
Automatic Recognition of Camera Zooms

  Stephan Fischer, Ivica Rimac, and Ralf Steinmetz

1
Industrial Process and System Communications

Department of Electrical Engineering and Information Technology
Technical University of Darmstadt

Merckstr. 25 • D-64283 Darmstadt • Germany

Abstract. In this paper we explain how camera zooms in digital video can be
recognized automatically. To achieve this goal we propose a new algorithm to
detect zooms automatically and present experimental data on its performance.

1 Introduction

In this paper we describe a new algorithm to recognize zooms automatically. Besides
only recognizing that a zoom has taken place it is often very useful to compute an
exact scaling factor of a frame. We developed a new algorithm which both recognizes
zooms and computes a scaling rate. The algorithm can be used to derive semantic
features of digital film, such as automatic scene groupings or trailers [Fis97], [BR96].
The paper is structured as follows: Following a review of related work in section 2. In
section 3 we propose a new algorithm to recognize camera zooms. In section 4 we
present experimental results we obtained using our algorithm. Section 5 concludes the
paper and gives an outlook.

2 Related Work

The recognition of zooms as well as the calculation of zoom factors has been investi-
gated in the context of self-calibration of cameras in the past. [PKG98] describe a
versatile approach which can be used to self-calibrate a camera. The authors specialize
the general case towards scenarios where the focal length varies. The difference to the
work described in this paper is that our algorithm is much simpler and hence faster to
compute. The same statement is true for the work described by [HA97] and [FLM92]
which. Tse and Bakler describe a global zoom/pan estimation algorithm in [TB91],
which requires analysis of a high-density field of motion vectors. Since determining an
entire frame of motion vectors with high spatial resolution is a very time consuming
process, Zhang et al. [ZGST94] propose the block-matching algorithm for computing
the motion vector field. But this method is inherently inaccurate when there is multiple
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motion inside a block. Furthermore, block-matching is particularly problematic during
a zoom sequence because the area covered by the camera angle expands or contracts
during a zoom. Finally, the motion of a large object in a camera shot proved to be a
major source of error for camera pan detection.

3 Zoom Detection

A zoom operation is defined by an enlargement of the content of video frames towards
the center of the zoom (zoom-in) or by a reduction (zoom-out). The overall size of the
frames remains constant during this operation. A zoom-in is shown in Figure 1. The
arrows specify that the image is the result of a zoom-in from an earlier image.

Fig. 1. Example of a zoom operation.

• The zoom factor is the factor by which an image has to be scaled to obtain the next
image of a video.

3.1

3.2 Zoom Recognition based on Spline Interpolation

The approach we propose uses splines to recognize the fact that a zoom took place as
well as to calculate a zoom factor. It is not our goal to calculate the self-calibration of
a camera, however, we merely compute the zoom effect. The principal idea is that in
any zoom-in or zoom-out sequence either an image A can be found as part of an image
B or an image B can be found in an image A, if A is preceding B in time. The task
should therefore be to use a mathematical approach to find an image in another. This
can be achieved using the spline interpolation of images.
Spline interpolation serves to interpolate a set of discrete values by a curve or by a
surface in order to model a continuous function. To interpolate images a variety of
different approaches to spline interpolation are well known, for example cubic poly-
nomial splines, non rational uniform B-splines (NURBS) or thin-plate splines.



In our approach we used natural cubic splines. Two important advantages of the spline
approach can be identified: First, no computation of motion vectors is needed. Motion
vectors themselves already contain a significant amount of errors caused by camera,
digitalization and calculation artifacts also influencing the following zoom recognition
process. Secondly a precise zoom factor indicating the amount of enlargement or re-
duction in size of an image can be computed.
The approach we propose is to transform two images A and B of a video sequence to a
spline representation and then to stretch the spline representing image A in order to
locate the spline representing image B and vice versa. Both directions have to be ap-
plied as it is unknown in advance if a zoom-in or a zoom-out is to be found and as it is
not sure if an image is contained totally in another image. By an adaptation of a vari-
able scaling factor the real zoom factor can be computed.
As the exact mathematical formulation of splines is beyond the scope of this paper we
start to explain our method being applied for one-dimensional images thus simplifying
the understanding of the underlying processes. We then extend the algorithm to two-
dimensional images.

