
On the Energy Efficiency of Lossless Data
Compression in Wireless Sensor Networks

Andreas Reinhardt∗, Delphine Christin∗, Matthias Hollick†, Ralf Steinmetz∗

∗ Multimedia Communications Lab, Technische Universität Darmstadt
Merckstr. 25, 64283 Darmstadt, Germany

{andreas.reinhardt, delphine.christin, ralf.steinmetz}@kom.tu-darmstadt.de
† Departamento de Ingenierı́a Telemática, Universidad Carlos III de Madrid

30 Avenida de la Universidad, Leganés, 28912 Madrid, Spain
matthias.hollick@uc3m.es

Abstract—In wireless sensor networks, energy is commonly a
scarce resource, which should be used as sparingly as possible
to allow for long node lifetimes. It is therefore mandatory to put
a focus on the development of energy-efficient applications. In
this paper, we analyze the achievable energy gains when packet
payloads are compressed prior to their transmission. As theradio
transceiver chips are the predominant power consumers on most
current sensor node platforms, we present how local compression
of data can be successfully employed to preserve energy. We
compare two lossless mechanisms to eliminate redundanciesin
the packets with regard to the overall energy savings. The results
prove that data compression is a viable approach to reduce
a platform’s energy consumption, as it can reduce the radio
transmission durations of packets and thus shorten the duty
cycles of the radio device.

I. I NTRODUCTION

Commonly, nodes in wireless sensor networks (WSNs) are
limited in their available energy budget due to their battery-
powered operation [1]. Unfortunately, this limitation is only
addressed in an insufficient manner in most of today’s sensor
network applications, although a variety of approaches towards
energy-aware sensor networking exist (cf. [2]). The power
consumption of the communication unit of a sensor network
node (mote) often dominates its energy demand in both
transmission and reception mode; minimizing the duty cycles
of the radio transceivers is therefore a viable approach towards
preserving energy. While energy-aware MAC protocols, such
as S-MAC [3] or B-MAC [4], target to reduce the activity
periods of the radio unit, data compression can be used to
either reduce the transmission durations, or to increase the
information density within a payload of the same length.

In this paper, we assume a sensor network scenario where
data needs to be transmitted to a base station at a reg-
ular interval. With regard to this constraint, being present
in various application domains, like homecare or medical
sensor networks ([5], [6]), we do not investigate network-level
approaches towards energy reduction, such as data aggrega-
tion [7]. Instead, we put the focus of this paper on the energy
gains achievable by the local compression of packet payloads.
Similarly, header compression mechanisms such as defined in
RFC 4944 [8] are beyond the scope of this paper.

Theoretical considerations prove it possible to achieve en-
ergy savings by applying data compression, as the shorter
payload results in a shorter transmission time (e.g. [1], [9]).
However, compressing the data requires additional microcon-
troller operations, which in effect increase the microcontroller
energy consumption. It is therefore necessary to find a trade-
off which achieves a global energy reduction. In this paper,
we analyze the energy gains achievable by data compression
mechanisms in simulation, and provide estimates for their
real-world applicability. To achieve further size reductions
and thus energy savings, data compression should ideally be
supplemented by header compression algorithms and energy-
efficient MAC layer protocols for a maximum node lifetime.

We perform evaluations usinglosslesscompression algo-
rithms only. The analysis would have been possible forlossy
compression algorithms as well, although we expect the results
to be somewhat similar. When losses in precision are tolerated,
the achievable savings might be even greater due to the higher
compressibility of the data, and the resulting smaller packets.

The key contribution of this paper is the investigation of
the applicability of data compression algorithms and their
effects on the sensor node energy budgets. We use represen-
tative data sets from the Porcupine sensor platform, which
performs person activity tracking through readings of on-board
accelerometers [10]. Two versions of run-length encoding as
well as an implementation of adaptive Huffman coding are
evaluated with a focus on their energy consumption. Using
the Avrora simulator [11], our simulations particularly focus
on the sensor node microcontroller and radio energy consump-
tions. Simulations are initially performed with syntheticdata
in order to evaluate the achievable best and worst case results.
In a second step, the algorithms are evaluated with data sets
from the real deployment.

