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ABSTRACT
When building a complex game it is very easy to make small
mistakes during design or implementation. These flaws can
result in situations where the players cannot continue the
game as planned (for example due to dead- or livelocks).
In this paper we describe our approach for detecting those
structural errors in scene-based single- and multiplayer games.
This is done by generating a Petri Net where the individual
game elements are mapped to appropriate constructs. We
do so not only for high level goals, but for each possible user
interaction. Combining this approach with an automatic
transformation of the game yields a huge benefit: there is no
need to develop a verification model in parallel to the game
and there is also no margin for inconsistencies that could
lead to the model not accurately representing the game.

The resulting Petri Net can then be used in an external tool
in order to verify that the game has certain properties, for
example that it is always possible to reach a well-defined
ending. We also discuss the complexity of the nets and ex-
plain our optimization approaches that allow us to create
Petri Nets for small games covering every single user input.
In order to show its applicability we evaluate our approach
by verifying multiple real world example games, taking com-
plexity and time measurements.

Categories and Subject Descriptors
K.8 [Personal Computing]: Games

General Terms
Games

1. INTRODUCTION
Creating games nowadays is an incredibly complex task,
since they often consist of multiple systems which must not
only interact with each other, but also react to any possible
player input in a well-defined manner. Thereby, it creates a

vast number of possible game states and interactions with
lots of room for errors, both on a (theoretical) design and on
a (practical) implementation level. But although it is widely
known in software development that it gets more costly to
fix an error the later during development it is detected, game
developers focus their quality assurance mostly on playtest-
ing. While having humans test a game is certainly necessary
in order to evaluate the user experience, user tests can only
be done once the game has reached a certain level of fidelity
(for example users need some kind of understandable repre-
sentation in order to comprehend the game).

Playtesting is also a simulation approach, which means that
it is able to detect errors, but cannot guarantee their ab-
sence because not every possible path through the game can
be tested that way. Doing this would require the testers
to try out every possible combination of interactions, often
with different timings as well, which is practically impossi-
ble. This is especially obvious for multiplayer games where
multiple testers would be required to act in a certain way
and where there is an even larger possibility space for game
states (for instance there are nm ways m players could be
located in n rooms instead of m ways for a single player).

It would be beneficial, however, to make sure that the play-
ers could not under any circumstances reach a game state
where there is no way to bring the game to a meaningful
ending as intended by the designers. Such an ending does
not necessarily have to be a winning state. Showing a “game
over” screen is a valid ending state for lots of games as well.
Guaranteeing that such states are always reachable requires
verification, which can conclusively prove that a certain con-
dition will or will not be true. Another advantage of formal
verification methods compared to user tests is that they can
be used at an early project stage without requiring real con-
tent in the form of assets and without recruiting real players.

The drawback of verification is, however, that it is quite
costly in terms of calculation time to an extent where it is
not possible once the problem at hand (i.e., the game to
be verified) reaches a certain size. Therefore, most existing
approaches do not aim to verify every (implementation) as-
pect of a game. Instead they analyze a high level design, for
example the game’s mission structure, but not every single
step required to solve each individual (sub-)goal. Doing so
allows designers to check whether their ideas could work, but
not if they have been implemented correctly and therefore
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they cannot be sure that the resulting game can be solved by
real players. Especially misunderstandings between the de-
signers and programmers, but also things like programming
bugs can therefore not be detected using this approach.

We therefore investigated an approach that works in an
early design stage as well, but in which the verification
model “grows” together with the game as it gets imple-
mented. When it is completed, the model therefore describes
the complete game with every possible player interaction,
not only high level description. And since the model is gen-
erated automatically from the game there is also no margin
for inconsistencies between the game and its model as it
could be the case when they were created in parallel by the
developers themselves.

The paper is structured as follows: First we take a look at
game verification approaches existing in the related work
(Section 2). After that we elaborate on the requirements
our approach was designed to fulfill, i.e. the elements of
scene-based multiplayer games that are modeled and the
error classes that can be detected (Section 3). We then
describe why Petri Nets have been chosen as a formal rep-
resentation for the games for verification. It is also detailed
how the game state and game events, as well as the indi-
vidual elements of which they consist, are mapped to Petri
Net elements (Section 4). Then the complexity of the re-
sulting nets and optimization strategies in order to reduce
their size are discussed (Section 5), followed by the results
we could achieve when applying a prototypical implementa-
tion to both toy and real world example games (Section 6).
We conclude by debating on how the approach does scale
for larger games (Section 7).

