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Abstract—In wireless sensor networks, energy is commonly a  Theoretical considerations prove it possible to achieve en
scarce resource, WhICh should bPT used as sparingly as podsib ergy savings by app|y|ng data Compression, as the shorter
to allow for long node lifetimes. It is therefore mandatory to put payload results in a shorter transmission time (e.g. [1), [9

a focus on the development of energy-efficient applicationdn H ina the dat . dditi | mi
this paper, we analyze the achievable energy gains when paak owever, compressing the data requires aaditional mieroco

payloads are compressed prior to their transmission. As theadio ~ troller operations, which in effect increase the microcoifer
transceiver chips are the predominant power consumers on ngt energy consumption. It is therefore necessary to find a trade

current sensor node platforms, we present how local compre®n  off which achieves a global energy reduction. In this paper,

of data can be successfully employed to preserve energy. Weyye analyze the energy gains achievable by data compression
compare two lossless mechanisms to eliminate redundancies

the packets with regard to the overall energy savings. The mults mechanisms 'n_ S'”?‘_J'a“or" a”O_' provide es“mates for _thelr
prove that data compression is a viable approach to reduce real-world applicability. To achieve further size redocis
a platform’s energy consumption, as it can reduce the radio and thus energy savings, data compression should ideally be
transmission dur_ations_ of packets and thus shorten the duty Supp|emented by header Compression a|gorithm5 and energy-
cycles of the radio device. efficient MAC layer protocols for a maximum node lifetime.

We perform evaluations usinpsslesscompression algo-
rithms only. The analysis would have been possibleldssy

Commonly, nodes in wireless sensor netwoMSN$ are  compression algorithms as well, although we expect thdtsesu
limited in their available energy budget due to their batter to be somewhat similar. When losses in precision are tadrat
powered operation [1]. Unfortunately, this limitation islp the achievable savings might be even greater due to thethighe
addressed in an insufficient manner in most of today’s sensmmpressibility of the data, and the resulting smaller péck
network applications, although a variety of approachesitd&  The key contribution of this paper is the investigation of
energy-aware sensor networking exist (cf. [2]). The powene applicability of data compression algorithms and their
consumption of the communication unit of a sensor netwodffects on the sensor node energy budgets. We use represen-
node (note often dominates its energy demand in botltative data sets from the Porcupine sensor platform, which
transmission and reception mode; minimizing the duty cycl@erforms person activity tracking through readings of ol
of the radio transceivers is therefore a viable approachidsy accelerometers [10]. Two versions of run-length encodisg a
preserving energy. While energy-aware MAC protocols, suetell as an implementation of adaptive Huffman coding are
as S-MAC [3] or B-MAC [4], target to reduce the activityevaluated with a focus on their energy consumption. Using
periods of the radio unit, data compression can be usedti@ Avrora simulator [11], our simulations particularlycfcs
either reduce the transmission durations, or to increase tin the sensor node microcontroller and radio energy consump
information density within a payload of the same length. tions. Simulations are initially performed with synthetlata

In this paper, we assume a sensor network scenario whererder to evaluate the achievable best and worst casesesul
data needs to be transmitted to a base station at a rbga second step, the algorithms are evaluated with data sets
ular interval. With regard to this constraint, being praserfrom the real deployment.
in various application domains, like homecare or medical We present related work on data compression in WSNs
sensor networks ([5], [6]), we do not investigate netwakel in Section Il, and provide details on the simulation setup in
approaches towards energy reduction, such as data aggr&gation 11, including the simulation tools, the mote ptath,
tion [7]. Instead, we put the focus of this paper on the energynd the used data set. Obtained simulation results focused
gains achievable by the local compression of packet pagloadn the microcontroller, radio and global energy gains are
Similarly, header compression mechanisms such as defineghiesented and discussed in Section IV, and we conclude this
RFC 4944 [8] are beyond the scope of this paper. paper in Section V.