We present related work on data compression in WSNs
in Section II, and provide details on the simulation setup in
Section III, including the simulation tools, the mote platform,
and the used data set. Obtained simulation results focused
on the microcontroller, radio and global energy gains are
presented and discussed in Section IV, and we conclude this
paper in Section V.

rst
Textfeld
 Andreas Reinhardt, Delphine Christin, Matthias Hollick, Ralf Steinmetz:On the Energy Efficiency of Lossless Data Compression in Wireless Sensor Networks. In: Proceedings of the Fourth IEEE International Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2009), October 2009

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

II. RELATED WORK

The area of data compression in WSNs has received some
attention in previous literature. Although focusing on wireless
ad-hoc networks, Barr and Asanović show in [9] that the
energy required for transmitting a bit can be equivalent to the
energy consumption of a thousand microcontroller operations.
However, their results were acquired from a Compaq Personal
Server handheld, which features 32 megabytes of RAM and
16 kilobytes of cache. This significantly exceeds the resource
constraints on many of today’s mote platforms.

Sadler and Martonosi present a variation of the lossless
LZW algorithm in [12]. Specially designed for common sensor
platforms with a few kilobytes of memory, their version
compresses data blocks with a length of 528 bytes at a
time. Tested with data from real sensor networks, the S-LZW
algorithm shows energy savings up to a factor of more than
1.5x locally, and over 2.5x for the overall network. However,
the system was evaluated in a delay-tolerant network setting,
where data was buffered before being transmitted.

Tsiftes et al. compare mechanisms to compress code updates
to remotely reconfigure nodes in [13]. They present the SBZIP
algorithm, which combines multiple preprocessing and coding
steps, while maintaining the characteristics that the decoder
part can still be run on memory-constrained sensor platforms.
Results show that network-wide energy savings of to 67% can
be achieved when compressing the code updates using GZIP.

Ju and Cui presented the EasiPC packet compression mech-
anism in [14]. Each packet field needs to be analyzed and
classified according to its changing frequency in advance.
Different compression methods are associated with each cat-
egory; while randomly changing fields are always transferred
uncompressed, sequence number fields are e.g. encoded by
difference coding. In addition, the sensor readings are encoded
by either difference coding or length-variable coding. Remov-
ing redundant information from the packet, the developed
mechanism allows for compression gains of up to 50% as
well as the corresponding reduced transmission delays. The
results were however not verified by an energy analysis.

In previous work, we have investigated a differential encod-
ing scheme exploiting the temporal resemblance of sensor net-
work packets [15]. The application-agnostic solution provides
a generic framework for data compression with size reductions
of up to 35% for a real data set, although a thorough energy
analysis has been identified as future work.

As none of the presented publications discusses the achiev-
able energy savings when sensor readings are compressed at
the originating node, we provide a detailed investigation of the
corresponding energy gains in this paper.

III. S IMULATION SETUP

The goal of this simulation study is the assessment of the
achievable energy gains when data compression is applied
prior to packet transmissions. We analyze a single-hop sce-
nario, where a sensor node priodically delivers data to a sink.
Starting with an analysis of the data set and its characteristics,
we present our selection of the simulation tool, the considered

mote platform, and brief descriptions of the used compression
algorithms and their resource demands.

A. Data Set

In many application fields for wireless sensor networks,
such as home care or patient monitoring in healthcare sce-
narios, collected data needs to be transferred to a base station
periodically with low latency. The available data should be
up-to-date to avoid ambiguous interpretation possibilities and
allow for the correct action to be taken in case of emergencies.
Although in a regular state of operation, successive readings
are not expected to significantly differ from each other, they
need to be transferred to the base station at regular intervals.