2. RELATED WORK: VERIFICATION
Since video games are software systems by definition, gen-
eral software verification approaches like the ZING model
checker [1] work on games as well. But by being general
purpose, these methods are unable to exploit specific prop-
erties of games and directly answer design level questions
such as “Will players be able to reach an ending?”.

A more game specific approach is to view games as transition
systems with finite variables. While being relatively easy to
understand, these systems can be verified using model check-
ing tools. For this purpose Moreno-Ger et al. [10] imple-
mented an automatic transformation process for games cre-
ated with with the <e-Adventure> platform. Using the ex-
ternal tool NuSMV, the transformed game’s temporal prop-
erties, such as whether a scene can be reached, can be ver-
ified. This is similar to the approach by Picket [14], who
modeled games as a narrative flow graph (i.e., an extended
1-safe Petri Net defined by Verbrugge [19]) and then also
checked the game’s temporal properties using NuSMV.

Osborn et al. [13] designed the Gamelan language to de-
scribe games based on board game rules, which, they argued,
is more understandable due to game designers often using
board games for prototyping purposes. This language can
also be used to define and answer questions (e.g. is every
available function used) in discrete single- and multiplayer
games.

Using Petri Nets, originally designed for describing distributed
systems, as a model for games is not a new idea. Natkin et
al. for example used Petri Nets at the design stage to detect
deadlocks in adventure-like games [11]. Their model sup-
ports a game world consisting of rooms in which objects can
be interacted with and items can be picked up. Champag-
nat et al. [4] choose a similar approach, but argued that the
state space explosion prohibits a complete proof. Instead
they suggested a combination of simulation and verification
that analyzes only a few steps ahead of the current game
state and solves problematic situations when they arise dur-
ing runtime. They also differentiated between playability
properties like having no situations in which the players can-
not progress further and relevance properties like assuring a
certain complexity of the game.

Furthermore, Araújo and Roque [2] argued that Petri Nets
are mathematically well-founded and can be used for early
simulations in order to detect unexpected multiplayer inter-
actions. They also mentioned the complexity of the resulting
nets as a problem. Since 1-safe Petri Nets are limited by the
fact that tokens moving through the system cannot have
properties on their own and are therefore indistinguishable,
they suggested using colored Petri Nets to describe more
complex situations. This was supported by Carron et al. [3]
who used colored Petri Nets to calculate the reachability of
learning objectives and to detect deadlocks in multiplayer
games. Their approach allowed them to also verify invariant
properties, which must always be true, and temporal ones
concerning the order of certain events. These properties can
be both game-independent (a game must be solvable) and
game-dependent (a specific item must be used). The draw-
back is that they relied on the Petri Net being created in
parallel to the game during the design stage.

It is also interesting to note that Petri Nets have not only
been used to verify a game’s properties, but also to generate
stories [15], support artificial intelligence agents [18], and
model the player’s behavior [17] or learning progress [20].

In contrast, Dommans [5] argues that Petri Nets are difficult
to read and therefore proposed his own graphical language
using the same basic concepts (tokens and places). He then
added additional elements that encapsulate complex func-
tionality, for example events that can only happen if the
player is skilled enough. The language is geared towards re-
source production / consumption and was used to describe
individual feedback loops to be analyzed by the designer,
not for the automatic analysis of complete games.

Aside from formal verification it is possible to simulate a
game’s behavior over time by also using a (simplified) model,
written in a specification language [12].

A common drawback of all approaches found in the related
work, aside from the work by Moreno-Ger et al. [10], is that
the verification models have to be created manually. This re-
quires the game designer to have additional knowledge while
introducing the potential for human error.

3. PROBLEM DEFINITION
In this paper we will focus on detecting structural problems
in scene-based single- and multiplayer games.



Figure 1: An example event with exclusive condi-
tions. Only player one is strong enough to move the
box. If the sound is enabled, a scraping sound is
played when any player tries to do so.

Figure 2: The same example event as in Figure 1,
but with non-exclusive conditions.