I. INTRODUCTION
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[l. RELATED WORK mote platform, and brief descriptions of the used compo@ssi

The area of data compression in WSNs has received sofi@orithms and their resource demands.
attention in previous literature. Although focusing oneléss A Data Set
ad-hoc networks, Barr and Asanovic show in [9] that the
energy required for transmitting a bit can be equivalenh® t N many application fields for wireless sensor networks,
energy consumption of a thousand microcontroller opematio SUch as home care or patient monitoring in healthcare sce-
However, their results were acquired from a Compaq Persoﬁ&[ios, collected data needs to be transferred to a basenstat
Server handheld, which features 32 megabytes of RAM aRgriodically with low latency. The available data should be
16 kilobytes of cache. This significantly exceeds the resmurup-to-date to avoid ambiguous interpretation possibsitand
constraints on many of today’s mote platforms. allow for the correct action to be taken in case of emergencie
Sadler and Martonosi present a variation of the lossled§hough in a regular state of operation, successive regdin
LZW algorithm in [12]. Specially designed for common sensdte not expected to significantly differ from each otherythe
platforms with a few kilobytes of memory, their versiorl€ed to be transferred to the base station at regular itgerva
compresses data blocks with a length of 528 bytes at a

. . Byte 0 1 7 8 19 20
time. Tested with data from real sensor networks, the S-LZW "+ ... boeo e b heoo-- b b oo o- PR +
algorithm shows energy savings up to a factor of more than | X 01 X111 YO0l Y1l .125]26]
1.5x locally, and over 2.5x for the overall network. However

the system was evaluated in a delay-tolerant network gettin Fig. 1. Packet structure used in the Porcupine project

where data was buffered before being transmitted. . .
. . The wearable Porcupine nodes have been designed to
Tsiftes et al. compare mechanisms to compress code updates

) . termine a person’s activity from accelerometer readings
to remotely reconfigure nodes in [13]. They present the SBZ[E .~ . P 'ty ding
: : . : . ~which is a common scenario for wearable sensor networks.
algorithm, which combines multiple preprocessing and regdi

. T - Transmitted packets follow the structure shown in Fig. 1;
steps, while maintaining the characteristics that the derco ) . .
the payload consists of seven accelerometer readings in X,

part can still be run on memory-constrained sensor plaﬁorw . .
; . and Z dimension of one byte each. An exemplary plot of
Results show that network-wide energy savings of to 67% cah

. . : data is given in Fig. 2, showing a 10 minute excerpt of
be achieved _When compressmg.the code updates using G Ig' data Whgere a phasge of almostgno movement is folli))wed
an\i]sl,Jmari]r(? %1u4|]pré;iﬂteiézsz?;g)Cnepggigcg;ngrﬁaﬁsfg dm:P]c ‘a series of quickly changing readings. All acceleration

o - =ach pac . haly readings are shown as unsigned byte values. A closer look
classified according to its changing frequency in advanc(()an the data set reveals that it is dominated by long runs of

Different compression methods are associated with each caf . : :
Similar accelerometer readings when there is no movement

egory; while randomly changing fields are always transtbrref the wearable sensor, while during periods of high agtivit
uncompressed, sequence number fields are e.g. encoded b '

difference coding. In addition, the sensor readings aredsd reé{uent and fast changes of the sensor readings are oliserve
by either difference coding or length-variable coding. Rem B. Simulator Selection

ing redundant information from the packet, the developed . . — .
. . : Simulating application behavior before the actual deploy-
mechanism allows for compression gains of up to 50% as

. o (éant is a useful tool to identify problems and debug them.
well as the corresponding reduced transmission delays. oreover, the profiling capabilities of simulators allowaév
results were however not verified by an energy analysis. ' P g cap

In previous work, we have investigated a differential encm?gating general properties of applicatiops Wit.hOUt depigyi
ing scheme exploiting the temporal resemblance of senger n em on real motes. The obtained simulation results can
work packets [15]. The application-agnostic solution feg
a generic framework for data compression with size redastio
of up to 35% for a real data set, although a thorough energy
analysis has been identified as future work. 1601

As none of the presented publications discusses the achiey-
able energy savings when sensor readings are compresseg al
the originating node, we provide a detailed investigatibthe
corresponding energy gains in this paper.

