
[RESIOB] Nicolas Repp, Julian Eckert, Stefan Schulte, Michael Niemann, Rainer Berbner. Ralf
Steinmetz; Towards Automated Monitoring and Alignment of Service-based Workflows.
In: IEEE International Conference on Digital Ecosystems and Technologies 2008 (IEEE DEST
2008). February 2008. S.235-240.

Towards Automated Monitoring and ~ l i ~ n r n e n t
of Service-based Workflows

Nicolas REPP, Julian ECKERT, Stefan SCHULTE, Michael NIEMANN,
Rainer BERBNER and Ralf STEmMETZ, Fellow, IEEE

Multimedia Communications Lab (KOM), Department of Electrical Engineering and Information Technology,
Technische Universität Darmstadt, Germany

e-mail (corresponding author): repp@kom.tu-darmstadt.de

Abstract - Using Web services and Sewice-oriented Archi-
tectures to implement cross-organizational workflows has be-
come state-of-the-art for the realization of collaborations be-
hveen enterprises. Here, a key issue is the monitoring of work-
flows and services based on given business requirements and
the handling of deviations from those requirements to fulfil
Service Level Agreements.

In this paper we present an approach to the automated
monitoring and alignment of sewice-based workflows. We de-
scribe a policy language for the specification of requirements
and deviation handling as well as a distributed architecture
supporting automated monitoring and alignment in service
ecosystems.

Index Terms - Distributed Monitoring, Deviation Handlinx,
Quality of Service, Service-oriented Architecture, Governance.

Nowadays, service ecosystems, i.e. ecosystems in which
services are used as implementation means for collabora-
tions between the participating parties [I], are gaining more
and more importance for enterprises. Here, services of dif-
ferent parties are combined to cross-organizational work-
flows, i.e., the Part of a business process that is supported
by software, in order to support outsourcing relationships
between business Partners.

Opening up the enterprise's workflows and integrating
services of third parties lead to various challenges, which
have to be addressed for the realization of dependable and
trusted cross-organizational workflows. In the first instance,
Service Level Agreements (SLA) have to be defined be-
tween all participating parties addressing Quality of Service
(QoS) requirements or each party's responsibilities in the
collaboration. But even if a detailed SLA is present, there is
still the need to govern the workflow during runtime.

In practise, there is a large gap between the requirements
of business and the IT providing the required services. Re-
quirements defined by business departments can often
hardly be mapped on IT and services. Current business and
IT alignment approaches are focussing on the automated
transformation of business requirements and processes into
applications, mainly based on services and workflow tech-
nologies. But the simple generation of workflows and their
mapping on services is not suff~cient. Requirements for
monitoring also have to be extracted during the transforma-
tion in order to allow automated monitoring of the business
reqliirements at runtime.

In this paper we present an approach to face this chal-
lenge. Our approach, named Automated Monitoring and
Alignment of Services (AMAS.KOM), allows not only the
automated monitoring of service-based workflows but also
supports the automated deviation handling if given re-
quirements are not met. The monitoring and deviation han-
dling can be distributed between service providers, request-
ers, and intermediaries, allowing the optimization of reac-
tion times to deviations. As implementation technology of
choice we use Web services and the Web Service Business
Execution Language (WSBPEL) for the description of
workflows and WS-Policy compliant languages to describe
business requirements, but our approach also can be applied
to other technologies.

The remaining part of this paper is structured as follows.
In the next section we present related work to our own ap-
proach. Here, we especially focus on state-of-the-art moni-
toring approaches as well as on languages for the descrip-
tion of monitoring requirements. In the following section,
we introduce our monitoring and deviation handling ap-
proach. Afterwards, the modelling of requirements with re-
spect to service-based workflows and possible reactions to
deviations is discussed in more detail. Therefore, we devel-
oped the Web services requirements and reactions policy
language (WS-Re2Policy), which is presented in this sec-
tion. Before the paper closes with a conclusion and outlook,
we will present the AMAS.KOM architecture as a proof of
concept for our approach and the application of the WS-
Re2Policy language.

