in their strategy of time selection. Two
of them follow state-of-the-art approaches with classical and op-
portunistic network selection. The third explicitly integrates time
selection into network selection. We use our novel rating model to
investigate the impact of time on network selection on these three
schedulers. We furthermore present how to apply the new tools to
analyze weaknesses of schedulers. As result, we observe a strong
impact of 26% respectively 18% of improvement when using the
joint selection instead of the classical respectively an opportunistic
approach. This confirms our initial hypothesis. This new insight
reveals a path to exploit new potentials of network usage optimiza-
tion for mobile nodes: a paradigm change from classical network
selection strategies towards joint network and time selection.
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