Byte 0 1 7 8 19 20
+-----+-----+ - - +-----+-----+ - - +-----+-----+
| X 0 | X 1 | . . | Y 0 | Y 1 | . . | Z 5 | Z 6 |
+-----+-----+ - - +-----+-----+ - - +-----+-----+

Fig. 1. Packet structure used in the Porcupine project

The wearable Porcupine nodes have been designed to
determine a person’s activity from accelerometer readings,
which is a common scenario for wearable sensor networks.
Transmitted packets follow the structure shown in Fig. 1;
the payload consists of seven accelerometer readings in X,
Y, and Z dimension of one byte each. An exemplary plot of
the data is given in Fig. 2, showing a 10 minute excerpt of
the data where a phase of almost no movement is followed
by a series of quickly changing readings. All acceleration
readings are shown as unsigned byte values. A closer look
on the data set reveals that it is dominated by long runs of
similar accelerometer readings when there is no movement
of the wearable sensor, while during periods of high activity,
frequent and fast changes of the sensor readings are observed.

B. Simulator Selection

Simulating application behavior before the actual deploy-
ment is a useful tool to identify problems and debug them.
Moreover, the profiling capabilities of simulators allow eval-
uating general properties of applications without deploying
them on real motes. The obtained simulation results can

Fig. 2. Example Porcupine accelerometer data

be used to modify applications quickly, without requiring
a time-consuming reinstallation on motes. Although a set
of instruction-level simulators exist (cf. [16]), we have only
considered simulators compatible with TinyOS which addi-
tionally feature energy profiling. As a result, we have se-
lected the Avrora simulator for our analyses [11], combined
with the AEON energy modelling extension [17]. Avrora
is implemented in Java and its source code is available to
easily perform modifications to the code, e.g. to adapt power
consumption values or to increase the available RAM size.

All following simulations were conducted using Avrora with
the AEON energy extension. The Avrora simulator offers the
possibility to specify an input file containing sensor readings
in order to simulate the data collection process through a
sensor interface. We have inserted the data sets into the mote
using this approach, but disregarded the corresponding energy
demand in the simulation results, as it is an inherent hardware
characteristic and presents a static energy consumption.

C. Mote Platform Selection

We have performed all our implementations in TinyOS [18]
and compiled the applications for the Mica2 platform, as a
fine-grained energy model is already implemented within the
Avrora simulator. The Porcupine node intended to perform
the data compression is however based on different hardware
components with different specifications, and Avrora does not
ship with a corresponding energy model. To estimate its power
consumption, we thus compare its energy profile to values
from the Mica2 data sheet in Table I. The figures for the
Porcupine were hereby extracted from the data sheets of its
components.

The numbers confirm that the energy consumptions of both
platforms increase dramatically when the radio is configured
in active, i.e. in transmission (TX), reception (RX), or idle
modes. However, it is also obvious that the overall con-
sumptions of the platforms are similar in these modes. The
Porcupine only requires significantly more energy than the
Mica2 when the microcontroller unit (MCU) is active while
the radio transceiver is powered down. This state is present
while data is collected from the accelerometer, and when
data processing, such as compression, takes place. We have
allowed the operating system to put the platform into sleep
mode in between data sampling operations to save energy. All
following simulations use the implementation of the B-MAC
protocol [4] provided in TinyOS.

Concluding from the energy consumption values, we an-
ticipate our simulation results to represent good – although
possibly pessimistic, as we disregard the smaller sleep mode
energy demand – estimates for the Porcupines, when weighting
the MCU energy by a factor of51mW

36mW
= 1.416.

In the following sections, Flash memory and RAM con-
sumption values are stated according to the output of the
TinyOS compiler. To determine the increase in resource
consumption, we have implemented reference applications
without any compression code for all of our simulations, and
show all results in comparison to these reference values.

