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Abstract: Multiplayer games allow players to play together, allowing them to train their socials skills 
and enabling collaborative learning in educational settings. But while balancing a game’s challenge is 
a well-researched topic, to the best of our knowledge there are no definitions and algorithms taking 
into account the individual contribution of each player in a collaborative setting. Unequal contributions 
however can lead to one player completing the game alone while the others are not playing at all in 
the worst case. 
 
In this paper we provide a novel definition for collaborative balancing suited for multiplayer games 
with fixed and free roles, including metrics for heuristically calculating effort, waiting times and options 
available for each player. These metrics have also been implemented in a graph-based analysis 
algorithm, which has been applied to an example game in order to show the feasibility of this 
approach. 
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1. Introduction 
It has been shown that well-designed multiplayer games can enable collaborative learning while also 
training the players’ soft skills. When creating a game for a group of learners however, it is quite hard 
to guarantee that every group member will be exposed to the same amount of learning content and 
that they contribute the same amount towards solving the game. If this is not the case, multiple 
problems arise that negatively impact both the learning outcome as well as the players’ motivation. 
 
For example, players with pre-existing knowledge might be able to solve an unbalanced game on 
their own while the others do not take part in the learning process and thus do not receive the 
intended knowledge. The better players in turn could complain they had to solve all the tasks on their 
own or, depending on the game design, that they had to wait for the others constantly. This can be 
viewed as a balancing problem since the game’s tasks must be distributed between the individual 
players in a fair manner. 
 
This paper is structured as follows: First we discuss the related work on game balancing in Chapter 2. 
After that we provide a novel definition for collaborative balancing in Chapter 3 and corresponding 
metrics in Chapter 4. We then describe the prototypical implementation of these metrics in an 
authoring tool in Chapter 5, discuss its results when applied to an example game in Chapter 6 and 
conclude with a short summary in Chapter 7.  
 
2. Related Work 
Although there is a general consensus that balanced games are fair towards their players, 
suggestions on which properties a game should have to achieve that differ widely. 
 
Balance can be viewed on multiple levels. The first one is the game’s design, which is independent of 
concrete players. For Sirlin a balanced game design provides equal chances of winning to similarly 
skilled players and presents them a large number of viable options during play. The utility value of 
these options can differ depending on the current situation, as long as there are no strategies that are 
always right or wrong (Sirlin 2002). Newheiser provides a similar definition, but notes a contradiction 
in multiplayer games: New players want to be able to win against experienced ones, but experienced 
players want win consistently due to their higher skill level. Therefore, he suggests a mixture between 
random and skill elements (Newheiser 2009). Adams in contrast states that the leading player should 
change frequently to make games more interesting, but the better player should always win after 
some time (Adams 2002). 
 
To achieve a balancing between different options, Leigh et al. propose a coevolutionary algorithm that 
automatically develops strategies and then modifies the game in such a way that there is no 
dominating one. The drawback is that the space for potential strategies is often too large and 
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therefore not every strategy can be tested (Leigh et al. 2008). Finding optimal solutions algorithmically 
has even been argued to be NP-hard (Chen et al. 2014). 
 
Another level on which a game can be balanced is its runtime behaviour, where it might adapt itself to 
better suit differently skilled players. Andrade et al. used reinforcement learning to unnoticeably keep 
a singleplayer game balanced (Andrade et al. 2005). When multiple players play against each other it 
is also an option to quietly support the weaker player, which has been done in a shooting game 
(Bateman et al. 2011) and a racing game (Cechanowicz et al. 2014). It must be noted however that 
depending on the individual player’s attitudes they might perceive such aids as unfair. Instead it might 
be more beneficial to match them against appropriate opponents instead (Delalleau et al. 2012). 
     
Other sources of unfairness in a multiplayer setting are external factors such as latency issues 
(Zander et al. 2005) and players using illegitimate methods to gain an advantage (Yeung et al. 2006) 
 
It must be noted that all of these approaches take a competitive view, i.e. the player playing against 
the game in a singleplayer setting or different players playing against each other in a multiplayer 
setting. Nevertheless, they could be applied in a collaborative setting for balancing the players as a 
group against the game. However, to the best of our knowledge there are no definitions or metrics 
that take the interplay between the collaborating players into account. This is especially important 
since it has been shown that in working environments effectiveness and the amount of social 
interactions increases when workers feel like they are treated fairly (Whitman et al. 2012), which is 
also relevant in collaborative learning settings. 
 