There are various approaches for the monitoring of ser-
vice-based workflows, which can be divided into monitor-
ing of functional and non-functional requirements.

Robinson discusses monitoring of functional require-
ments formalized in temporal logic and carried out in paral-
lel to the execution of the workflow 121. Deviation handling
is not Part of his approach. Also using logical languages for
the description of functional monitoring requirements,
Spanoudakis and Mahbub discuss the transformation of
BPEL4WS code into an event calculus based language and
its subseqiient monitoring [3]. Their approach only focuses
on rnonitoring and the reporting of results, not on the devia-
tion handling based upon the monitoring results. Monitor-
ing based on pre- and post-conditions included as annota-
tions in BPEL code is discussed by [4], using a BPEL pre-

processor for the extraction of the monitoring requirements
intenveaved in the code. Again, no deviation handling is
integrated in this approach.

Apart from the monitoring of functional requirements,
there are various non-functional monitoring approaches. A
proprietary monitoring solution, based on the inspection of
SOAP messages (e.g., response time and throughput) is Part
of a commercial Software solution by Computer Associates.
The monitoring results can be used to manage a network -
automatic deviation handling is not yet Part of the solution.
Another conceptual framework capable of monitoring non-
functional requirements and QoS-aware replanning of ser-
vice-based workflows is described by [5] but without a
proof of concept. Schmietendorf et al. are focussing on
trushvorthy performance and availability measurement and
monitoring by independent third parties [6]. Again, no de-
viation handling is included in the approach.

In our own recent work, we provide a solution to the
QoS-aware service selection and replanning of service-
based workflows in our WSQoSX system based on central-
ized monitoring of non-functional requirements [7][8]. Fur-
thermore, we investigated the interdependencies between
Web service performance and the underlying network using
a cross-layer monitoring approach [9].

A monitoring approach for functional as well as for non-
functional requirements using WS-Agreement for the nego-
tiation of requirements specified in various languages is dis-
cussed by [I01 without a proof of concept. Lazovik et al.
use business rules described in a proprietary language for
monitoring of functional and non-functional requirements
[I 11.

In addition to the monitoring approaches discussed
above, we Want to present different approaches to require-
ments definition. Baresi et al. provide an approach support-
ing both functional and non-functional requirements [12].
Their Web service constraint language allows the specifica-
tion of User, provider, and third party requirements and its
description in a WS-Policy compliant way. Ludwig et al.
also use WS-Policy embedded in WS-Agreement to allow
the description of requirements [10]. Each WS-Policy com-
pliant language can be used in their CREMONA architec-
ture.

But there are not only approaches using WS-Policy for
requirements description. Similar to the work of Robinson
discussed before, Sen et al. use past time linear temporal
logic to describe monitoring requirements [I:].

111. AUTOMATED MONITORING AND ALIGNMENT OF
SERVICE-BASED WORKFLOWS- O m APPROACH

As we presented in the previous section, current ap-
proaches for monitoring do not or only basically support
deviation handling. In order to react to deviations from re-
quirements in a timely manner, efficient mechanisms for
both monitoring and deviation handling have to be sup-
ported by the monitoring platform. Therefore, we propose
AMAS.KOM, which supports integrated monitoring and
alignment of service-based workflows, i.e., the handling of
deviations and the re-fulfilment of SLAs after SLA viola-

tions to reach a proper system state again.

A. Requiremenls Analysis

We had several requirements and restrictions while de-
veloping the AMAS.KOM approach in order to integrate
the approach in existing service ecosystems. From the tech-
nological point of view, existing Web service Standards
should be used with only a minimum of needed rnodifica-
tions. Especially, the use of different Web service technolo-
gies (e.g., SOAP, REST, or XML-RPC) has to be sup-
ported. Furthermore, it has to be considered that monitoring
itself often creates an overhead both in processing time and
network traff~c. In order to minimize the network traffic, the
approach should support both centralized monitoring units,
which are reporting back to a central instance, and decen-
tralized monitoring units working on their own. Addition-
ally, the aiitomatic generation of the proactive monitoring
units including deviation-handling mechanisms should be
part of AMAS.KOM. Furthermore, flexibility with respect
to the subjects of monitoring as well as the support of dif-
ferent requirement specification languages is needed. Here,
both functional and non-fiinctional monitoring requirements
have to be supported.