TABLE I
POWER CONSUMPTION OFM ICA2 AND PORCUPINE MOTES

Mica2 [19] Porcupine

S
pe

cs

Microcontroller ATmega128L PIC18F4550
Flash memory 128 kilobytes 32 kilobytes

RAM 4 kilobytes 2 kilobytes
Radio unit Chipcon CC1000 Chipcon CC2420

E
ne

rg
y MCU sleep, Radio off 0.054 mW 0.014 mW

MCU active, Radio off 36 mW 51 mW
MCU active, Radio RX 117 mW 120 mW
MCU active, Radio TX 117 mW 115 mW

D. Algorithm Selection

Due to the determined nature of many successive bytes
within the input data stream, we have selected compression al-
gorithms which deliberately exploit these data structures. Our
second criterion was the demand to achieve good compression
gains while compiling to sizes within the resources available
on current mote platforms. While run-length encoding (RLE)
replaces multiple occurrences of an input symbol by a repeti-
tion count field, the adaptive Huffman coding (AHC) algorithm
automatically adapts to the symbol occurrence frequencies
within the input data and adjusts its code table accordingly.
Frequent symbols are assigned short binary codes, while the
codes for less frequent symbols are longer.

We have added a one byte status field preceding the packet
payload in our implementations, which contains information
about whether the following payload contains compressed
or uncompressed data, and which algorithm has been used.
Although the compression step is always performed, data
is only sent compressed if the corresponding output size is
smaller than the uncompressed data. In case of incompressible
data, the packet size to be transmitted thus increases by one
byte.

1) Run-Length Encoding Algorithms:We have imple-
mented two variants of RLE, which differ in the way how
the number of symbol repetitions is detected. While the first
variant proceeds on a byte-by-byte basis, the second variant
fixes the first occurrence position of a symbol in the input
data and steps through the further input data until a different
character is determined. Both use a threshold value of two,
i.e. only sequences of two or more identical symbols are
replaced by two symbol repetitions, followed by the repetition
count field. As the encoded output from both algorithm
variants is identical, the same decoding algorithm can be used.

The compiled version of the first variant of the RLE
algorithm requires 308 bytes of Flash memory and 58 bytes of
RAM. This represents a very small fraction of the resources
available on the motes. The resource consumption of the
second variant is 490 bytes of Flash memory and 58 bytes
of RAM, also being less than 2% of the available resources.
As RLE requires very low memory, it can be easily combined
with existing applications on motes.

2) Adaptive Huffman Coding:We have founded our eval-
uation of the adaptive Huffman coding algorithm on an im-
plementation provided by A. Guitton, as presented in [20].
In addition to the normal operation, the version of AHC was

(a) Activity period (b) Sleep period

Fig. 3. The Porcupine sensor data sets

extended to be fault-tolerant, i.e. packet losses which would
result in a false synchronization of the Huffman code tree can
be recovered from. Contrary to the static Huffman algorithm,
the adaptive variant does not require a prior knowledge of
the symbol occurrence frequencies, so code tables need not
be transmitted in advance. Instead, in the adaptive Huffman
algorithm, both encoder and decoder manage their own tree
construction. This complex process must be synchronized and
symmetric in order to avoid different correspondences between
symbols and codes, which may result in incorrect decoding.

The memory requirements of the AHC implementation on
both sender and receiver were evaluated, and yielded a demand
for 30,686 bytes of Flash memory and 6,462 bytes of RAM. It
is obvious that the Flash memory consumption is just within
the limits of the Porcupine platform, but the available RAM
is significantly exceeded. To allow an analysis of the AHC
algorithm, we have thus modified the source code of the
Avrora simulator to assume an increased RAM size of 10
kilobytes for the Mica2 platform, so our simulations could
be performed successfully and energy estimates extracted.

IV. SIMULATION RESULTS

We have performed simulations in two successive steps; in
the first series of simulations, a preliminary estimation for best
and worst case results was performed for both algorithms by
using previously defined data structures. In a second stage,we
evaluate the algorithms with sampled Porcupine data sets.

A. Simulation Scenario

To assess the energy gains achievable by applying data
compression at the sender node, we have assumed an ideal
(i.e. lossless) one-hop communication channel and used the
original Porcupine application, which samples and stores seven
accelerometer values per axis. Data is sampled at an interval
of 60 millisecondes between successive readings. Once all
21 readings have been taken, the radio is powered up and
the packet sent. When the packet has been sent, the radio is
immediately stopped for energy saving reasons.