3. Definition: Collaborative Balancing 
In order to balance collaborative games where players work together to achieve a common goal, e.g. 
reaching the end of the game, a new definition including the interplay inside teams of any number of 
players is needed. 
 
When talking about fairness in a team most people are interested in individual contributions. It is 
perceived as unfair if only a part of the group is doing the actual work while others profit from their 
effort, which is also known as free-riding (Strijbos & De Laat 2010). This is especially problematic in a 
collaborative learning setting, where participation means being exposed to the learning content. 
Therefore, players that do not actively take part might miss some of the learning content. It is easy to 
see that all players should contribute roughly the same amount of effort. Waiting times are directly 
related to the effort other players provide and should be balanced as well. 
 
It has been argued in competitive definitions that it is also beneficial to provide a variety of interesting 
decisions. In a collaborative setting this must not only be true for the group as a whole, but for each 
individual player. A player role that forces a player to repeat a single action over the course of the 
whole game will not be very interesting, even if the group as a whole can choose different paths 
through the game. Similarly to effort, options should be balanced between the players. 
 
We therefore provide the following definition for a collaborative balancing: 
A collaborative or cooperative game is considered balanced between group members when the 
individual efforts and waiting times required to solve the game as well as the number of options a 
player has along the way are equally high and uniformly distributed throughout the game. 
 
4. Approximating Collaborative Balance 
In order to measure how balanced a game is the abstract concepts of effort, waiting times and 
possibilities must be mapped to actual game elements. Since players interact with games using 
actions like clicking a button or pressing a key, these actions can be used for approximating the 
balance (with an additional weighting to model their difficulty or complexity). 
 
These actions can be available for any player or for specific players / roles only. If they are available 
for multiple roles it must be decided during play which player should perform those tasks.  This places 
some responsibility on the players, which is more interesting for them and gives them room to train 
their social skills, e.g. by discussing different alternatives. The drawback of freely available actions is 
that they cannot be attributed to a single player during design and so the balance may vary based on 
how the game is played later on. 
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Most games are also non-linear so that players can take different paths to the game’s ending, either 
by choosing between multiple options or by taking optional detours. To accurately measure the 
balance it would therefore be necessary to count the player actions on every path. As some paths are 
more obvious they should also be weighted based on the probability with which they are chosen. This 
probability however is not known and in most cases an infinite number of paths through the game 
exist, for example when players are able to move back and forth through several rooms. But even 
without such loops the number of paths through most games is still too large to be checked 
exhaustively. 
 
We therefore suggest a heuristic solution as a trade-off between accuracy and runtime. This heuristic 
uses the state space graph of the game, which contains all possible game states as nodes and ways 

for the players to trigger transitions between them. It then calculates all possible end states , which 

does not only include different game endings, but also different ways to reach a single ending 

resulting in differently set game variables. Then for every player  the path to each ending that 

minimizes a certain metric (e.g. effort) for this player  can be calculated to get a lower 

bound of that metric, so the player must contribute at least this effort for the group to reach this 
ending. It is necessary to calculate those paths for each player independently since the minimal path 
might be different for each player. 
 
Maximizing instead of minimizing is not feasible in most cases since loops could lead to infinite 
maximum paths. If the state space is not available it is also possible to calculate the solutions for the 
game with appropriate AI algorithms and to use these as paths instead. If the number of possible 
paths is still too high a random sample can be used instead. 
 
After the minimal paths  of each player  to each ending state  are known the effort 

for all player  on this path  can be calculated, which yields the effort each player  has to 

contribute in order to minimize the effort of . This effort is defined by the combined effort of all 

actions on the path that only one particular player  can trigger. Actions that can be triggered by 

multiple players do not count towards the minimal effort of a certain player, as no player is forced to 
perform them. 

 

   
 

The combined effort of all actions on this path  is the sum of all efforts on this path. Since our 

model supports actions that can be triggered by multiple players it differentiates further between this 
sum and the sum of all actions that can only be triggered by a single player ( ). 

 

    
 
In a game where every action is assigned to a single player these two values are the same and the 
effort can be calculated accurately. But if many actions can be triggered by multiple players these 
values differ and the approximated balance can be changed greatly by the players themselves 
depending on who execute these flexibly assigned actions. The accuracy of the calculated effort  

can therefore be calculated by comparing these two values to each other. 
 