120

Accelerome

[1l. SIMULATION SETUP 100k ,
The goal of this simulation study is the assessment of the T Xaxis

. . . . . — Y-axis|
achievable energy gains when data compression is appliedsor Z-axis|’
prior to packet transmissions. We analyze a single-hop sce- 100 200 300 200 500 500
nario, where a sensor node priodically delivers data to k. sin Time (5]

Starting with an analysis of the data set and its charatites;s

. . . . Fig. 2. Example Porcupine accelerometer data
we present our selection of the simulation tool, the considie



TABLE |

be _Used to quify a}pplicatipns quickly, without requiring POWER CONSUMPTION OFMICA2 AND PORCUPINE MOTES
a time-consuming reinstallation on motes. Although a set _ _
of instruction-level simulators exist (cf. [16]), we havelp _ Mica2 [19] Porcupine
idered simulators compatible with TinyOS which addi- §|  \cocontoler o aa2Bl | Eeio0
C_Ons' ere imu p y ® Flash memory 128 kilobytes 32 kilobytes
tionally feature energy profiling. As a result, we have se- & RAM 4 kilobytes 2 kilobytes
lected the Avrora simulator for our analyses [11], combined S Rlad'o “F:“td_ - Ch'g%%’llccv\llooo Ch'gCOO&C(\:AZ/“ZO
. K . - sleep, Radio o . m . m
ywt_h the AEON _energy modglllng extension .[17]. Avrora 8| MCU active, Radio off 36 mw 51 mw
is implemented in Java and its source code is available toc | MCU active, Radio RX 117 mW 120 mw
easily perform modifications to the code, e.g. to adapt power | MCU active, Radio TX 117 mwW 115 mw

consumption values or to increase the available RAM size.

All following simulations were conducted using Avrora withp Algorithm Selection
the AEON energy extension. The Avrora simulator offers the ) )
possibility to specify an input file containing sensor reeyi .Dge to .the determined nature of many successive .bytes
in order to simulate the data collection process through'4thin the input data stream, we have selected compreséion a
sensor interface. We have inserted the data sets into the nff"ithms which deliberately exploit these data structu@asr
using this approach, but disregarded the corresponding;yenesecond criterion was the demand to achieve good compression

demand in the simulation results, as it is an inherent harelw@@ns while compiling to sizes within the resources avégab
characteristic and presents a static energy consumption. ©N current mote platforms. While run-length encodifi-£)
replaces multiple occurrences of an input symbol by a repeti

C. Mote Platform Selection tion count field, the adaptive Huffman codingHC) algorithm

We have performed all our implementations in TinyOS [1gputomatically adapts to the symbol occurrence frequencies
and compiled the applications for the Mica2 platform, as }ithin the input data and adjusts its code table accordingly
fine-grained energy model is already implemented within tfg@quent symbols are assigned short binary codes, while the
Avrora simulator. The Porcupine node intended to perforfPdes for less frequent symbols are longer.
the data compression is however based on different hardwardVe have added a one byte status field preceding the packet
components with different specifications, and Avrora doats nPayload in our implementations, which contains informatio
ship with a corresponding energy model. To estimate its pow@Pout whether the following payload contains compressed
consumption, we thus compare its energy profile to values uncompressed data, and which algorithm has been used.
from the Mica2 data sheet in Table I. The figures for th@lthough the compression step is always performed, data
Porcupine were hereby extracted from the data sheets ofiftsonly sent compressed if the corresponding output size is
components. smaller than the uncompressed data. In case of incomplessib