From the business perspective, AMAS.KOM should pro-
vide a holistic approach supporting every step from the
definition of business requirements to the generation and
distribution of monitors. Support for different roles as well
as views of the monitoring infrastructure and data should be
Part of the approach.

B. Our Approach in Detail

The core principle of AMAS.KOM is the transformation
of a service-based workflow description and related busi-
ness requirements into a monitored instance of the work-
flow. Proxies are used to redirect Service calls executed by
the workflow engine to the monitored instances of a ser-
vice. The monitoring itself is carried out in parallel to the
service execution.

In order to create a monitored workflow instance a trans-
formation of the workflow description and the business re-
quirements is needed. We can distinguish four steps of the
transformation process (cp. Fig. I):

1. Annotation
2. Modification & Splitting
3. Generation
4. Distribution

The foundation of the process is a workflow description
in a standardized form (e.g., WSBPEL) as well as a collec-
tion of business requirements in an arbitrary form. In the
first step of the process, the Annofation step, the business
requirements (focussing on the complete workflow) have to
be described in form of a single policy document in ma-
chine-readable format following a given specification
framework. For this, we developed the WS-Re2Policy lan-
guage, which is discussed in the following section. In the
Modificafion & Spli~fing step, the policy document is used
to derive requirements for every single service, which is
part of the service-based workflow. Therefore, QoS-aware

A. Basic Concepts offhe WS-Re2Policy Langtrage

.> .».>>-.I 11 Monitor

- _ -

Intemedisty

Service omvider

Fig. I : The AMAS.KOM transformation process

composition algorithms can be used to create an execution
plan of the workflow, which is able to fulfil the given re-
quirements (e.g., [5][8]). During the Generafion step, those
policies are used to create both proxies as well as monitor-
ing and alignment units. In order to avoid time-consuming
planning for every Single service, it is possible to reuse
policies of various granularity as well as the resulting moni-
toring and alignment configurations. Both can be stored in a
configuration database. In the last step, the Distribution
step, the monitoring and alignment units have to be distrib-
uted in the infrastructure, based on the results of appropriate
planning algorithms.

IV. MODELLINC MONITORINC REQUIREMENTS AND
POSSIBLE REACTIONS TO DEVIATIONS

In the previous section we discussed the process to gen-
erate workflows, which are monitored and support devia-
tion handling. As a foundation of the approach, a descrip-
tion of the monitoring requirements in an adequate format is
needed. Current requirements languages do not support de-
viation handling capabilities, allowing the automated gen-
eration of monitoring and alignment units. Those require-
ments languages often are strongly formalized languages
(e.g., temporal logic) and do not support the specification of
reactions. Furthermore, they only provide weak support for
non-functional requirements. Additionally, strongly formal-
ized languages are hard to use for non-experts.

In order to overcome those shortcomings and to allow
the distribution of monitoring and alignment instructions in
a service ecosystem, we developed the Web service re-
quirements and reactions policy language (WS-Re2Policy),
which will be discussed in the following sections.

The WS-Re2Policy language is based on the well-
founded Event-Condition-Action (ECA) rules paradigm.
We can map the elements of our language to the ECA para-
digm as follows:

Events: subjects to monitor, e.g., a performance
figure of a workflow to be monitored.
Conditions: thresholds for monitoring, e.g., an
upper bound for the response time of a service.
Actions: reactions to deviations, e.g., the trig-
gering of replanning operations after the viola-
tion of a threshold.

The WS-Re2Policy language is designed as an extension
to the World Wide Web Consortium's (W3C) WS-Policy
1.2 framework and is fully compliant to it. WS-Re2Policy is
itself extensible by other WS-Policy compliant languages
like WS-Trust or WS-SecurityPolicy. Every WS-Re2Policy
compliant document consists of two Parts, a requirements
and a reactions part. As aforementioned, requirements can
be described in any WS-Policy language. Our current ap-
proach supports simple QoS-related requirements by default
in additionto the existing WS-Policy languages.

