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a b s t r a c t

More and more renewable sources are integrated into electric power grids worldwide.
Their high generation dynamics, however, require power grid operators to monitor
electricity generation and demand at a fine temporal resolution. Even small mismatches
between supply and demand can impact the power grid’s stability, and thus ultimately
lead to blackouts. As a result, smart metering equipment has been widely deployed to
collect real-time information about the current grid load and forward it to utilities in a
timely manner. Numerous research works have shown that power consumption data can,
however, reveal the nature of used appliances and theirmode of operation at high accuracy.
This effectively puts user privacy at risk. In this manuscript, we investigate to which extent
the local preprocessing of power data can mitigate this risk. We thus compare the efficacy
of different preprocessing steps to eliminate characteristic consumption patterns from the
data. Our evaluation shows that a combination of these preprocessing steps can provide
a balanced trade-off that is in the interests of both users (privacy protection) and utilities
(accurate and timely reporting).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the key elements of future smart power grids is their integration of renewable sources [1]. The volatile nature
of renewables, however, introduces previously unseen uncertainties in the electricity generation. Utility companies hence
need to constantly maintain up-to-date knowledge about generation and load in order to avert the risk of power outages.
Smart electricitymeters have been deployed to this end inmany countries [2], as they enable to capture both the distributed
generation and the demand of a dwelling.While of immediate benefit to the utilities, the transmission of precise information
about the current electric activity in households is often perceived as a threat to user privacy. This concern is underpinned
by research results that have shown that information about the current user activities and even the television content can
be inferred based solely on smart meter data (e.g., [3,4]). So while users may be reluctant to provide high-resolution data
because of the possible privacy implications, utilities require exactly this consumption data at a fine temporal resolution in
order to adapt the power generation of their non-renewable plants to the dynamically changing demand.

A common way to encounter this problem without forming a trust relationship between customer and utility is the
removal of typical characteristics from the data before their transmission. This technique, called privacy-aware data prepro-
cessing, has received significant attention in orthogonal domains like participatory sensing [5,6]. However, the applicability
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of mechanisms from these domains is very limited due to the different nature of the data collected by smart meters (e.g., the
absence of location information). Nonetheless, local preprocessing of sensed data represents a promising way to protect
users from potential breaches to their privacy when their consumption data is received by untrusted third parties. In this
manuscript we hence investigate to which extent the local preprocessing of power readings can eliminate possibilities to
infer appliance types based on their consumption data. To this end, we apply different mechanisms to obfuscate the data
and subsequently analyze to which degree appliance types can still be identified after this preprocessing step. The analyzed
preprocessing algorithms solely rely on the reporting of slightly altered power consumption readings and do not leverage
additional means (e.g., storage batteries [7] or controllable local renewable generation [8]) to physically alter the power
demand. It is hence still possible to infer that electrical appliances are operating based on the reported consumption read-
ings. However, when successfully applied, data preprocessing will make it impossible to determine the actual type of an
operating appliance or its mode of operation.

Instead of analyzing data that aggregates a complete household’s consumption,we focus on distributed smartmetering in
this manuscript. In this scenario, individual metering devices (sometimes referred to as smart plugs) are installed between
each appliance’s mains plug and the wall outlet. The reasons for selecting this application scenario are twofold. Firstly,
existing approaches to infer device activity from smart meter data have shown that the disaggregation of loads performs
significantly better when less appliances are connected at the same time [9]. A more efficient privacy protection is thus
needed when less appliances are being monitored simultaneously. Secondly, very few household-widemeter data sets (like
REDD [10] or Smart* [11]) are freely available. Moreover, these existing data sets are generally neither annotated by the
actual appliance activity in the underlying building nor accompanied by the implementation of a disaggregation system. As
a result, the effects of local data preprocessing on these data sets cannot be easily determined. In contrast, the Tracebase
data set [12] used in this paper contains more than 1500 appliance power consumption traces, and in combination with our
previously presented appliance identification system [12] allows for a better generalization of our results.

This manuscript significantly extends our prior publication [13] by analyzing twice as many preprocessors over larger
parameter ranges and assessing the introduced errors in a much more detailed manner. It is structured as follows. First, we
provide an overview of related work from the domains of data privacy and smart metering in Section 2. Subsequently, we
describe our designed software framework and the preprocessing steps in more detail in Section 3. Our evaluation settings
are explained in Section 4, followed by the presentation and discussion of our evaluation results in Section 5. Finally, we
conclude this paper in Section 6.