The numbers confirm that the energy consumptions of bdigta, the packet size to be transmitted thus increases by one
platforms increase dramatically when the radio is configur@yte-
in active, i.e. in transmissionTK), reception RX), or idle 1) Run-Length Encoding AlgorithmsWe have imple-
modes. However, it is also obvious that the overall comented two variants of RLE, which differ in the way how
sumptions of the platforms are similar in these modes. THee number of symbol repetitions is detected. While the first
Porcupine only requires significantly more energy than ti@riant proceeds on a byte-by-byte basis, the second varian
Mica2 when the microcontroller unitMCU) is active while fixes the first occurrence position of a symbol in the input
the radio transceiver is powered down. This state is preséi@ta and steps through the further input data until a differe
while data is collected from the accelerometer, and wh&haracter is determined. Both use a threshold value of two,
data processing, such as compression, takes place. We Ha&eonly sequences of two or more identical symbols are
allowed the operating system to put the platform into slegpplaced by two symbol repetitions, followed by the repetit
mode in between data sampling operations to save energy. @aunt field. As the encoded output from both algorithm
following simulations use the implementation of the B-MAQ/ariants is identical, the same decoding algorithm can be.us
protocol [4] provided in TinyOS. The compiled version of the first variant of the RLE

Concluding from the energy consumption values, we aalgorithm requires 308 bytes of Flash memory and 58 bytes of
ticipate our simulation results to represent good — althoudRAM. This represents a very small fraction of the resources
possibly pessimistic, as we disregard the smaller sleepema@yailable on the motes. The resource consumption of the
energy demand — estimates for the Porcupines, when wejghti¢cond variant is 490 bytes of Flash memory and 58 bytes
the MCU energy by a factor 05% = 1.416. of RAM, also being less than 2% of the available resources.

In the following sections, Flash memory and RAM conAs RLE requires very low memory, it can be easily combined
sumption values are stated according to the output of tiéth existing applications on motes.

TinyOS compiler. To determine the increase in resource2) Adaptive Huffman CodingWe have founded our eval-

consumption, we have implemented reference applicatiomstion of the adaptive Huffman coding algorithm on an im-
without any compression code for all of our simulations, andlementation provided by A. Guitton, as presented in [20].
show all results in comparison to these reference values. In addition to the normal operation, the version of AHC was
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Fig. 3. The Porcupine sensor data sets

extended to be fault-tolerant, i.e. packet losses whichldvolpackets to the radio transceiver instead of applying tha dat
result in a false synchronization of the Huffman code tree caompression algorithm first. By taking the difference oftbot
be recovered from. Contrary to the static Huffman algorithnobtained energy results, the energy gains or losses caysed b
the adaptive variant does not require a prior knowledge tife compression algorithm can be directly compared.

the symbol occurrence frequencies, so code tables need ngh 5 first step, we have evaluated the algorithms with a
be transmitted in advance. Instead, in the adaptive Huffmagnthetic workload to assess best case and worst case-perfor
algorithm, both encoder and decoder manage their own tig@nces. Concisely, for the best case evaluation, we hade use
construction. This complex process must be synchronizdd 4Aput sequences of 21 bytes in length with a defined number
symmetric in order to avoid different correspondences betw of dentical characters followed by differing symbols. Fbe
symbols and codes, which may result in incorrect decodingyorst case, we have used different specific input sequences
The memory requirements of the AHC implementation oy, RLE and AHC. In the RLE case, we have used input
both sender and receiver were evaluated, and yielded a @demggia with two repetitions of each symbalabbcec. . .), so
for 30,686 bytes of Flash memory and 6,462 bytes of RAM. {he threshold is met every time, but the repetition countfiel
is obvious that the Flash memory consumption is just withig|| contain a value of zero. For the adaptive Huffman coding
the limits of the Porcupine platform, but the available RAMpechanism, we have used payloads with an equal distribution

is significantly exceeded. To allow an analysis of the AHGt 5)| possible input byte values to evaluate the worst case.

algorithm, we have thus modified the source code of the . - .
) . . To analyze the energy gains under realistic conditions, we
Avrora simulator to assume an increased RAM size of 10 : .
) . : . ave selected two representative sequences of sensongsadi
kilobytes for the Mica2 platform, so our simulations coulqr

be performed successfully and energy estimates extracted om the Porcupine project [10], which are depicted in Fig. 3
P y oy and were kindly provided by K. Van Laerhoven. The first