3.1 Scene-based Games
Scene-based games are separated into a number of discrete
scenes (or rooms) between which the players are able to
move. Switching between rooms can happen in a linear or
non-linear fashion and often triggers a noticeable transition
like a loading screen. A well-known example for this type
of games are point-and-click-adventures like Maniac Man-
sion [8]. It is obvious that the room a player is in is a vital
part of the current game state in this kind of games. In a
multiplayer setting it is important to notice that the players
can be in the same scene or in different ones, which results
in a much larger possibility space for the game state. Ob-
jects with which the players can interact are located in these
rooms, providing the main gameplay mechanic. Another im-
portant part of the game state consists of additional helper
variables, allowing the game to track if a puzzle has been
solved or an item has been picked up, for example.

This game state can be changed by events, which are trig-
gered by the users’ input. These events can consist of an
arbitrary number of game (re-)actions, for example chang-
ing variables, playing a sound or moving a player to another
scene. The actions can be organized into a branching tree
with conditions so that an event can yield different results
depending on the current game state and the player trig-
gering the action (Figure 1). The conditions themselves
can consist of atomic boolean expressions comparing vari-
able values to a constant (e.g. sounds > true or player <>
1 ). These simple expressions can then be combined into
more complex ones using the and / or operators as well as
brackets. We will assume that events are processed atomi-
cally, which means that concurrent events are executed one
after another and they cannot interrupt each other, even if
they consist of multiple sub-actions.

In addition to these basic features our model allows scenes
to be organized hierarchically in order to save development
time, with child scenes inheriting the objects placed in their
parents. As an example application for this one can imag-
ine multiple outside locations sharing a parent in which the
sky is defined. The concept also supports objects that can
be enabled or disabled, also affecting the events attached

to them. Another shortcut for designers is that action tree
branches do not have to be exclusive (i.e., exactly one of
their conditions is true at any time). This can reduce the
complexity of event trees with multiple independent con-
ditions or branches where an action is removed instead of
replaced under certain conditions, but is less intuitive and
more error-prone. For example, Figure 2 shows the non-
exclusive version of same event as Figure 1. Lastly it should
be noted that any approach designed for multiplayer games
with a variable number of players will work for singleplayer
games as well (as a special case with a player count of one).

3.2 Error Classes
When designing or implementing a scene-based multiplayer
game there are several types of mistakes that can be made.
Structural errors like unconnected rooms are relatively easy
to detect when an appropriate visualization is provided. Small
logical errors like individual conditions that are unsatisfiable
on their own (i.e., contradictions) are a little bit harder to
find, but are still detectable by humans. However, there
can be more complex problems spanning multiple rooms and
events, especially in a multiplayer setting. To give an exam-
ple:

At the start of the game there is a key which can be picked up
by any player. Later on, there is a larger area with multiple
rooms between which the players can move freely. One room
is a storage closet that can be opened with the key and which
contains a ladder. Another room has a trapdoor from which
the players must recover an item. A player can jump into the
trapdoor and get out again using the ladder. If the ladder is
not in his or her inventory, other players can let the ladder
drop in from above.

Looking at the individual elements everything seems to be
alright and there are multiple ways to solve this puzzle.
However, if the player who picked up the key jumps into
the pit before opening the storage door there is no way for
him or her to get out again. Especially when interdependen-
cies between puzzle elements get more complex this kind of
error is very hard to see and may not be found during testing
if the players choose to play the game the “right” way.

All in all, our approach is able to detect the following error
classes:

Deadlocks: Situations in which the players cannot change
the game state anymore, for example when sitting in a trap
without any escape.

Livelocks: Situations in which the players can change the
game state, but not to reach the ending. An example for this
is a trap in which the players can move around or interact
with objects, but are unable to leave and finish the game.

Unreachable scenes: Scenes that cannot be reached un-
der any circumstances. This can happen when there is no
connection to them at all, or when these connections are
guarded by unsatisfiable conditions.

Impossible actions: Actions that can never be triggered,
for example because of unsatisfiable conditions or because
the object they are attached to is always disabled.



4. PETRI NET MODEL
We decided to use Petri Nets as the model in which to detect
structural errors because they have been designed to model
concurrent executions. This is especially important when it
comes to multiplayer games where multiple players are act-
ing independently and concurrently. Petri nets are defined
as graphs where places (P ) are connected with transitions
(T ) via arcs (A). The graph is bipartite, which means that
there are no direct arcs between two places or two transi-
tions. Each place (usually visualized by a circle) can hold
one or more tokens while transitions (displayed as boxes)
define the movement of tokens between the places. A tran-
sition is called “enabled” when each place connected to an
incoming arc holds at least one token. Enabled transitions
can then be fired, which results in one token per incoming
edge being deleted and one per outgoing being created. If
multiple transitions are enabled the net may choose between
them at random.