2. Related work

The rise of smart meters has led to the availability of energy consumption readings at an unprecedented time and ampli-
tude resolution. To date, twomajor applications have emerged that rely on these data. Firstly, knowledge about past, current,
and expected energy consumption is vital for the smart grid [1], as it allows utilities to take action in order to maintain the
grid’s stability. Secondly, value-added services can be based on energy consumption data and cater for the creation of smart
buildings [14,15].

While smart building functionalities can be realized when accurate measurements are available (cf. [16–19]), the same
methods can be applied by third parties (e.g., the utility or external attackers) to infer the current situation in a building.
Many institutions like the CEN-CENELEC-ETSI Smart Grid Coordination Group, the National Institute of Standards and
Technology, or theGerman Federal Office for Information Security (BSI) have thus defined information security requirements
to the smart grid in [20–22], respectively. Likewise, many researchers have proposed the use of cryptographic means
to ensure a secure transport of data between end users and utilities (e.g., [23–25]). Although proposing a separation of
personal information and actual power consumption data, countermeasures to prevent inferring user-specific information
from meter data are not described in these documents. Moreover, the generally proposed use of pseudonyms has been
shown to be ineffective due to the insufficient number of stakeholders on the electricity market [26].

In order to protect users from such intrusions into their privacy, several solutions have thus been presented in the related
work. For example, [27,28] show how data collected by multiple meters can be aggregated data before sending them to the
utility. Similarly, [29] rely on a virtual ring topology, along which meter readings are relayed before being forwarded. While
the users are protected against attacks by legitimate receivers of the data (i.e., utilities) in this case, however, they need to
trust and cooperatewith other household owners.Moreover, transmissions can experience large delays due to the exchanges
between clients that precede the final upload to the data recipient, which may render the approaches inapplicable for the
highly dynamic nature of smart power grids.

In comparison to collaborative processing approaches, the local privacy-preserving preprocessing of smart meter data
has received significantly less attention in the past. Instead of artificially manipulating the collected readings, existing local
approaches mainly rely on the use of external energy storage components. The use of batteries to smoothen the load curve
and eliminate characteristic features from the data has been presented in [7,30]. By dynamically adapting the battery output
power to a particular appliance’s power demand, its existence can be completely hidden. While leading to a potential
increase in privacy protection, however, it needs to be remarked that the extent of hiding consumption data this way is
inherently limited by the battery capacity. Furthermore, state-of-the-art battery technology suffers from severe limitations,
e.g., decreasing capacities over time [31]. Using storage components to protect user privacy may thus not be practical until
energy storages become available in large numbers, e.g., as a result of electromobility [32].
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Many local processing approaches from orthogonal domains can be leveraged for smart metering scenarios. The addition
of noise to sensor measurements has been applied in order to obfuscate user behavior [33], although its effect has not yet
been analyzed in the domain of smart electricity grids. Also operating on a local basis, the privacy-aware data preprocessing
solution presented in [34] recommends the application of filters to eliminate certain characteristics from power data, but
their efficacy has not been analyzed in the domain of smart metering either. Amongst the other mechanisms introduced in
Section 3.2, we thus regard these approaches in our evaluation and assess their applicability to power consumption data.

3. Concept and software framework

The primary objective of this work is to evaluate the extent of privacy protection that can be achieved by preprocessing
the data collected by distributed smart meters. In order to analyze the efficacy of data preprocessing steps, we first quantify
the privacy threat resulting from theunprocessed transmission of power consumptiondata. To this end,weuse an evaluation
system that allows for the classification of appliances basedon their power consumptiondata. Subsequently, results basedon
preprocessed data are compared to this baseline in order to draw reliable conclusions on the degree of additional protection
attained by preprocessing.

To establish the baseline detection accuracy, we rely on our previously designed system that is able to detect the type
of an appliance based on its electric power consumption data, which we have presented in [12]. The system extracts spe-
cific characteristics that uniquely represent each appliance type based on its power consumption behavior. Subsequently, it
leverages amachine learning component to store these characteristics and allow for a later retrieval of device types based on
the stored features. When the system is supplied with a power consumption trace collected from another device, it extracts
the same features from the provided trace, compares them to the previously established model, and returns the device type
with most similar characteristics. The objective of the manuscript at hand, namely obfuscating device-specific characteris-
tics in the power consumption data, should thus lead to more false identifications. Hence, we use the fraction of appliances
that can no longer be correctly identified as a measure of the efficacy of our data preprocessing.