Fig. 2 further illustrates the WS-Re2Policy language
containing the XML-based data model of our language.
Here, the element RequiremenfsReacfionsSuife defines an
envelope for the requirements and reactions Part ensuring
the WS-Policy compliance.

In the WS-Re2Policy language, reactions are simple,
easy to understand control constructs, which are implemen-
tation independent.

Currently, the following reactions are supported by the
r . - . - - >

/ R ~ q ~ k m i > l ~ R e m b ~ S J t . -
C - --7

,i:-:P*,'"<..nl~id.l;l>r I i
[B En;ibulc, I I

4
.

,C< 'In* rvpr

G z z L

Fig. 2: The WS-ReZPolicy data model

Fig. 3: Example of a WS-Re2Policy document

WS-Re2Policy language:
Restart of selected services
Renegotiation of Service Level Agreements
Replanning of execution plans
Selection of different services based on various
criteria
Report results to caller or different third parties
Interruption o f execution

In addition to these reactions, different control constructs
(e.g., iterations, sleep) are supported as a Part of the WS-
Re2Policy language. Furthermore, h l l y automated handling
of service monitoring and alignment can be modelled,
which will be implemented in future versions of the archi-
tecture.

B. WS-Re2Policy Language Ekample

Fig. 3 shows an example of a WS-Re2Policy document.
It depicts the relationship between requirements and reac-
tions in our language. With respect to readability we do not
quote the namespaces of both WS-SecurityPolicy and WS-
Re2Policy used by the example.

The requirements part in the example contains two dif-
ferent requirements. The first requirement describes the
needed security features, i.e., the body of the sent messages
have to be either signed or encrypted in our example. The
second requirement contains QoS Parameters defined by the
user. In our example, the needed throughput is Set to a
minimum of 10 concurrent requests and a maximum of
23.5557 ms for the response time.

The alignment instructions are described in the reacfions

the service twice afler waiting for 10 ms following the de-
tection o f a deviation from the predefined requirements. Af-
terwards, the results of monitoring are always reported back
to the caller o f the service.

As a proof of concept of our approach and the WS-
Re2Policy language, w e created the AMAS.KOM architec-
ture (following the broker architectural style discussed by
[14]) and implemented the architecture based on current
Web service Standards. The following sections discuss the
overall architecture as well as its most important compo-
nent, the Monitoring & A iignment Manager.

A. Architectural Overview of AMAS. KOM

The AMAS.KOM architecture consists of six different
components, which are needed to realize the specified func-
tionalities. Fig. 4 shows the interdependencies between the
components in our architecture, depicted as a UML compo-
nent diagram. The components can be distinguished in core,
supporting, and third party components. The core compo-
nents contain unique functionalities realized by the
AMAS.KOM architecture. The core components are:

AMAS Controller: The controller provides all
the transformation logic to create a monitored
workflow and create service specific policy
documents by splitting the global policy.
AMAS Reposifory: A repository is used to Store
both policies and configurations of monitoring
and alignment units based on XML documents.
Moniforing & Alignment Manager: The com-
ponent is responsible for the generation of
monitoring and alignment units and their distri-
bution in the service ecosystem. It will be dis-
cussed in detail in the following section.

In addition to the core components, the (User) Inferface de-
fines a supporting component of AMAS.KOM. The com-

cc component >z- 87 <ccomponenb> EJ
(User) lntoriace AMAS Controller

BPEL Engine AMAS Repository

c<use>p

<< component>r << component z>
Monitorlng & Allgnment Manager Application Server

cuse r

Fig. 4: Overview of the AMASKOM componenis

parf of the document. In our example, the monitor restarts

Fig. 5: Monitoring & Alignmenl Manager in detail

ponent offers different types of technical interfaces. It pro- ing Manager, and Monitor), which are depicted in Fig. 5.
vides both a User interface to enter workflow descriptions as Services as well as the AMAS Repository are not Part of the
well as policies and an interface to interact with other sys- Moniforing & Alignmenf Manager.
tems, allowing the automated deployment of workflows. The ~ i n i t o r i i ~ (e ~ l i ~ n r n e i Manager is responsible for