The following energy results are presented in comparison
to the reference implementation, which directly forwards the

packets to the radio transceiver instead of applying the data
compression algorithm first. By taking the difference of both
obtained energy results, the energy gains or losses caused by
the compression algorithm can be directly compared.

In a first step, we have evaluated the algorithms with a
synthetic workload to assess best case and worst case perfor-
mances. Concisely, for the best case evaluation, we have used
input sequences of 21 bytes in length with a defined number
of identical characters followed by differing symbols. Forthe
worst case, we have used different specific input sequences
for RLE and AHC. In the RLE case, we have used input
data with two repetitions of each symbol (aabbcc...), so
the threshold is met every time, but the repetition count field
will contain a value of zero. For the adaptive Huffman coding
mechanism, we have used payloads with an equal distribution
of all possible input byte values to evaluate the worst case.

To analyze the energy gains under realistic conditions, we
have selected two representative sequences of sensor readings
from the Porcupine project [10], which are depicted in Fig. 3
and were kindly provided by K. Van Laerhoven. The first
selected period is presented in Fig. 3(a), and termed as
the activity phase in the following sections. With a profile
composed of multiple varying acceleration readings, it allows
evaluating the algorithms during a period of high wearer
activity. The second data set (shown in Fig. 3(b)) represents
readings from a phase when the wearer was asleep, and is thus
termed thesleepphase. It is well suited to obtain energy results
for the common case when the wearer’s motions are limited
and the accelerometer data may thus show a great number of
consecutive identical bytes.

We have selected the Porcupine data to evaluate the com-
pression algorithms, as it contains real sensor data which
expose good compressibility through the natural characteristic
of body movements. In total, 30,316 samples for each of the
three dimensions were used in our simulations, equalling a
number of 90,948 individual acceleration values. We have
segmented the data into 26 chunks of 1,166 readings per
axis each, corresponding to 166 sent packets, and analyze the
compression gain for each chunk individually. After having

(a) Microcontroller energy gain (b) Radio energy gain

Fig. 4. Resulting best case energy gains

successively simulated each chunk of data, we show the
corresponding mean energy gain in the following figures.

B. Best/Worst Case Energy Results

To assess the best and worst case energy gains, we have
configured the simulator to send 166 packets with identical
payload and compare the resulting energy gain values.

1) Microcontroller Energy:The microcontroller energy re-
sults are depicted in Fig. 4(a) in function of the number of
identical symbols within the input. The obtained results show
that applying compression to the data leads to MCU energy
losses in almost all cases. Only when 13 or more identical
symbols are present within the input sequence, the first RLE
variant shows a slight energy gain. The energy loss observed
in all other cases can be interpreted as such that the energy
required by the microcontroller operations for compressing the
data is greater than energy saved by not transferring the bytes
to the radio transceiver over the SPI bus. With energy losses
between 0.2% and 0.54%, RLE requires less microcontroller
energy than the AHC coder, which has almost 2% of energy
loss in the worst case. We attribute this difference to the
complex tree management, which requires a high number of
additional microcontroller operations.

Worst case results for the algorithms have been simulated
as well. They reach energy losses of 1.3% in the first RLE
variant, 2.5% in the second alternative, and 6.8% in the
AHC case. As it becomes clear that the first RLE variant
consumes less microcontroller energy than the second at all
times while producing equally sized output data, we disregard
the second variant of our RLE implementation in the following
simulations.

2) Radio Energy: In addition to the microcontroller en-
ergy estimation, we have used Avrora to evaluate the radio
energy consumption of both algorithms. Again, the results
obtained after sending 166 packets with the defined payload
are illustrated in Fig. 4(b). As both compression algorithms
demonstrate energy gains for each simulation, the results
confirm the hypothesis that shorter packets require less time
on the radio channel, and thus less energy to be sent.