3.2.1 Zoom Recognition in One-dimensional Images

In the case of one-dimensional images two arrays A and B can be used containing
values representing the brightness of a specific pixel of an image. Let B be an image
which is the result of a zoom operation and thus some sort of transformation of image
A (see Figure 2).

Fig.2. Zoom operations.

Representing images A and B as splines a spline B can be located in a spline A if im-
age B is a video frame to be presented later in time than frame A (zoom-in operation).
In the case of a zoom-out operation a search of spline A in spline B will be successful.
A zoom-out can thus be recognized searching for image A in image B. A great advan-
tage of this representation is that the search can be performed very efficiently as only a
limited set of spline values have to be compared and as the comparison is not bound to
values lying on the pixel grid. The algorithm to compute the zoom factor of a pair of
images A and B is shown in Figure 3.

Calculate splines representing images A and B.
Search pattern of spline B in spline A.



If pattern can be found then result := zoom-in.
Else search pattern of spline A in spline B.
If pattern can be found then result := zoom-out.
Else result := no zoom.

Fig. 3. Zoom recognition in 1D-images.

In a first step the splines representing images A and B have to be calculated. A very
efficient way to compare splines is to use the second derivative of the images which
can be computed applying a Laplace-operation. The use of the second derivative guar-
antees that uniform areas of the images as well as regions of a constant gradient disap-
pear speeding up the calculation of the splines as well as the matching process be-
tween the images. As the Laplace-operation calculates the second derivative the zero
values correspond to the turning points in the images if and only if the first derivative
is nonlinear. Searching for turning points to match A and B the following two condi-
tions are possible: image A is contained in image B entirely in a smaller form, or im-
age A is only partially contained in image B due to fast camera panning.
In the first case a potential zoom factor  lambda can be estimated using the following
formula:

where the numerator denominates the turning points (TP) in image A. After estimating
lambda the validity has to be checked by picking x-values randomly and by verifying

where d is the distance by which spline A has been translated in spline B. If the verifi-
cation fails the next pair of turning points  TP2,2 and TP2,1 is used to compare the
images. This step is repeated until A has been located in B. It should be noted that the
matching process is very fast as only those values have to be compared where both
splines are equal. As a result a zoom factor greater than 1 denotes a zoom-out while a
value less than 1 denotes a zoom-out.
In the second case a verification can fail if the selected turning point of image A is not
contained in image B anymore due to fast camera panning. To solve this problem a
new pair of turning points has to be chosen in spline A similar to the choice of new
points in spline B. This has to be repeated until the spline has been located. In the case
where no zoom has been recognized we assume that no zoom is contained in the
video.

Calculate splines representing images A and B.
SplineMatch := FALSE, result := undefined
select first turning point (TP) in A
while ((SplineMatch == FALSE) AND (turning points in A
unvisited))
    select second turning point in A
    while ((SplineMatch == FALSE) AND (turning points in



      B unvisited))
        find turning point (TP) in B using zero-
           crossings (second derivative)
        calculate zoom factor using second TP and
          evaluate result by testing spline equality with
            x- and y-direction
        if zoom factor can be calculated
            SplineMatch := TRUE
            result := zoom
        else select new base TP in B
    select new base TP in A
if (result == undefined)
    result := no zoom.

Fig. 4. Zoom recognition in 2D-images.

3.2.2 Zoom Recognition in Two-dimensional Images

The spline comparison is much more complex in the two-dimensional case. The
search for a spline equality based on rows or columns is hereby a problem as rows or
columns of image A are not only shrunk but also displaced towards the zoom center in
image B in case of a zoom-in. Also the target coordinates of the displacement don’t
have to be integers. To solve this problem we propose the following algorithm which
is only applied to one direction (either x or y) while we use the complementary axis to
validate the search results (see Figure 4).
The search for turning points by localizing the zeros of the Laplace image cannot be
performed by checking the zeros at the whole-numbered values of the spline solely as
zeros between those could be missed. To avoid this problem zero crossings have to be
examined. In the case of a change of the sign between two values of the second de-
rivative a zero must have occurred between these. Applying this technique also turning
points can be localized which are not located on the pixel grid. The algorithm first
tries to match the images using turning points on the horizontal axis. In case of a fail-
ure the y-direction is examined. To speed up the algorithm we start the localization
process in image B with x- or y-values corresponding to those of the turning point in
image A and extend the search radius as the algorithm continues its execution.