Verifying properties like liveness (there is a transition that
can be fired) or reachability of certain states has been well
researched with lots of tools being readily available. An-
other benefit of Petri Nets compared to formal languages is
that the place-transition-graph is more easily readable for
humans.

For multiplayer games it is important to differentiate be-
tween individual players, for example when only one player
character is able to execute a specific action in a class-based
game design. Therefore, a colored Petri Net [6] is needed,
where colors (Σ) are used to group tokens of the same type
while each one has a value from the color’s value range as-
signed to them. Transitions can then have guard conditions
(G), that require the input tokens from each class to have a
certain value.

In order to prevent inconsistencies that might occur if the
net and the game were created manually using separate
tools, the Petri Net model has to be created automatically
based on the actual game. For efficiency reasons it is bene-
ficial to implement the transformation process directly into
a game engine or authoring tool, defining a corresponding
model for every supported feature and therefore supporting
any game created with it.

4.1 Game state
The current state of a Petri Net is defined by the tokens
that are present in each place, so it is natural to map the
game state to places, too. Therefore, in our model there is
one place per room where the players can be and one for
each helper variable. A small example net is described in
Figure 3, containing two rooms (Hall and Storage) and one
variable (Open). From this follows that there is one token for
each player ({P1, ..., Pn}, in this case P1 and P2) and one for
each variable (Open). It is also natural to map each variable
type used in the game (bool) to one color, with the players
being a special case requiring their own color (Players).

Since the color of each token must match the color of the
places (noted below each place in the figure) it is supposed
to be, the player color is also assigned to each place repre-
senting a room and the places for the variables are colored
with the corresponding variable type. Nevertheless, there is

an important difference between players and colors. While
the variable tokens always stay in the same room with the
variable values being modeled by the token value (Open be-
ing initially false in the example), the player tokens move
through the room places with their value unchanged unless
players are able to switch roles. Keeping the player tokens in
a single place would make the Petri Net / game state more
difficult to read, while the opposite approach of having mov-
ing variable tokens is too complex to model (see Section 4.3).

If the game in question organizes its scenes hierarchically,
the hierarchy must be flattened in order to be exported as a
non-hierarchical Petri Net. This requires copying all objects
provided by the parents into the child scenes and creating an
individual place for each scene, both parents and children.

4.2 Game events
Similarly, changes of the game state are mapped to tran-
sitions, so there is at least one transition per game event.
However, since we assume atomic execution of events with
multiple actions, all of these individual actions must be
merged into a single transition for the Petri Net. This in
turn prevents the net from choosing different paths through
a complex action-tree based on which conditions are true at
that time. So there must be one transition for each possible
path through a game event representing all the actions that
lie on this path.

Calculating each possible path is relatively easy when the
game designers made sure that each decision in the branch-
ing tree is exclusive. In this case, firing any enabled tran-
sition in the Petri Net simulator does not harm the result.
However, when there are multiple branches that might be
true the simulator must execute all of them simultaneously
as selecting each of them separately would violate the atom-
icity. In order to prevent these individual executions it is
necessary to generate all possible combinations of branches
being true and false, inverting their conditions when they
are supposed to be false. This way, if multiple conditions
are true, only their combined transition can be fired. Ap-
plying this transformation to the event described in Figure 2
results in the more complex event in Figure 1.

The combined conditions for each path are then taken as a
guard condition for the corresponding transition. In Figure 3
for example, the upper transition can only be triggered by
the first player (Px = P1) and the lower one by any player
once the door is open (Open = true). The places for helper
variables are connected to the transition if they are read
in the condition, with both an incoming and outgoing edge
(Open in the lower transition). Both edges are annotated
with the same variable name in order to not consume the
token.

Regardless of whether the condition differentiates between
the players, there are also arcs connected to the room the
event is triggered from (e.g., the location of the object it is
attached to) because the player must be there in order to
trigger it (Hall for the upper transition, Storage for the lower
one). And if an object can be disabled (in which case its
events become unavailable) there is also an implicit boolean
variable added to its conditions that represents the object’s
and therefore also the transition’s availability.