As different paths through this game might require a different overall effort one should not compare 
the minimal effort of each player on different paths, but the percentage this player has to contribute 

compared to the others ( ). On each ending  these should be similar for each player. 

 

    
 
While the effort is defined by the actions a certain player must take, the waiting time is the effort a 
player is not able to participate in as he or she must wait for someone else to complete them. An 
action that multiple players are able to perform is therefore neither effort nor waiting time for any of 
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them, as they can execute it but are not forced to do so. As such, the formulas for effort and waiting 
time are similar with one important distinction: The waiting time percentage is based on the value of 
all actions, not on those that can be uniquely assigned to one player as everyone else is waiting when 
one player acts. Therefore, there is also no accuracy for this value. 
 

   
 

    
 
This approximation only counts actions which are required for solving the game (i.e. they lay on the 
minimal path to an end state). In some cases waiting players could perform optional actions or even 
trigger a required action in parallel, which is not represented in this calculation. 
 
The options each path offers to the players can be calculated like the waiting time, using the possible 
actions for each player after each step as the metric. 
 

  
 

    
 
Instead of calculating individual paths for waiting times and options, their calculation could also be 
based on the effort optimizing path. This trades accuracy – there might be a path with a lower metric – 
for a greatly reduced runtime as fewer path must be calculated. 
 
After the percentages of each metric for every player and path are calculated they must be 
aggregated to get the overall picture. As the players’ values for a specific ending should be similar 
their standard deviation over all paths should be minimal, which can be used as an aggregation 

metric. It must be noted however that although the mean percentages lie in the interval , the 

worst case standard deviation  (one player does all the effort instead of the optimal  

distribution) is dependent of the number of players . In order to compare the standard deviations of 

any metric  over different games they should therefore be normalized in relation to . 

 

     
 

Finally, the normalized standard deviations for effort, waiting time and options as well as the accuracy 
for each ending state must be interpreted: If the average and maximum of the standard deviations is 
low the game is balanced (the metrics are similar for all players). If only the average is small most 
paths are balanced except a few outliers and if it is high most paths are unbalanced. 
 
The accuracies average and minimum over all paths describes how much the result can be modified 
by players executing actions that are also available to others. Averaging the absolute effort, waiting 
time and possibilities for each player instead of looking at the standard deviation can show which 
players are favored by an unbalanced game. These values can be similar however, even if the 
standard deviation is high. This means that each path through the game favors different players, so 
advantages equalize themselves over all paths. Since few players play the game many times using 
different paths, this is still a balancing problem. 
 
If the analysis shows anomalous values the algorithm highlights problematic paths as sequences of 
player actions, which allows authors to modify them, for example by assigning actions to other 
players. Since all of these metrics can be calculated during the design / authoring phase, the 
balancing can be approximated without a working game or playtesters. 
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The overall algorithmic complexity of this approach is defined by the path finding algorithm, which 
must be run for each combination of player and end state. 
 
5. Implementation 
We implemented this approach for approximate balancing calculation in our authoring tool StoryTec 
(Mehm et al. 2009), with which authors can create scene-based single- and multiplayer games. 
Therefore, the balancing calculation can be performed on any game created with the tool, although it 
can only show the overall effort for singleplayer games. 
 
The state space calculation is provided by an existing algorithm for transforming games into petri net 
models in order to detecting structural errors (Reuter et al. 2015). The authoring tool then uses the 
well-known Dijkstra’s algorithm for calculating the shortest path to each end state. It’s faster A* 
extension which uses a heuristic to guide the search in promising directions first can also be used if 
there is a known lower bound for the costs from each node to the end. A valid bound would be the 
number of actions to the end goal, which can be obtained with a breadth-first-search on the graph 
starting from the end node. This calculation must be repeated for each end node, but can be re-used 
for every player. Since this operation also takes time, it is more beneficial to use A* for a larger 
number of players and for state spaces where it performs especially well compared to Dijkstra, i.e. in 
graphs that expand in multiple directions. Therefore, both options were implemented. 
 
For approximating the weight of individual actions multiple heuristics were developed, based on the 
principle of ActionSets used in the authoring tool. An ActionSet is a tree of game (re-)actions to a user 
input stimulus with branches based on variable conditions. The first heuristic just counts the user 
inputs and treats every ActionSet the same, assigning it a value of 1. The second one emphasizes the 
overall complexity of the tree, counting the actions it contains. Depending on the structure of the tree 
and the variables used in its conditions, only some of the actions might be executed in a given game 
state. To respect that the third heuristic counting the actually executed actions that change the game 
state (optional options like requesting hints are ignored). And last but not least authors can override 
each heuristic by manually setting the difficulty of ActionSets according to their expert knowledge. 
 