Analyzing both algorithms, the obtained results show that
more than 21% of radio energy can be saved by sending
compressed packets. Even though this best case, corresponding
to 21 successive identical bytes, might be unlikely, the remain-
ing cases show that the achievable energy savings expose a
linear dependency on the amount of successive identical bytes
at the input. In the RLE case, energy savings are possible
when at least four identical bytes are present within the input,
because the algorithm requires at least two bytes to indicate
the repetition and another one for the repetition count. With
less than three identical successive bytes, there is a slight
loss in energy as the data are prefixed by the status byte,
but remain uncompressed otherwise. In contrast to wrapping
the number of symbol repetitions into a repetition count field,
AHC replaces each input symbol by the corresponding code,
which requires at least a single bit, hence the compression gain
curve exposes a smaller slope. The additional status flag byte
and a second field indicating the number of bits in the payload
add up to the size requirement of AHC encoded packets.

By examining the energy gain of the adaptive Huffman
algorithm, it becomes clear that greater savings than for RLE
are possible for sequences with a smaller number of symbol

Fig. 5. Overall best case energy gain

(a) Microcontroller energy gain for real data, activity phase (b) Microcontroller energy gain for real data, sleep phase

(c) Radio energy gain for real data, activity phase (d) Radio energy gain for real data, sleep phase

Fig. 6. Energy gains for Porcupine data

repetitions. The resulting curve exposes some discrete steps,
which result from the bitwise operation of AHC, as it requires
terminating padding bits. In summary, each additional symbol
repetition in the input data can save 1.3% of the radio energy
in the RLE case, and 0.6% when AHC is applied.

3) Overall Energy:The global energy consumption of both
algorithms and best/worst case data is illustrated by Fig. 5.
As the radio transceiver and MCU are the major power
consumers on the mote platform, the resulting curves resemble
the addition of both previously determined graphs, weighted
by the corresponding duty cycles.

Global energy savings reach up to 4.5% in the RLE
case, and up to 3.5% for AHC, respectively. Evaluated with
previously determined best and worst case data sets, the
results allow establishing that data compression leads to energy
savings. After having proved the feasibility of our motivating
scenario, we evaluate the implemented algorithms with real
sensor data in the following step.

C. Real Data Energy Results

In order to evaluate both Run Length Encoding and the
adaptive Huffman algorithm on the microcontroller energy
when real data sets are given, we have used the real data from
the Porcupine project, and analyzed the algorithms for both
the activity and the sleep phases.

1) Microcontroller Energy: By considering the activity
period first, the microcontroller energy results illustrated in
Fig. 6(a) are obtained. It is obvious that this time energy
losses are present with both algorithms due to the highly
dynamic and thus less compressible nature of the sensor data.
Again, RLE losses range around 0.2%, whereas the losses by
the AHC algorithm are more than ten times as high, with
average losses of 2.3% and peaks of up to 2.75%. Illustrated
by Fig. 6(b), the microcontroller energy consumption during
the sleep phase data set follows the same trends: Applying
the compression algorithms requires microcontroller energy
for both algorithms. However, the improved compressibility
of the data results in losses for the RLE algorithm around
0.1%, while AHC leads to around 1% of energy loss.

According to our expectations, the microcontroller energy
gain depends on the activity intensity, and is greater in case
the data presents a high amount of consecutive identical bytes.
Such sequences allow for very small losses, while intense
activity of the wearer leads to a greater energy demand, as
the accelerometer readings are varying quickly, and fewer byte
reductions are hence possible.

2) Radio Energy:To complete the compression algorithm
evaluation with real data, their effects on the radio energy
consumption were also examined. Depicted in Fig. 6(c), the

Fig. 7. Overall energy gain for real data

radio energy consumptions confirm the previous observations
when using the activity phase data set. With an energy gain of
3.3% on average, the RLE algorithm is outperformed by the
AHC, which achieves mean energy gains of 5.9%.

The results for the sleep phase are presented in Fig. 6(d), and
confirm the expectations that the radio energy gain is greater
during the sleep period than during the activity phase. More
precisely, applying the RLE algorithm allows to save 12.1% of
energy on average, and the application of the adaptive Huffman
algorithm even leads to around 17.1% of radio energy savings,
confirming that compressing data allows to reduce the radio
transceiver’s energy consumption significantly.