Figure 3: An example net. The door between the
Hall and the Storage room can be unlocked by player
one (P1), with its state being saved in the variable
Open. Once that is done that any player can pass
through. In the initial state (1) only the action for
changing the variable value is enabled. After one
step (2) the value of Open has changed to true, and
the action for moving to the other room becomes
enabled. After one player token has changed its lo-
cation, the second one is still able to follow (3).

Figure 4: An example net. The second player (P2)
has triggered the ending, moving his token to the
End place. The inhibitor arc (marked by a small
circle) now prevents the transition from firing again.

Representing the effects of actions is done differently de-
pending on the type of action. If a variable is set, the out-
going arc for this variable is annotated with the new value
(Open is set to true in the upper transition). When the
variable is not read in the condition, an incoming arc must
also be added. In case of player transition the outgoing arc
is connected to the room the player will move to instead
of looping back (moving from Hall to Storage in the lower
transition). If objects are enabled or disabled this action
is interpreted as writing the implicit variable attached to
it. Other actions that do not change the game state (like
playing a sound) are not important for calculating structural
errors and are therefore not modeled.

In order to check if a valid game ending has been reached a
special End place is added. If a player triggers any ending
his or her token is moved to this place. Adding so called
inhibitor-arcs from this place to all transitions prevents them
from firing once there is a token inside the End, forcing the
Petri Net into a static state (Figure 4).

Figure 5: An example net using the alternate model
for the same situation as described in Figure 3.

4.3 Alternate model
An alternative model could treat the variables the same way
as the players. Instead of having one place per variable,
there would be one place per variable value (true and false
in Figure 5). The token value would be the variable name
instead of its actual value (Open). This way conditions have
to be modeled by connecting an arc to the expected value
and annotating it with the variable name (the lower transi-
tion requires Open to be in the true place). Writing variables
is handled like moving players (the upper transition moves
Open from false to true).

While this approach would make it easier to view variable
value changes, it also results in a much more complex net.
Every incoming arc of a transition must be enabled by a
token, so the only way to model an or -condition would be
to duplicate the condition for each possible value. The most
efficient way is then to transform the condition into the dis-
junctive normal form and splitting it on each remaining or,
leaving only ands. Range conditions like “count > 4” or set-
ting a variable from any value would also require lots of du-
plicates, one for each possible input value. Having multiple
ors or variables with range conditions multiplies the number
of duplicate transitions that must be created since each pos-
sible combination must be covered. Furthermore it is easy
to see that this approach is only possible with variables that
have discrete and strictly limited value ranges because each
possible value must be modeled explicitly. Together with
the fact that it results in much more complex nets for larger
example games (minor decrease in places, major increase in
both transitions and arcs) it was therefore decided to not
use this approach.

4.4 Complexity
The complexity of the Petri Net resulting from a specific
game can be estimated as follows:

The number of colors is limited by the number of supported
variable types, often bool, integer, float and string. Together
with the player color there are five colors, which can be as-
sumed as constant: Σ = {cPlayer, cBool, cInt, cFloat, cString}.

The number of places consist of the number of rooms and
variables combined: P =

⋃
r∈Rooms pr ∪

⋃
v∈V ariables pv. It

grows linearly when more are added to the game.



The number of transitions is defined by the number of events
and all paths through them: |T | =

∑
e∈Events path(e). With

exclusive branching there are exactly as much paths as there
are leafs (|path(e)| = |leafs(e)|), but with non-exclusive
branching this number increases to every combination of
branches (in the worst case |path(e)| = 2|branches(e)|).

The number of arcs per transition is dependent on the num-
ber of variables and players that are checked in its conditions
or are modified by the corresponding event, with two arcs for
each of them. Aside from that there is also one inhibitor arc
per transition: |A| =

∑
t∈T ((|usedV ariables(t)|+1)∗2+1).

5. OPTIMIZATION STRATEGIES
In order to reduce the complexity of the resulting net sev-
eral measures can be taken when exporting a game. First
of all irrelevant elements can be removed by an iterative op-
timization. This includes actions that do not change the
game state (e.g. playing a sound), objects with no actions
attached and (implicit) variables which are not read. Since
removing a variable makes actions setting it irrelevant which
in turn might remove the only action associated with a cer-
tain object, these optimizations are highly dependent on
each other and are therefore repeated until a static state
is reached (i.e., nothing can be removed anymore). After
all optimization steps, the example event in Figure 1 would
only contain one action and condition: if (player = 1) then
(Move box).