3.1. Overall system architecture

Our overall system is composed of distributed metering units that connect between wall outlets and electric appliances,
as well as a server on which the data analysis is performed. This architecture is visualized in Fig. 1. Continuous lines indicate
mains connections, whereas dashed lines reflect the wireless data transfer between the meters and the server. We employ
Plugwise Circle [35] devices to collect the consumption data due to their commercial availability and their approval for
electric safety. All metering units return real power consumption data once per second to the server, which records the
power consumption traces in its database for their subsequent processing.

The fundament for the contributions of this paper and the main difference to our original appliance classification system
is the addition of a preprocessing step (highlighted in the figure). This step is applied to all power consumption data time
series prior to any further processing. By preprocessing data locally on the user’s premises, potentially compromising
characteristics can be removed before the data is released to third parties. In this manuscript, we investigate multiple
alternatives for the data preprocessing step, which we describe in Section 3.2 in more detail. Subsequently, the existing
appliance identification system is being used to extract representative features from the data stream and facilitate the
classification of incoming data streams. We summarize the operation of the appliance classification system, describe the
used feature types, and provide details about the machine learning algorithm in Section 3.3.

3.2. Data preprocessing

In the remainder of this paper, we analyze to which degree data preprocessing can help in protecting user privacy. In
order to be applicable to the scenario at hand, potential processing algorithm candidates need to fulfill the following two
criteria:

1. The algorithms must be sufficiently lightweight to be run on embedded systems like distributed power meters or smart
metering infrastructure.

2. The output data of an algorithm needs to retain the general shape of the power consumption curve, i.e., have small
deviations from the original data. Similarly, the introduction of excessive time delays between power measurements
and their reporting can be expected to hamper grid operations and should thus be avoided.

We have thus selected a set of six data preprocessing filters, which we explain in more detail in the following subsections.
To quantify the impact on the privacy protection when temporal dependencies are being considered, we analyze three
stateful and three stateless algorithms. The stateful filters take previously observed data into account for the computation
of a new output value and are thus also referred to as time-based approaches throughout this manuscript. In contrast, the
stateless filters modify the signal amplitude independently of any previously observed data, and are called amplitude-based
filters from here on. In order to highlight the effect of the analyzed processing algorithms on real-world data, we visualize
their impacts on an excerpt from a dishwasher’s operation cycle. The unaltered consumption trace is depicted in Fig. 2 for
reference.
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Fig. 1. Overall data collection and processing system architecture.

Fig. 2. Unprocessed power trace excerpt of a dishwasher.

3.2.1. Temporal down-sampling
Temporal down-sampling is a mechanism to intentionally reduce the temporal fidelity of power consumption readings.

To this end, it periodically takes a sample of the data and reports the same power consumption value for a time duration
w. Should new samples be received during w, these values are discarded and the previous value is repeated instead.
While down-sampling thus maintains the temporal frequency at which measurements are made available (e.g., one
sample per second in case of the Plugwise devices introduced above), in the worst case a potential change of the actual
power consumption will only be reported after a complete window w has passed. Furthermore, as sensor readings are
intentionally discarded, the error introduced by the application of temporal down-sampling is only limited by maximum
powermeasurement capability of the underlying sensing device, but unbounded in theory. Fig. 3(a) shows the output of the
down-sampling step when a down-sampling interval of w = 150 s is being used.

3.2.2. Temporal averaging
Instead of omitting input data samples from their forwarding to the processing system, temporal averaging takes all

collected readings into consideration and can thus be expected to lead to smaller deviations between actual and reported
data.We have used a window-based averaging function that reports the arithmetic mean of the previousw sensor readings.
The output of our averaging preprocessor forw = 150 s is shown in Fig. 3(c), clearly showing the smoothened consumption
pattern. Averaging introduces a time lag, and may thus only be applicable in scenarios where this delay can be tolerated by
the recipient of the data.

3.2.3. Temporal averaging and down-sampling
This preprocessing alternative is the combination of an averaging of the input data and the down-sampling of the

resulting value as described in the previous two paragraphs. Again, the mean value of the previously collected sensor
readings is continuously calculated over a sliding timewindowofw seconds. The resulting value is, however, down-sampled
and only reported once at the beginning of every window and then repeated untilw has passed. The output of this approach
for w = 150 s is shown in Fig. 3(e), from which the characteristic steps on the steep edges of the power consumption curve
become apparent. Like the previously described averaging step, a time lag is introduced when using this approach.