3) Overall Energy: The overall simulation results, includ-
ing radio and microcontroller gains as well as the previously
determined best and worst case results, are compared to the
reference implementation in Fig. 7. With a mean energy loss
of 0.76% during the activity phase and a gain of 2.35% during
the sleep period, the AHC algorithm has shown that energy
losses can occur when real sensor data is compressed using
AHC. In contrast, the RLE algorithm exposes average energy
gains of 0.47% in the activity phase and 2.2% in the sleep
phase, confirming that RLE allows to globally save energy
when applied to Porcupine sensor data.

D. Transferring the Results

To allow for an estimation of the real-world energy savings,
we have weighted the MCU energy demands by the factor
of 1.416, as determined for the Porcupine platform in our
hardware comparison in Section III-C. The corresponding
results are shown in Fig. 7. They indicate that the achievable
energy gains decrease due to the higher cost of microcontroller
operations. In the AHC case, this results in energy losses of
1.14% in the activity phase, while a gain of 1.49% is present
in the sleep phase. When RLE is applied, savings are achieved
in both phases and range from 0.3% in the activity phase to
1.63% during sleep. In summary, positive energy gains can
still be observed for all RLE cases and the sleep phase AHC.

E. Summary

We have compared the energy gain results for all data
sets and determined that up to 17.1% of radio energy could
be saved when applying AHC on the real Porcupine sensor

data, a result close to the best case achieved in simulations
with synthetic data. However, these significant savings are
counterbalanced by the microcontroller energy demands to
maintain the complex Huffman code tree and to transcode the
input symbols to a binary output sequence, resulting in overall
energy gains ranging from -0.76% to 2.35% on Mica2 hard-
ware. In contrast, the more lightweight RLE implementation
requires much less operations to encode symbols on a per-byte
basis and always leads to positive energy gains in the range
of 0.47% to 2.2% for the real data set.

V. CONCLUSION AND OUTLOOK

In this paper, we have analyzed the achievable energy gains
when applying data compression in WSNs. Our simulation
results prove that applying data compression may allow sav-
ing energy, even if additional microcontroller operationsare
required, as the corresponding MCU energy demand can be
counterbalanced by the radio energy gain, which results from
transmitting smaller packets.

We have evaluated the applicability of both run-length
encoding and adaptive Huffman coding on sensor network
nodes. While the RLE implementation consumes a very small
fraction of the available RAM and Flash memory, the adaptive
Huffman algorithm requires a major amount of Flash memory
and even exceeds the RAM available on the platform. The
gains achievable by the AHC algorithm did however not
significantly exceed the energy preserved when applying RLE.

Although having confined our discussion to a single ap-
plication with two data sets only, our results indicate that
data compression is a feasible way to reduce a WSN node’s
energy consumption, and thus extend its lifetime. However,
our findings also show that adequate solutions designed for
sensor network node hardware are necessary.

When considering a whole sensor network, transmitting
compressed packets also has a beneficial effect on the overall
network, as less traffic volume needs to be forwarded in
a multi-hop WSN setting, leading to an extended network
lifetime as well. We anticipate even greater energy savings
when larger payload sizes are used, as the fixed-size packet
headers present a smaller fraction of the overall packet size in
such cases.

A. Outlook

We have performed our simulations using the Avrora simu-
lator, as the energy profile of the Mica2’s MCU (weighted by
a constant factor) presented a good estimate for the Microchip
MCU on the Porcupine platform. To however analyze the
effects of data compression on different platforms, we target
to perform additional simulations using different tools, such
as MSPsim [21]. To verify our findings on real hardware, we
also target to complement our simulations by real experiments.

Besides, the characteristics of the B-MAC protocol, espe-
cially the long preamble when sending a packet [4], also have
an impact on the achievable energy savings. We therefore aim
to perform further analyses in conjunction with different MAC
layer protocols.