IV. SIMULATION RESULTS selected period is presented in Fig. 3(a), and termed as
-th? activity phase in the following sections. With a profile

We have performed simulations in two successive steps; d of multiol _ lerat di -
the first series of simulations, a preliminary estimationdest C0MPosed of multiple varying acceleration readings,
luating the algorithms during a period of high wearer

and worst case results was performed for both algorithms Byaiu gt
using previously defined data structures. In a second stege,2 tivity. The second data set (shown in Fig. 3(b)) represent

evaluate the algorithms with sampled Porcupine data sets. readings from a phase when the wearer was asleep, and is thus
termed thesleepphase. It is well suited to obtain energy results

A. Simulation Scenario for the common case when the wearer’s motions are limited

To assess the energy gains achievable by applying dapg the gccgleror_neter data may thus show a great number of
compression at the sender node, we have assumed an i§@ggecutive identical bytes.
(i.e. lossless) one-hop communication channel and used th&Ve have selected the Porcupine data to evaluate the com-
original Porcupine application, which samples and stoegsrs pression algorithms, as it contains real sensor data which
accelerometer values per axis. Data is sampled at an ihtermgpose good compressibility through the natural charistier
of 60 millisecondes between successive readings. Once aflbody movements. In total, 30,316 samples for each of the
21 readings have been taken, the radio is powered up ahtke dimensions were used in our simulations, equalling a
the packet sent. When the packet has been sent, the radinumber of 90,948 individual acceleration values. We have
immediately stopped for energy saving reasons. segmented the data into 26 chunks of 1,166 readings per
The following energy results are presented in comparisamis each, corresponding to 166 sent packets, and analgze th
to the reference implementation, which directly forwarkde t compression gain for each chunk individually. After having
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successively simulated each chunk of data, we show theAnalyzing both algorithms, the obtained results show that
corresponding mean energy gain in the following figures. more than 21% of radio energy can be saved by sending
compressed packets. Even though this best case, correésgond
to 21 successive identical bytes, might be unlikely, theaiam

To assess the best and worst case energy gains, we hagecases show that the achievable energy savings expose a
configured the simulator to send 166 packets with identicithiear dependency on the amount of successive identicakbyt
payload and compare the resulting energy gain values.  at the input. In the RLE case, energy savings are possible

1) Microcontroller Energy: The microcontroller energy re- when at least four identical bytes are present within thetnp
sults are depicted in Fig. 4(a) in function of the number dfecause the algorithm requires at least two bytes to iralicat
identical symbols within the input. The obtained resultsvgh the repetition and another one for the repetition counthWit
that applying compression to the data leads to MCU enerlpss than three identical successive bytes, there is atsligh
losses in almost all cases. Only when 13 or more identidaks in energy as the data are prefixed by the status byte,
symbols are present within the input sequence, the first RIbEt remain uncompressed otherwise. In contrast to wrapping
variant shows a slight energy gain. The energy loss obsentbd number of symbol repetitions into a repetition countfiel
in all other cases can be interpreted as such that the enefdC replaces each input symbol by the corresponding code,
required by the microcontroller operations for compregs$ire  which requires at least a single bit, hence the compressiion g
data is greater than energy saved by not transferring thesbyturve exposes a smaller slope. The additional status flag byt
to the radio transceiver over the SPI bus. With energy loss&sd a second field indicating the number of bits in the payload
between 0.2% and 0.54%, RLE requires less microcontroliad up to the size requirement of AHC encoded packets.
energy than the AHC coder, which has almost 2% of energygy examining the energy gain of the adaptive Huffman
loss in the worst case. We attribute this difference to thggorithm, it becomes clear that greater savings than fd RL

complex tree management, which requires a high numberge possible for sequences with a smaller number of symbol
additional microcontroller operations.

Worst case results for the algorithms have been simulated
as well. They reach energy losses of 1.3% in the first RLE *°[
variant, 2.5% in the second alternative, and 6.8% in the *f
AHC case. As it becomes clear that the first RLE variant 35¢
consumes less microcontroller energy than the second at all s
times while producing equally sized output data, we disrga < 25
the second variant of our RLE implementation in the follogvin
simulations.