3.2.4. Noise addition
Adding noise to the signal is a stateless way of modifying power consumption readings. Characteristic fluctuations of an

appliance’s power consumption that only have small amplitudes can be covered in the added noise, thus potentially leading
to a higher privacy protection. In this preprocessor, we have used a noise source that returns uniformly distributed values
with an amplitude between−a and+a, which are added to incoming sensor data. The result of adding noisewith a = 100W
to the dishwasher’s consumption trace is shown in Fig. 3(b). As no negative power consumption values should result from
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(a) Temporal down-sampling with a window size of w = 150 s. (b) Addition of Gaussian noise with an amplitude of a = 100 W.

(c) Temporal averaging with a window size of w = 150 s. (d) Quantization with a factor q = 80 W.

(e) Averaged down-sampling with a window size of w = 150 s. (f) Clustered quantization with n = 22 output clusters.

Fig. 3. Comparison of the resulting traces when the six preprocessing filters are applied to a dishwasher’s power consumption trace.

the addition of noise, this preprocessor has been configured to return the absolute value of the computation result. In order
to eliminate dependencies on the randomnumber generator’s seed, we have run each of the evaluation experimentmultiple
times with different seeds and only show the resulting mean values.

3.2.5. Linear value quantization
Value quantization is realized by rounding the actual power consumption values to a multiple of a pre-defined quan-

tization factor q. Because the quantization step is stateless and requires no historical data, no delay is introduced by the
introduction of this preprocessing step. The application of quantization to the dishwasher’s consumption data is shown in
Fig. 3(d) for q = 80 W. It can be seen that quantization eliminates the slight slope on top of the power-intensive heating
periods while the general shape is maintained. The decision to utilize a quantization step has been supported by the fact
that many electricity meters implicitly quantize values by outputting a number of pulses for each consumed unit of energy
(e.g., 1000 pulses per kWh of consumed energy).

3.2.6. Adaptive cluster-based quantization
In contrast to defining clusters of equally sized value ranges, this preprocessing step adapts to the actual characteristics

of the input data. To this end, we have computed the histogram of all input data (cf. Section 4), which is visualized in Fig. 4.
In order to intentionally create ambiguities between similar power consumption readings to help protecting user privacy,
we have applied the Mean Shift algorithm [36] to separate the histogram into clusters. For all input data that falls within
the boundaries of any of the resulting clusters, the median value of the corresponding cluster’s elements is reported. The
algorithm can be parameterized to either return more clusters and thus less errors between unprocessed and processed
value, or to use less clusters and introduce larger errors. We show the dishwasher’s consumption trace when clustering the
histogram into n = 22 individual sections in Fig. 3(f).

3.3. Classification and features

The evaluation of the achievable privacy protection is based on our appliance classification framework presented in [12],
which follows the overall process flow shown in Fig. 5. Let us briefly revisit its operation. At first, power consumption traces
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Fig. 4. Histogram of the entire used input data (the y-axis shows the square root of the actual value for improved visual clarity).

Fig. 5. Appliance classification architecture.

of 24 h duration are collected from electric appliances. From a subset of the traces, characteristic features are extracted,
annotated by the type of the underlying appliance, and stored in the form of feature vectors. Each of the resulting annotated
feature vectors is subsequently forwarded to the machine learning component, where a classification model is constructed
based on the annotated data. This phase during which the model is constructed is termed the training phase (cf. the upper
part of Fig. 5). Subsequently, the remaining traces are inserted into the system, their feature vectors are computed without
class annotations, and the classifier’s output is compared to the actual device class (recognition phase). We have used a 25-
fold cross-validation approach to evaluate the accuracy of the established model, i.e., 96% of the input traces were used
to train a model, against which the remaining 4% of the traces were subsequently evaluated. This process is repeated for
all 25 possible permutations of training and recognition data and the average accuracy values across all combinations are
reported. A supplementary analysis of the impact of the actual random seed that is used to split the input data into training
and testing sets has indicated that only minimal deviations can be observed as a result of choosing different seeds. Hence,
all results reported in the rest of this manuscript are based on a single run of the 25-fold cross validation.