Finally, the architecture includes third party components, the interception of every single Web service call during run-
providing state-of-the-art technologies for service provision time. For this, a Proxy receives calls of the workflow en-
and workflow execution: gine and redirects them to our Mediation und Roufing Core,

BPEL Engine: Workflows implemented as which will carry out further processing of the service invo-
WSBPEL code can be executed using this exe- cation. The Mediafion und Roufing Core decides which ser-
cution engine. vice to call and what monitoring to use based on policy and
Applicafion Server: Various Servers are respon- configuration information stored in the AMAS Reposifory
sible for the provision of Services used in the and the local Rule Base. After the retrieval of all policies
deployed workflow. with impact on the invoked service, the Policy Interpreter . -

We are using standard software components in order to
realize parts of our AMAS.KOM architecture, i.e., Apache
AXIS and Synapse for Web service handling and media-
tion. This further allows us to easily integrate plenty of dif-
ferent Web service Standards and related specifications in
our architecture, i.e., WSBPEL 2.0 as workflow descrip-
tion, Web service description language (WSDL) 1 . 1 , SOAP
1.2, and the REST approach as transport mechanisms. Ad-
ditionally, WS-Policy 1.5 and WS-SecurityPolicy 1. l are
supported as policy formats.

B. Moniforing & Alignmenf Manager

The previous section discussed the components of
AMAS.KOM. In the current section, we present the Moni-
foring (e Alignrnenf Manager component in more detail as it
provides the main functionalities of the architecture apart
from the transformation realized by the AMAS Confroller.
Again, the Moniforing & Alignmenf Manager consists o f a
collection of interacting building blocks (Proxy, Mediafion
und Roufing Core, Policy Inferprefer, Rule Base, Monifor-

decides the effective policy for the current service invoca-
tion. The effective policy is the intersection of all policies,
which are related to the selected service. Subsequently, the
configuration of the Mediafion und Roufing Core is com-
pleted, so that the sewice invocation can be routed to an ac-
cording Monitoring Manager. The Moniforing Manager is
responsible for the generation of customized Monifors. A
Monitor can be created individually for every service and
its corresponding requirements, but the real benefit results
from the reuse of monitoring configurations stored in the
AMAS Reposifory. The Monifor calls the service and tries to
fulfil the policy connected with the service. Monitoring re-
sults are again stored in the repository and can be used for
further analysis. After policy fulfilment the control is
passed back to the Proxy, which submits the result back to
the workflow engine. A result is always passed back to the
invoking party, even in case the service invocation failed
completely. A policy is fulfilled even when the service in-
vocation was not successful. In this special Situation the
alignment steps have to be applied successfiilly (but without

any effect to the result of the service invocation itself), in
order to fulfil the given policy.

VI. CONCLLISIONS AND OUTLOOK

Nowadays, enterprises collaborate in different Scenarios
by integrating third party services into their own business
processes. In order to support the operation of so called
cross-organizational workflows based on services, adequate
monitoring mechanisms and support for SLA management
is needed.

In this paper we presented an approach to the automated
monitoring and alignment of service-based workflows, i.e.,
support for deviation handling in exceptional Situations as
well as the handling of SLA violations. Our approach
AMAS.KOM can be characterized as a proactive monitor-
ing approach and supports functional as well as non-
functional monitoring requirements. In order to allow the
simultaneous modelling of requirements as well as reactions
to deviations, we developed the WS-Re2Policy language
offering a Set of pre-defined reactions to several types of
possible deviations. Furthennore, the AMAS.KOM ap-
proach supports the distribution of monitoring and align-
ment units in a service ecosystem.

Currently, our research focus is on the efficient distribu-
tion of monitoring and alignment units in a service ecosys-
tem. We are investigating where to place monitoring and
alignment units in order to minimize the needed amount of
time to react in case of a deviation. Therefore, we are cur-
rently working on the definition and solution of an optimi-
zation problem enabling a cost and response-time efficient
distribution of those units.