2) Radio Energy:In addition to the microcontroller en-
ergy estimation, we have used Avrora to evaluate the radio
energy consumption of both algorithms. Again, the results '
obtained after sending 166 packets with the defined payload °
are illustrated in Fig. 4(b). As both compression algorishm -0 5 10 15 20 21
demonstrate energy gains for each simulation, the results Amount of successive identical bytes
confirm the hypothesis that shorter packets require less tim
on the radio channel, and thus less energy to be sent.

B. Best/Worst Case Energy Results

Energy gai

0.5

Fig. 5. Overall best case energy gain
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Fig. 6. Energy gains for Porcupine data

repetitions. The resulting curve exposes some discreps,ste 1) Microcontroller Energy: By considering the activity
which result from the bitwise operation of AHC, as it regsireperiod first, the microcontroller energy results illusttin
terminating padding bits. In summary, each additional syimbFig. 6(a) are obtained. It is obvious that this time energy
repetition in the input data can save 1.3% of the radio enerfpgses are present with both algorithms due to the highly
in the RLE case, and 0.6% when AHC is applied. dynamic and thus less compressible nature of the sensar data
3) Overall Energy:The global energy consumption of bothAgain, RLE losses range around 0.2%, whereas the losses by
algorithms and best/worst case data is illustrated by Fig. the AHC algorithm are more than ten times as high, with
As the radio transceiver and MCU are the major powetverage losses of 2.3% and peaks of up to 2.75%. lllustrated
consumers on the mote platform, the resulting curves relsemby Fig. 6(b), the microcontroller energy consumption dgrin
the addition of both previously determined graphs, weidhtehe sleep phase data set follows the same trends: Applying
by the corresponding duty cycles. the compression algorithms requires microcontroller gyer
Global energy savings reach up to 4.5% in the RLEor both algorithms. However, the improved compressipilit
case, and up to 3.5% for AHC, respectively. Evaluated withf the data results in losses for the RLE algorithm around
previously determined best and worst case data sets, th&%, while AHC leads to around 1% of energy loss.
results allow establishing that data compression leadsdyy  according to our expectations, the microcontroller energy
savings. After having proved the feasibility of our motiv@t gain depends on the activity intensity, and is greater ire cas
scenario, we evaluate the implemented algorithms with &gk gata presents a high amount of consecutive identicasbyt
sensor data in the following step. Such sequences allow for very small losses, while intense
C. Real Data Energy Results activity of the wearer leads to a greater energy demand, as
In order to evaluate both Run Length Encoding and t{8€ accelerometer readings are varying quickly, and fewts b
adaptive Huffman algorithm on the microcontroller energfductions are hence possible.
when real data sets are given, we have used the real data fror®) Radio Energy:To complete the compression algorithm
the Porcupine project, and analyzed the algorithms for batkaluation with real data, their effects on the radio energy
the activity and the sleep phases. consumption were also examined. Depicted in Fig. 6(c), the



AHC worst case| 1 data, a result close to the best case achieved in simulations
with synthetic data. However, these significant savings are
counterbalanced by the microcontroller energy demands to
4 maintain the complex Huffman code tree and to transcode the
7 input symbols to a binary output sequence, resulting inalier
energy gains ranging from -0.76% to 2.35% on Mica2 hard-
1 ware. In contrast, the more lightweight RLE implementation

7 requires much less operations to encode symbols on a per-byt
basis and always leads to positive energy gains in the range
L of 0.47% to 2.2% for the real data set.

i i L i i i
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AHC activity phaser
weighted RLE activity phase-
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V. CONCLUSION AND OUTLOOK

Fig. 7. Overall energy gain for real data In this paper, we have analyzed the achievable energy gains
when applying data compression in WSNs. Our simulation

radio energy consumptions confirm the previous observs;lticxrr?SUItS prove that applying data compression may allow sav-

when using the activity phase data set. With an energy gain'gg energy, even if additional microcontroller operaticare