Similar to [17,37], our system utilizes more than 500 different features from different domains in order to describe the
characteristic properties of the power consumption traces. We regard features from both the temporal and frequency do-
main in order to incorporate both the sudden changes encountered on appliance activation as well as periodicities through-
out the day into our classificationmodel. More details on the employed four classes of features are provided in the following
subsections.

3.3.1. Temporal appliance behavior
This class of features encompasses information about the typical operation hours of a device as well as the days of the

week that it is being operated. Furthermore, information about the number of activity cycles per day and theirminimum, av-
erage, andmaximum lengths are recorded. Separate featuresmodelwhether the duration of active phases varies throughout
the day and what typical ranges of these variations are.

3.3.2. Energy and power consumption levels
The energy and power consumption characteristics are also extracted for different periods throughout the day. Both

minimal and maximal values are considered, as well as averaged consumption values throughout activity periods. Besides
calculating typical activity operation power levels, the variance and possible ascending or descending trends of their length
and consumption throughout the day are captured. The distribution of the observed power readings between their minimal
andmaximal value is considered as well. Finally, appliances that only draw a constant vampire power (e.g., Internet routers)
are identified.

3.3.3. Shape of the power consumption
Taking both time and power consumption into account at the same time, this third class of features regards the actual

shape of the daily power consumption curve. This includes both the steepness of initial inrush currents observed upon device
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activation aswell as the characteristic oscillations in steady-state operation.We apply different thresholds (e.g., 50, 200, and
2000 W) and count the number of times each of these thresholds is crossed as well as how long the appliance operates in
each segment. We also specifically consider the shape of the highest peak per activity period in terms of its slopes and
overshoots.

3.3.4. Statistic features
In addition to regarding the power consumption during short segments, e.g., initial peaks or sudden changes in the

consumption, we also consider the statistics of the complete diurnal trace by calculating its spectrum. The most dominant
frequency coefficients are then used as features in the appliance classification.We also compare different activity intervals to
each other bymeans of calculating their cross-correlations in order to determine the characteristics of periodically occurring
operational cycles. Finally, we calculate a histogram over the power consumption ranges throughout a day and analyze the
distribution of the appliance’s power consumption across each compartment.

3.4. Achievable classification accuracy

Our previous results have shown that classification accuracy values in excess of 90% can be achieved when all of the
presented features are being used for the appliance classification [12]. In other words, a very large fraction of the input data
(composed of more than a thousand appliance traces) could be correctly classified solely based on their power consumption
data throughout a 24-hour period. In our evaluationswehavedemonstrated thatmaximumandaverage power consumption
values are the most important features for the classification of appliances. Based on this observation, we have specifically
chosen to preprocess the power consumption data in ways that alter the consumption characteristics and analyze their
impact on the classification accuracy.While our previous work has thus effectively promoted anti-privacy by identifying the
types of electric appliances, we address the opposite target in this manuscript, namely how data preprocessing can render
our appliance identification system ineffective.

4. Evaluation setup

Our evaluation is based on the software system presented in Section 3. We have installed the server components on
a dedicated machine that runs the database, the preprocessing modules, and the appliance identification engine. For the
construction of the classification model, we have used the Weka data mining toolkit [38]. Based on the comparison of
different classifiers in our previous work, we have chosen to use the Random Forest classifier for the machine learning
step, as it has resulted in the highest classification accuracy for the task at hand [12] and has a fast execution time.

The data for the classification has been taken from our Tracebase project [12]. The Tracebase already features more than
1200 diurnal power consumption traces of more than 30 household appliance types. Furthermore, we have collected more
than 300 additional traces in order to base our evaluation on an even larger corpus of data. On average, the power con-
sumption traces have been collected at a high granularity of one sample per second andwith an amplitude resolution of one
watt. In total, we have used 1555 power consumption traces collected from 35 different appliance types in our evaluation,
as listed in Table 1.

In order to put the achieved device classification results into perspective, we compare them to the baseline, in which no
preprocessing steps are applied (i.e., the parameters are chosen as q = 1 W, w = 1 s, no added noise). Subsequently, we
conduct a comprehensive analysis of the classification accuracy when varying the parameter values across a large range of
values. More precisely, we have chosen the following boundaries for the parameter ranges:

• For the window size w, 45 discrete values in the range from 1 to 850 s have been analyzed. The same window size has
been used for both averaging and down-sampling as well as the preprocessor that combines both filters.