Of similar importance to our work is the continuous en-
hancement of our policy language in order to support addi-
tional QoS requirements. In this context, we are planning to
create a dedicated policy language for the specification of
QoS requirements in service ecosystems, which would be
useful not only for our own research and projects.

VII. ACKNOWLEDCMENTS

This work is supported in Part by the E-Finance Lab
e.V., Frankfurt am Main, Gemany
(http://www.efinancelab.com).

VIII. REFERENCES

[I] N. Repp. S Schulte, J. Eckert, R. Berbner and R. Steinmetz, "An A p
proach to the Analysis and Evaluation of an Enterprise Service Eco-
system", in Proceedings of rhe ICSOFTf07 Workshop on Archirec-
rures. Conceprs und Technologies for Service Orienred Computing,
2007, pp. 42-5 1

[2] W.N. Robinson, "A requirements monitoring framework for enter-
prise systems", Jorlrnal of Requirements Engineering, vol. l I, no. I .
2005, pp. 17-4 1

[3] G. Spanoudakis and K. Mahbub, "Non Intrusive Monitoring of Ser-
vice Based Systems". Inrernaiional Journal of Cooperarive Informa-
tion Systems, vol. 15. no. 3,2006, pp. 325-358.

[4] L. Baresi and S. Guinea, "Towards Dynamic Monitoring of WS-
BPEL Processes". in Proceedings of rhe 3"' lnremarional Confirence
on Service orienred compuring, 2005, pp. 269-282.

[5] G. Canfora, M. Di Penta, R. Esposito and M.L. Villani, "QoS-aware
replanning of composite Web services", in Proceedings of rhe 3"'
IEEE Inrernarional Conference on Web Services, 2005, pp. 12 1 - 129.

161 A. Schmietendorf, R. Dumke and S Stojanov, "Performance aspects
in Web Service-based Integration Solutions", in Proceeciings of rhe
2/" UK Performance Engineering Workshop, 2005, pp. 137- 1 52.

[7] R. Berbner, M. Spahn, N. Repp, 0. Heckmann and R. Steinrnetz,
"Heuristics for QoS-aware Web Service Composition", in Proceed-
ings of rhe 4'" IEEE Inrernarional Confirence on Web Sewices, 2006,
pp. 72-79.

[8] R. Berbner, T. Grollius, N. Repp, J. Eckert, 0. Heckmann, E. Ortner
and R. Steinmetz, "Management of Service-oriented Architecture
(S0A)-based Application Systems", Enrerprise Modelling und In-
formarion Sysrems Archirecrures, vol. I, no. 2,2007, pp. 14-26.

[9] N. Repp. R. Berbner, 0. Heckmann and R. Steinmetz, "A Cross-
Layer Approach to Performance Monitoring of Web Services", in
Proceedings of the IEEE ECOWS'O6 Workshop on Emerging Web
Services Technology, 2006, pp. 19-30.

[I01 H. Ludwig, A. Dan and R. Kearney, "Cremona: An Architecture and
Library for Creation and Monitoring of WS-Agreements", in Pro-
ceedings of rhe Y'" lnrernarional Conference on Service orienred
compuring, 2004, pp. 65-74.

[I I] A. Lazovik, M. Aiello and M. Papazoglou, "Planning and monitoring
the execution of web service requests", Intemarional Journal on
Digiial Libraries, vol. 6, no. 3,2006, pp. 235-246.

[I21 L. Baresi, S. Guinea and P. Plebani, "WS-Policy for Service Monitor-
ing", in Proceedings of rhe 6" Workshop Technologies for E-
Services, 2006, pp. 72-83.

1131 S. Sen, A. Vardhan, G. Agha and G. Rosu, "Efticient Decentralized
Monitoring of Safety in Distribtited Systems", in Proceedings of rhe
26"' Inrernarional Conference on Sofnvare Engineering, 2004, pp.
4 18-427.

[I41 T.S. Dillon, C. Wu and E. Chang, "Reference Architectural Styles for
Service-Oriented Computing", i i i Proceedings of rhe IFIP Inrerna-
rionol Conference of Nenvorked und Parallel Compuring, 2007, pp.
543-555.