3.3% on average, the RLE algorithm is outperformed by tﬁgquwed, as the corresponding MCU energy demand can be

AHC, which achieves mean energy gains of 5.9% counterbalanced by the radio energy gain, which resul® fro

S transmitting smaller packets.
The results for the sleep phase are presented in Fig. 6((111),anWe have evaluated the applicability of both run-length

confirm the expectations that the radio energy gain is greate coding and adaptive Huffman coding on sensor network

during the sleep period than during the activity phase. Mord' . ) .
. . : nodes. While the RLE implementation consumes a very small
precisely, applying the RLE algorithm allows to save 12.1% (?

energy on average, and the application of the adaptive Hurff ra?;ﬁgno;rhgril;al?gle séMa?g'ggfr:omﬁ;n;rég;ﬁ ?::r?]t(')\:e
algorithm even leads to around 17.1% of radio energy sayin d gort qui J u y

confirming that compressing data allows to reduce the ra |8$j evenh.excitladsbth?hRAAMH gvalllablihon (tjhg Elatform. Thte
transceiver’'s energy consumption significantly. gains achievable by he algorithm did ‘nowever no

3) Overall Energy: The overall simulation results, includ—SigniﬁcamIy exceed the energy preserved when applying.RLE

ing radio and microcontroller gains as well as the previpusl| Although having confined our discussion to a single ap-

determined best and worst case results, are compared togh%atlon with tyvo _data set_s only, our results indicate that’
reference implementation in Fig. 7. With a mean energy lo gla compression is a feasible way to r_edu_ce_a WSN node’s
of 0.76% during the activity phase and a gain of 2.35% durin ergy ponsumphon, and thus extend its I|fet|me. However,
the sleep period, the AHC algorithm has shown that ener r findings also show that adequate solutions designed for
losses can occur when real sensor data is compressed uSl or networ_k nc_)de hardware are necessary. -
AHC. In contrast, the RLE algorithm exposes average ener hen considering a whole sensor '.“etwo”" transmitting
gains of 0.47% in the activity phase and 2.2% in the S|e§§/mpreSSEd packets also has a beneficial effect on the loveral

phase, confirming that RLE allows to globally save ener twor_k, as less trafﬁp vqumg needs to be forwarded in
when applied to Porcupine sensor data. multi-hop WSN setting, leading to an extended network

lifetime as well. We anticipate even greater energy savings
D. Transferring the Results when larger payload sizes are used, as the fixed-size packet

To allow for an estimation of the real-world energy saving§ieaders present a smaller fraction of the overall packetisiz
we have weighted the MCU energy demands by the factehch cases.
of 1.416, as determined for the Porcupine platform in oW Hutiook
hardware comparison in Section IlI-C. The corresponding
results are shown in Fig. 7. They indicate that the achievabl We have performed our simulations using the Avrora simu-
energy gains decrease due to the higher cost of microctertrofator, as the energy profile of the Mica2's MCU (weighted by
operations. In the AHC case, this results in energy losses&§onstant factor) presented a good estimate for the Migroch
1.14% in the activity phase, while a gain of 1.49% is preseMCU on the Porcupine platform. To however analyze the
in the sleep phase. When RLE is applied, savings are achie@&gcts of data compression on different platforms, weetrg
in both phases and range from 0.3% in the activity phase & Perform additional simulations using different toolsicls
1.63% during sleep. In summary, positive energy gains c&f MSPsim [21]. To verify our findings on real hardware, we

still be observed for all RLE cases and the sleep phase AH&SO target to complement our simulations by real expertmen
Besides, the characteristics of the B-MAC protocol, espe-

E. Summary cially the long preamble when sending a packet [4], also have
We have compared the energy gain results for all daéa impact on the achievable energy savings. We therefore aim

sets and determined that up to 17.1% of radio energy coutdperform further analyses in conjunction with differenal

be saved when applying AHC on the real Porcupine sendayer protocols.
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