• Both the quantization factors q and the noise power amplitude a have been varied from 1 to 180 W in 30 discrete steps.
• In the cluster-based quantization approach, the Mean Shift algorithm’s threshold parameter has been varied in order to

obtain a different number of clusters. In our evaluation, we have used four different settings of the parameter (25, 50,
100, and 200W). As a result, the algorithm returned 67, 22, 10, and 6 clusters, respectively, based on the histogram of all
input data as shown in Fig. 4.

5. Evaluation

In this section, we conduct a comprehensive evaluation of the parameter space in order to quantify the improvements to
user privacy protection offered by data preprocessing. In the first experiment, we determine the bounds for the classification
success rates in order to put all further results into perspective. Subsequently, we analyze the impact of the preprocessing
steps on the appliance classification accuracy that serves as our privacy preservation metric. In a supplementary simulation
study, we furthermore quantify the error that is added to the data by the preprocessing algorithms and weigh it against the
requirements of utility companies. We conclude this section with a summary of the observed results.
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Table 1
Power consumption traces used in the evaluation.

Device type # appliances # traces

Alarm clock 1 5
Bean-to-cup coffee maker 1 43
Bread cutter 1 12
Coffee maker 5 77
Cooking stove 1 16
Desktop computer 9 126
Dishwasher 3 65
Ethernet switch 3 11
Freezer 1 9
HDTV media center 1 5
HiFi stereo amplifier 3 88
Internet router 1 20
Iron 1 3
Lamp 6 77
Laptop computer 6 50
Microwave oven 5 51
Monitor (CRT) 2 14
Monitor (TFT) 14 178
Playstation 3 console 2 12
Powered USB hub 1 10
Printer 1 6
Projector 1 8
Refrigerator 8 189
Solar-thermal system 1 8
Subwoofer 2 28
Television set 10 138
Toaster 4 21
Tumble dryer 2 9
USB hard disk drive 4 29
Vacuum cleaner 1 1
Video projector 1 19
Washing machine 7 50
Water fountain 1 56
Water kettle 8 115
Xmas lights 1 6

Total 119 1555

5.1. Baseline classification performance

In order to put the evaluation results into perspective, we have first evaluated the baseline detection accuracy for all 1555
input data traces. In this case, the application identification component has returned an achievable accuracy value of 90.5%,
i.e., nine out of ten devices could be correctly identified solely based on a 24-hour long sample of their power consumption.
Likewise, the worst classification result is equal to randomly guessing an appliance’s type, and can thus be calculated as
1/#appliances. For the given input set of 35 appliance types, the minimum accuracy thus equals 2.9%.

5.2. Classification accuracy

First, we analyze to which extent the preprocessing filters exert an impact on the classification accuracy. To this end, we
have computed the accuracy values for all possible combinations of the three time-based preprocessors (down-sampling,
averaging, and the combination of both) with the three amplitude processors (linear quantization, noise addition, and
quantization based on the histogram of all input data). Please note at this point that (as shown in Fig. 1) all input traces are
preprocessed before they are being supplied to the appliance classification component in order to cater for a fair evaluation.

The classification accuracy values when quantization and noise addition are combined with the temporal preprocessors
are shown in Fig. 6. As expected, when the quantization factor (or noise amplitude) is set to 1W and a window size of 1 s is
chosen, the reference accuracy of 90.4% is reached in all plots. The impact of time-based preprocessors can be seen on the left
2D plane where q = 1 W. Likewise, the impact of preprocessors that change the amplitude of the signal becomes apparent
on the back plane, i.e., w = 1 s. This analysis of each time-based preprocessor’s individual impact already makes clear that
down-sampling leads to a much lower classification accuracy (and thus a higher privacy protection) than averaging or their
combination. In fact, even the largest analyzed temporal window size still leads to a correct classification rate of 85.9% for
averaging, and 83.5% for the combination of averaging and down-sampling. In contrast, down-sampling already reaches this
classification accuracy at a window size of only 20 s, and leads to a rate of only 47.1% correct classifications when the largest
window size is chosen.
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(a) Temporal down-sampling vs. quantization. (b) Temporal down-sampling vs. noise addition.

(c) Averaging vs. quantization. (d) Averaging vs. noise addition.

(e) Averaged down-sampling vs. quantization. (f) Averaged down-sampling vs. noise addition.