4 Experimental Results

We tested the spline algorithm with synthetical as well as with real image sequences.
The performance has been defined as the amount of recognized zooms in relation to
the length of the sequence. Our experimental data contained sequences without camera
panning and zooms but with object movement (control instance), sequences containing



zooms solely, sequences with zoom and camera panning and sequences with zooms,
camera panning and object movement.
We also tested the robustness of the algorithm by creating an artificial noise of vari-
able strength in the source images. Video images very often include a specific amount
of noise caused by camera and compression errors.
In a first set of experiments we examined the performance of the algorithm applied to
one-dimensional synthetic image sequences. The results are listed in Table 1.

Tab. 1. 1D zoom detection

Experiment Zoom recognized
[%]

False positive
[%]

Sequences without camera operations 0 0
Sequences with zoom only 100 0
Sequences with zoom and camera panning 100 0
Sequences with zoom, camera panning and
strong object motion

84.29 11.93

Fig. 5. 1D-zoom recognition in the presence of
noise

Fig. 6. Generation of synthetical images

It is not surprising that a zoom cannot be recognized in the presence of strong object
movement anymore. Experiments have shown that moving objects which are larger
than 23 percent of the size of the total image cause a distortion which makes a zoom
recognition impossible. This result was obtained generating synthetical image se-
quences containing moving objects and increasing their size step by step.
Surprisingly, the size of the zoom factor does not influence the recognition rate at all.
We identified slow zooms as well as fast zooms with an equal success. Figure 5 shows
the impact of noise with respect to the experimental results. These experiments were
conducted using sequences containing zooms and camera panning. It is not surprising
that a significant amount of noise lowers the performance of the algorithm. A similar
behavior can be observed applying the algorithm to two-dimensional images. The



results are slightly worse and can be explained with the efficiency of the localization
which only approximates the exact location of the spline. The results for the zoom
detection using 2D-images are shown in Table 2.

Tab. 2. Results of 2D-zoom recognition

Experiment Zoom recognized
[%]

False positive
[%]

Sequences without camera operations with object
movement

2.19 1.1

Sequences with zoom only 98.03 0
Sequences with zoom and camera panning 94.77 3.11
Sequences with zoom, camera panning and
strong object motion

82.97 15.33

We tested the performance of the spline algorithm with 50 videos consisting of 1000
frames each. Concerning the synthetical videos we adjusted the value of the zoom
factor according to the function  resulting in zoom factors traversing the interval [0;
2a] periodically. Adjusting a and t we were able to create different zoom variations
within the synthetical sequence. For a zoom-in we constructed the synthetical images
in such a way that we scaled up an image i by the zoom factor and cut out the edge
regions in order to obtain the new image (i+1) equal in size to image i (see Figure 6).
As all of our experimental sequences started with a zoom-in we buffered the images of
the zoom-in and played them in reverse order to obtain the respective zoom-out. This
way we were able to produce sequences consisting of periodic zoom-ins and zoom-
outs. The zoom factor can be adjusted varying the argument of the sine function thus
creating slower or faster zooms. The scaling of the synthetical zooms can furthermore
be adjusted using the parameter a. The mean experimental values we measured with
the synthetical clips and with the real-world clips are shown in Table 2. A result of the
experiments is that errors occurring during the zoom recognition process are mainly
due to noise included in the images. This can in particular be shown applying some
sort of smoothing, for example a Gaussian filter before calculating the splines. The
efficiency can then be further improved. It turns out that a zoom recognition using
splines outperforms the analysis of motion vector fields (both optical flow and MPEG
vectors). Errors caused by noise in the original images and by object motion lower the
performance of the algorithm. Considering object motion however it should be possi-
ble to find regions in an image where the distortion caused by the moving object is
rather small. These areas can then be used to increase the performance of the algo-
rithm.

5 Conclusions and Outlook

In this paper we propose a new method to recognize zooms automatically which also
calculates a precise scaling factor between successive frames of a video sequence.



In our experimental section we have shown that the algorithm is has a reliability
greater than 80 percent. Although the localization algorithm is quite robust we cur-
rently think about an integration of our algorithm with algorithms to compute the
camera calibration. Another problem any algorithm to recognize zooms faces is object
movement. In another set of experiments we currently examine if the spline localiza-
tion can be performed on selected parts of an image where no object movement takes
place.
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