After that, several one-time optimizations are available. Es-
pecially when working with a scene hierarchy it may happen
that there are no transitions moving a player to a parent
scene if it only exists as a container for shared objects. This
can already be detected during optimization, displaying a
warning for the user and removing such scenes from the
net. This makes it easier to notice semantically unreachable
scenes (i.e., ones that have a connection for players but with
a condition that will never be true). Also when combining
several conditions during event transformation there might
be some cases where individual checks contradict each other
(e.g., a < 5 ∧ a > 7), are always true (e.g., a < 5 ∨ a > 4)
or where one part is completely included in the other (e.g.,
a < 5 ∧ a < 4). These can also be detected during export
and are either simplified or removed completely.

Only optimization steps that can be taken by looking at
static elements in the game were implemented. Taking dy-
namics (i.e., the order in which they are executed) into ac-
count would require verification or simulation on its own.
This would greatly increase export time while ultimately
just shifting effort from the actual verification step to the
export phase.

6. RESULTS
In order to validate the concept, a prototypical export using
the transformation steps described in Section 4, including
the optimization strategies mentioned in Section 5, has been
implemented. It is directly integrated into the authoring
tool StoryTec [9], so any game created with the tool can
be automatically transformed into a colored Petri Net. The
resulting net is then exported using an xml-format that can
be read by CPN-Tools[7].

Figure 6: Example scenario: Boosting another
player to retrieve an object.

Table 1: Error class indicators
Testcase Dead markings Home space
Alive Ending only Yes
Deadlock Other than ending Yes
Livelock None No
Unreachable (Ending only) (Yes)

In order to save export as well as verification time and to
reduce the net complexity the user is asked whether the
tool should assume exclusive conditions, in which case the
export simplifies the condition transformation step. How-
ever, assuming exclusivity when there is none could produce
false positives, i.e., the verification process finding errors in
games that are in fact solvable. Therefore, the decision to
simplify should only be taken when the designer is absolutely
sure that all conditions are exclusive. Although it would be
possible to detect exclusivity automatically, doing so is not
trivial, especially when it is dependent on the interplay of
multiple scenes and variables. As with a more complex op-
timization, this would require a verification on it’s own. As-
suming non-exclusivity in an exclusive net in contrast only
increases export time, as additional path combinations are
generated and immediately removed during optimization as
their conditions are mutually exclusive.

6.1 Toy examples
To verify that each type of error is detected correctly, a toy
example has been created (Figure 6). In this puzzle one
player has to be boosted by the other in order to reach a
second room through a vent, retrieve a key there, and come
back using a ladder. While this example is perfectly solv-
able, it can be easily modified by removing the ladder and
therefore also requiring a boost on the way back. But since
the second player cannot follow the first one without a boost
too, both players are stuck in their rooms (deadlock). Mod-
ifying this example again by splitting the second room into
two sections allows the player to move between those, but
not reach the end (livelock). Lastly, there was also an ex-
ample based on the first one with a transition to an optional
scene. However, the condition for this transition was impos-
sible due to the variable never being set to true. This made
the optional scene unreachable while keeping the game solv-
able.

When analyzing the exported Petri Nets with CPN-Tools
there are clear indicators connected to three out of four er-
ror classes (Table 1). All dead states (markings) should be
checked first by running the command ListDeadMarkings().
This command displays a list of numeric state identifiers.
When reaching those states the net has no enabled transi-
tions anymore and has therefore reached a static state. Since
the special place for the game ending has inhibitor arcs to



every transition, any player triggering the ending (i.e., any
player token moving into the game ending place) immedi-
ately results in such a state. Therefore, the list of dead
markings must consist only of states in which the ending
place holds one player token if the game is always solvable.
This can be checked by switching the graphical representa-
tion of the net to each of these states via their identifiers.
Should there be dead states where the ending has not been
reached, the same tool can be used to investigate the prede-
cessor nodes in the state space and trace what had happened
beforehand.

If there are no dead markings the ending cannot be reached
due to a livelock and if there are markings without a player
token having reached the end (exclusively or in addition to
real endings) those are deadlocks. Having only ending states
however means that the game only stops if an ending has
been reached – there might still be some paths resulting
in livelocks. In order to get conclusive results it is therefore
important to also check if those dead markings create a home
space with the command HomeSpace(ListDeadMarkings()).
If the result is true, then there is a path from every reachable
state to at least one of the dead markings. If this is the case
there are no livelocks, else one should export a graphical
representation of the state space and look for cycles in order
to find the livelocks.