Fig. 6. Resulting classification accuracies when the analyzed preprocessing filters have been applied to all traces in the input set.

With regard to the impact of the amplitude-based preprocessors (i.e., the curve’s behavior on the 2D plane at the back
of the diagrams), it becomes clear that both quantization and the addition of noise lead to similar results up to window
sizes of 30W. When linear quantization is being used, however, the classification accuracy experiences a measurable drop
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(a) Temporal down-sampling vs. cluster-based quantization.

(b) Averaging vs. cluster-based quantization.

(c) Averaged down-sampling vs. cluster-based quantization.

Fig. 7. Resulting classification accuracies when the cluster-based quantization step has been applied to all traces in the input set.

above this quantization factor, eventually leading to a classification accuracy of 56.0% for q = 180 W. In contrast, 71.5% of
all traces are still being correctly classified after the addition of noise with an amplitude of a = 180 W. The nature of the
Mean Shift clustering algorithms disallows for the specification of the number of clusters, but instead relies on defining the
allowed bandwidth, i.e., the allowed distance of a new data point to an existing cluster. Hence, Fig. 7 shows the resulting
classification accuracies when the previously introduced threshold parameters are being used. Again ignoring the impact
of the time-based preprocessors (i.e., at a value of w = 1 s on the x-axis), the plots confirm the 90.4% baseline accuracy
when no clustering is applied, which reduces to 71.8% when only 6 clusters are being used. When combined with time-
based preprocessors, temporal down-sampling again achieves the largest reductions in classification accuracy. Based on
quantization into 6 clusters, its accuracy value reaches 29.9%, as compared to 57.4% for temporal averaging and 52.0% for
both combined.

Taking the combined results into consideration, first of all it becomes clear that the combination of adding noise and
averaging (cf. Fig. 6(d) and (f)) leads to very limited privacy protection. This behavior is, however, expected as the underlying
concepts of these two preprocessors are diametrically opposed. Furthermore, it can be observed that the relatively highest
losses of prediction accuracy are encountered when only small parameter values are being chosen. Across all evaluations,
more thanhalf of themaximumreduction of classification accuracy is already achievedwhen thewindow is 120 s or larger. In
all cases, the application of temporal down-sampling leads to the highest reductions in classification accuracy, whereas the
differences between averaging and the combination of down-sampling and averaging areminor. Overall, the highest privacy
protection levels are achievedwhen combining quantization and down-sampling. Settingw = 850 s and q = 180W leads to
an overall classification accuracy of only 36.9% (see Fig. 6(a)), and when replacing the linear quantization by the histogram-
based clustering with few clusters instead, even larger reductions can be achieved.

5.3. Errors introduced by data preprocessing

By applying any of the presented preprocessing steps, the input signal is altered from its original form. We hence an-
alyze this introduced error next. To this end, we determine the root-mean-square (RMS) error between the original and
preprocessed power consumption traces, as proposed in [27]. The maximum power consumptions observed by the con-
sidered appliances are 2866 W (dishwasher), 1488 W (coffee maker), 1461 W (refrigerator), and 284 W (television set),
respectively. As all preprocessing steps that involve temporal down-sampling suffer from unbounded errors, the largest
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(a) RMS power errors for different down-sampling
window sizes.

(b) RMS power errors for different noise amplitudes.

(c) RMS power errors for different averaging window
sizes.

(d) RMS power errors for different quantization factors.

(e) RMS power errors for different averaged
downsampling window sizes.

(f) RMS power errors for different numbers of
quantization clusters.

Fig. 8. RMS power errors when the analyzed preprocessing filters have been applied to traces of different appliance types.

errors are reported for the dishwasher appliance in this case (Figs. 8(a) and (e)). The error of the averaging step shown in
Fig. 8(c) follows a similar shape, but is slightly lower due to the prior smoothing of the data and the resulting elimination of
spikes in an appliance’s power demand. In contrast to the time-based preprocessing, the remaining three subgraphs show
the effect when only the amplitude of the signal is changed. The expected linear relationship between the added uniformly
distributed noise and the RMS error is confirmed in Fig. 8(b). Although the quantization error is bounded by |q/2| (i.e., 100W
for a quantization factor q = 200W), the linear quantization mechanism only results in RMS errors of less than 60W across
the four devices (see Fig. 8(d)). Finally, Fig. 8(f) shows the errors when varying the number of clusters extracted from the
histogram of all input data. Larger errors are introduced when 20 or less clusters are being used, whilst a larger number
of clusters leads to a more approximate representation of the data and thus to smaller errors. As a general observation, it
becomes apparent that amplitude-based preprocessors introduce smaller errors than their time-based counterparts.