ACKNOWLEDGMENT

Our thanks go to Kristof Van Laerhoven for supplying us
the Porcupine data sets, as well as to Alexandre Guitton, who
kindly supported our analysis by providing his implementation
of the fault-tolerant AHC algorithm. Furthermore, we would
like to thank Parag S. Mogre for the fruitful discussions.

REFERENCES

[1] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,”
Communications of the ACM, vol. 43, no. 5, 2000.

[2] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
Aware Wireless Microsensor Networks,”IEEE Signal Processing Mag-
azine, vol. 19, no. 2, 2002.

[3] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol
for Wireless Sensor Networks,” inProceedings of the 21st International
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2002.

[4] J. Polastre, J. Hill, and D. Culler, “Versatile Low PowerMedia Access
for Wireless Sensor Networks,” inProceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[5] V. Shnayder, B.-R. Chen, K. Lorincz, T. R. F. Fulford-Jones, and
M. Welsh, “Sensor Networks for Medical Care,” Diversion of Engineer-
ing and Applied Sciences, Harvard University, Tech. Rep. TR-08-05,
2005.

[6] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin,
S. Son, R. Stoleru, and A. Wood, “Wireless Sensor Networks for
In-Home Healthcare: Potential and Challenges,” inHigh Confidence
Medical Device Software and Systems (HCMDSS) Workshop, 2005.

[7] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impactof Data
Aggregation in Wireless Sensor Networks,” inProceedings of the
International Workshop on Distributed Event-Based Systems (DEBS),
2002.

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[9] K. Barr and K. Asanović, “Energy Aware Lossless Data Compression,”
in Proceedings of the First International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2003.

[10] K. V. Laerhoven, H.-W. Gellersen, and Y. G. Malliaris, “Long-Term
Activity Monitoring with a Wearable Sensor Node,” inWorkshop on
Wearable and Implantable Body Sensor Networks (BSN), 2006.

[11] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor
Network Simulation with Precise Timing,” inProceedings of the Fourth
International Conference on Information Processing in Sensor Networks
(IPSN), 2005.

[12] C. M. Sadler and M. Martonosi, “Data Compression Algorithms for
Energy-Constrained Devices in Delay Tolerant Networks,” in Proceed-
ings of the 4th International Conference on Embedded Networked Sensor
Systems (SenSys), 2006.

[13] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient Sensor Network Repro-
gramming through Compression of Executable Modules,” inProceed-
ings of the 5th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
2008.

[14] H. Ju and L. Cui, “EasiPC: A Packet Compression Mechanism for Em-
bedded WSN,” inProceedings of the 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2005.

[15] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented Lossless
Packet Compression in Wireless Sensor Networks,” inProceedings of
the Sixth Annual IEEE Communications Society Conference onSensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2009.

[16] O. Landsiedel, K. Wehrle, B. L. Titzer, and J. Palsberg,“Enabling
Detailed Modeling and Analysis of Sensor Networks,”Praxis der
Informationsverarbeitung und Kommunikation, vol. 28, no. 2, 2005.

[17] O. Landsiedel, K. Wehrle, and S. Götz, “Accurate Prediction of Power
Consumption in Sensor Networks,” inProceedings of the 2nd IEEE
Workshop on Embedded Networked Sensors (EmNetS-II), 2005.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.Pister,
“System Architecture Directions for Network Sensors,” inProceedings
of the 10th Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[19] MICA2 Datasheet, Crossbow Technology, http://www.xbow.com/
products/Productpdf files/Wirelesspdf/MICA2 Datasheet.pdf.

[20] A. Guitton, N. Trigoni, and S. Helmer, “Fault-TolerantCompression
Algorithms for Delay-Sensitive Sensor Networks with Unreliable Links,”
in Proceedings of the 4th IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2008.

[21] J. Eriksson, F.̈Osterlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt,
“Accurate Network-Scale Power Profiling for Sensor NetworkSimula-
tors,” in Proceedings of the 6th European Workshop on Wireless Sensor
Networks (EWSN), 2009.