Unreachable scenes and impossible conditions that do not
impede progress through the game are not visible at first
using this approach. In order to detect those the net must
be analyzed further, looking for place bounds (if the upper
bound of a scene place is zero it cannot be reached) and
dead transitions (which can never fire). Yet, it is important
to note that dead transitions may not always be a user error
since they might represent additional paths generated by
the export handling non-exclusivity, so users are advised to
take a closer look at this part of the net. Verifying the toy
examples, all indicators could be observed as expected.

6.2 Real world examples
After having shown that all relevant error classes can be
detected using this approach, a number of existing games
have also been tested in order to investigate how the al-
gorithms will scale with real life examples (Table 2). In
order to compare nets assuming non-exclusive conditions to
others assuming exclusive ones, only games using the latter
have been chosen because they produce valid results in both
cases.

The first example is a multiplayer adventure game for two
players with a playtime of about 15 minutes [16]. It consists
of 13 rooms with four complex puzzles consisting of several
sub-tasks. These span multiple rooms and require both play-
ers to collaborate. After solving the first puzzle the players
are able to move freely back and forth through the game
world and solve the rest of the tasks in any order, resulting
in a large possibility space. From a scripting perspective
most of the sub-tasks are modeled using boolean variables,
for example a missing screwdriver is either available or must
still be found by the players.

Two tasks stand out, however, one requiring the players
to align a satellite dish. The dish has several states mod-

eled by using an integer variable resulting in different signal
strengths the players must interpret. The other one has
players connecting four wires with four sockets, which re-
sults in 4! = 24 possible solutions not counting intermediate
states. During both tasks the players can move farther away
from the solution by disconnecting wires or turning the dish
in the wrong direction. Several versions of the game have
been investigated, the full game, a version without the wire
puzzle and a short one with both the wire and the satel-
lite puzzle being replaced by a trivial action each. The wire
puzzle was tested separately as well.

The other two games are singleplayer games (i.e., have a
player count of one) as the approach has to works for any
number of players. They both share the same basic struc-
ture, beginning with an intro and then using a central map
from which the players can chose in which order to solve six
minigames. Those minigames include puzzles, hidden object
games and memory games and are identical in both games.
It is important to note here that these minigames are based
on predefined interaction templates that are not scripted us-
ing the authoring tool, so these games are a black box for
the Petri Net export and it is assumed that they work like a
button (i.e., the user can click / solve it if they see it). After
all tasks are solved a short outro is played. While the vaca-
tion game takes about five minutes to be solved, the tourism
game has a lot more (linear) story elements and therefore
takes about eight minutes to be completed.

Our results show that while the generated nets are quite
complex, as it is expected for fully modeled games, it is still
a viable option to analyze the games at certain points dur-
ing their development. Exporting the games to a Petri Net
can be done almost instantly when exclusive conditions are
assumed and within a few seconds when all combinations
of conditions must be calculated. Furthermore when having
more complex games and larger nets export time scales lin-
early since each element is exported individually without a
particular order.

In contrast to the export time, verification time increases ex-
ponentially as the nets grow larger because the verification
must take into account all possible combinations and orders
of events. As such, the verification cannot always be done
in real-time. For our evaluation we defined a cut-off point of
15 minutes, although depending on the application scenario
developers might accept longer calculation times (similar to
user tests). In this time frame the large adventure game
could not be verified. Removing the most complex puz-
zle brings the verification time down to 44 seconds and the
puzzle itself was verified after 4 seconds. Therefore, it is
highly advisable to split larger games into smaller sections
and analyze them independently. As doing so removes all
playthroughs where players switch between those sections
during intermediate solutions from the possibility space, de-
signers have to make sure that they cut the game into parts
that do not have side effects on each other.