In a final analysis, we consider the differences between an appliance’s actual daily energy demand and the reported
energy consumption after preprocessing has been applied. The results are visualized in Fig. 9, in which a light gray line
also indicates a ratio of 100%, i.e., an exact match between actual and reported daily energy consumption. For reference,
the total daily energy demands of the considered traces were 1.20 kWh (dishwasher), 0.22 kWh (coffee maker), 0.38 kWh
(refrigerator), and 0.66 kWh (television set). The diagrams show that preprocessing leads not only to the reporting of a
lower energy consumption in some cases (e.g., when applying the quantization step with q > 150 W to the refrigerator’s
consumption, as shown in Fig. 9(d)), but also to situations where a higher energy demand is reported (cf. the noise addition
shown in Fig. 9(b)). Besides the huge introduced errors of up to 1200% when random noise is added to the signals, it can
however be observed that the discrepancies mostly stay within a band of 50% to 200% of the original energy demand.
Even when down-sampling with large window sizes is being applied (cf. Fig. 9(a)), the reported energy consumptions only
experience moderate deviations of at most a factor of 3.4 from the ground truth.

5.4. Evaluation summary

From the simulations, it has become clear that all presented approaches are suitable to achieve a reduction of the
classification accuracy, i.e., an increase in privacy protection. The efficacy of the algorithms, however, strongly varies. When
analyzed individually, both averaging and the combination of averaging and down-sampling have only provided a minimal
improvement in privacy protection, but lead to considerable errors being added to the signal. Similarly, the addition of noise
has only reduced the classification accuracy by less than 20 percentage points, but introducedmeasurable errors. In contrast,
a reduction by more than 40 percentage points was achieved when temporal down-sampling with large window sizes has
been applied. In combination with either version of the quantization filter (linear or clustered), the best privacy protection
results were achieved.
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(a) Ratio between reported and actual energy
consumption for different down-sampling window sizes.

(b) Ratio between reported and actual energy
consumption for different noise amplitudes.

(c) Ratio between reported and actual energy
consumption for different averaging window sizes.

(d) Ratio between reported and actual energy
consumption for different quantization factors.

(e) Ratio between reported and actual energy
consumption for different averaged down-sampling
window sizes.

(f) Ratio between reported and actual energy
consumption for different numbers of quantization
clusters.

Fig. 9. Ratios between reported and actual energy consumption when the analyzed preprocessing filters have been applied to traces of different appliance
types.

The large RMS error of temporal down-sampling and the corresponding deviations in the reported energy demand,
however, may render its usage inapplicable for some scenarios. Despite the fact that quantization errors are likely to even
out across a large field of participants (e.g., in smart grids) due to the law of large numbers, its application might be less
favorable when the data is, e.g., used for billing purposes; this is especially true when an energy demand below the actual
value is being reported. In conclusion, we however still believe that our comprehensive analysis of a range of preprocessors
represents a key element tomake informed decisions for privacy-preserving preprocessing that can be adapted to any power
metering scenario.

6. Conclusions

Theprotection of user privacy is a key element of today’s society.With the rise of smartmetering, a novel sensingmodality
has emerged that can be leveraged to draw fine-grained portraits of the activities in a household. We have thus analyzed
how the application of preprocessing algorithms to distributed smart metering data can be used to mitigate these privacy
risks. To this end, we have studied the impact of six preprocessing filters and their combinations on more than 1500 power
consumption traces. When any of the proposed preprocessing steps has been applied to the data, the classification accuracy
has experienced a degradation, i.e., the privacy protection has increased, however to a variable degree.

Although the highest privacy protection results have only been achieved when significant errors were introduced, the
filters can be tuned to provide the desired trade-off between privacy and reporting error. In fact, even small parameter
settings can lead to good protection. For example, applying linear quantizationwith q = 45Wand temporal down-sampling
with w = 90 s already leads to a situation in which only half as many appliances can be identified and the introduced error
is below 100W on average. In summary, our proposed approach has proven that users can increase their privacy protection
at the cost of intentionally inaccurate data reporting.
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