When the game actually contains structural errors, export
time and net complexity are marginally reduced. As the
reachability calculation is done during verification, every el-
ement is exported even if it cannot be reached. Depending
on the cause of the error, a few action branches might be



Table 2: Test results for real world examples
Game Playtime Players Places Transitions Arcs Export (non-excl.) Verification
Adventure (full) ca. 15 min 2 54 131 1141 0 s (1 s) > 15 min
Adventure (without wires) ca. 12 min 2 41 72 400 0 s (0 s) 44 s
Adventure (wires only) ca. 3 min 2 18 59 737 0 s (1 s) 4 s
Adventure (simple) ca. 10 min 2 39 54 292 0 s (0 s) 5 s
Tourism ca. 8 min 1 44 67 241 0 s (0 s) 4 s
Vacations ca. 5 min 1 29 28 144 0 s (0 s) 3 s

culled during optimization due to having impossible con-
ditions, but this reduction can be neglected in comparison
to the overall complexity. Verification time in contrast can
vary greatly: If the error (deadlock, livelock or unreachable
element) appears towards the start of the game, it can reach
only few game states and the verification time is reduced to
a minimum. If the error is located towards the end of the
game, the state space is reduced only by a small amount. In
this case the verification time is nearly as long as when the
same game did not contain the error. We could verify this
behavior as the adventure did actually contain a livelock at
some point during development (for comparison reasons the
final measurements where taken with an updated version).

Putting the Petri Net size in relation to the verification
time the “Adventure (without wires)” example has almost
as much places (which is directly related to the game states)
and transitions (game events) as the “Tourism” example.
Despite that its verification time is much higher due to its
more open structure. One can easily see that as an extreme
example a linear game without branches would result in a
single path to be verified, so the size of the net does not
provide a good estimate on how difficult verification is.

Another observation is that assuming non-exclusive trees in
these examples does not increase the size of the resulting net.
This was to be expected, since the games were designed to
be exclusive. The increase in export time when assuming
non-exclusive trees shows that it is nevertheless advisable to
design the game in such a way that conditions are always
exclusive. Doing so trades a little more work beforehand
for time savings during verification and a Petri Net that is
easier to read because the guard conditions are not modified
during export.

7. CONCLUSION
In this paper we described our approach for detecting struc-
tural errors like deadlocks, livelocks or unreachable states in
scene-based single- and multiplayer games using Petri Nets.
For this purpose a mapping of game elements like rooms,
players and variables to Petri Net concepts has been devel-
oped. After that we analyzed the theoretical complexity of
the resulting nets before describing optimization techniques
and the prototypical implementation as an extension for an
existing authoring tool. With this tool users are now able
to automatically export the game structure as a Petri Net
for verification using an external tool.

Compared to creating a net manually based on the intended
game design this is much less error-prone and time-consuming.
Still, it must to be noted that the automated model trans-
formation has to be implemented correctly in order to get

the right mapping. We would argue however, that ensuring
the functionality of a generic export for a limited number of
primitives once is much more efficient than doing the same
for multiple games repeatedly using these primitives.

The approach is able to include every possible user inter-
action into the net, not only high level elements like com-
plete missions. Our evaluation showed that all relevant er-
ror classes can be found by this approach. Using real world
examples we also found that the approach is able to pro-
vide its results in a timely manner for short games, but in
order to scale for larger projects the games must be bro-
ken down into individual parts that can be verified indepen-
dently. Currently this has be done by the designer, although
future work could include a heuristic for suggesting promis-
ing splits. It would also be beneficial to automate as many
steps of the subsequent Petri Net analysis as possible, for
example eliminating the need for designers to check static
states manually, making the overall process faster and easier
to understand.

Although the implementation is integrated directly into a
specific authoring tool, the approach itself can easily be used
for similar tools, engines or individual games as it is designed
to support scene-based games in general. It is also possible
to use the general concept with other game types as long as a
Petri Net model can be defined for each feature. Last but not
least the current implementation could also be used in order
to build a high-level model for other games built outside of
the tool, although doing so designers would lose one of the
main advantages of our concept – the automatic matching
of the model with the game. Nevertheless, applying the
transformation process to other existing games will also be
part of our future work.

As it is intended for scene-based games, however, the ap-
proach only works for games with a limited number of dis-
crete states. In order to verify games with continuous move-
ment for example the player position has to be reduced to
a limited number of equivalence classes (similar to having
rooms in the first place), which would also destroy the direct
matching between model and game. Finally is also impor-
tant to note that verifying functional properties does only
mean that players using a brute-force approach (i.e., sys-
tematically clicking on everything) can reach an ending. It
does not mean that they have enough information to solve
the game’s challenges via thinking, which is dependent on
the game’s content and not its structure. And it also does
not mean that the puzzles can only be solved as intended in
the design. Therefore, the games should still be evaluated
with real users after their theoretical solvability has been
verified.
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