In order to find the minimal value of each metric for a player a naïve approach could override all 
transitions that could be triggered by other players with a weight of zero, as they are not relevant for 
the minimum. However this would result in a greatly increased runtime, as the pathfinding algorithm 
would search all of these transitions first before triggering one by the player in focus (which it must do 
eventually if the action is required to solve the game). In order to not explore the whole state space it 
is therefore advisable to choose weights of at least one for those irrelevant transitions. As actions of 
other players must be favoured in order to find the minimal effort for the player in focus there must be 
a numerical advantage of those actions, so we propose to multiply the weights of these transitions 
with 20 instead. This means that if all player actions are judged equally complex the pathfinding 
algorithm would search 20 consecutive transitions done by other players before eventually 
considering one for the player whose effort should be minimized. This number can be tuned as a 
trade-off between searching the whole state space and correctness: If this player’s action could be 
circumvented with 21 other actions the path would not be optimal and the calculated metric would be 
too high. But since the calculations are approximations anyway such an error is not critical. 
 
If A* is used for pathfinding an additional heuristic for guiding the search is required, adding further 
constraints to the action weighting. The A*-heuristic must be admissible, i.e. its values must not be 
larger than the actual distance to the end state. Since the minimal number of steps towards the goal is 
used as this heuristic, the weight of every step cannot be smaller than one.  
 
When calculating the final metrics for each path it is not necessary to take pathfinding costs into 
account, so the unmodified weights can be used. 
 
6. Results 
The implementation was then tested by analysing a well-received multiplayer adventure game (Reuter 
et al. 2012). The game is designed for two players and uses relatively strictly enforced roles, with 
most actions being assigned to one player only. Our user study had shown that players of both roles 
felt involved during the majority of the game, which means that according to our definition it was 
balanced for them. 
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The state space of a large subsection of this game spanning thirteen minutes of playtime has already 
been calculated in our previous work (Reuter et al. 2015). Despite having a single ending the game’s 
state space contains 88 different ending states. We then applied our balancing metrics in various 
parameter combinations (Table 1) using different weight heuristics (input, complexity and actual 
actions), path calculations (optimizing effort only or each metric separately) and path finding 
algorithms (Dijkstra and A*). 
 

Table 1: Evaluation results 
 

 
Time Accuracy 

Effort Waiting Options 

SD P1 P2 SD SD 

Weight Optim. Pathf. Imp. Calc. Min Avg Avg Max Avg Avg Avg Max Avg Max 

Input Effort Dijkstra 2 s 7 s 0,92 0,99 0,08 0,17 20 20 0,08 0,17 0,02 0,07 

Input Effort A* 2 s 4 s 0,92 0,99 0,08 0,17 20 20 0,08 0,17 0,03 0,07 

Input Sep. Dijkstra 2 s 20 s 0,92 0,99 0,08 0,17 20 20 0,08 0,17 0,04 0,08 

Input Sep. A* 2 s 11 s 0,92 0,99 0,08 0,17 20 20 0,08 0,17 0,04 0,08 

Compl. Effort Dijkstra 2 s 10 s 0,75 0,97 0,11 0,25 90 97 0,13 0,26 0,13 0,18 

Compl. Effort A* 2 s 7 s 0,75 0,97 0,11 0,25 90 97 0,13 0,26 0,13 0,18 

Compl. Sep. Dijkstra 2 s 45 s 0,75 0,97 0,11 0,25 90 97 0,11 0,25 0,07 0,13 

Compl. Sep. A* 2 s 25 s 0,75 0,97 0,11 0,25 90 97 0,11 0,25 0,07 0,13 

Actual Effort Dijkstra 2 s 6 s 0,94 1,00 0,11 0,22 26 30 0,11 0,22 0,32 0,47 

Actual Effort A* 2 s 4 s 0,94 1,00 0,11 0,22 26 30 0,11 0,22 0,32 0,47 

Actual Sep. Dijkstra 2 s 24 s 0,94 1,00 0,11 0,22 26 30 0,11 0,22 0,16 0,33 

Actual Sep. A* 2 s 13 s 0,94 1,00 0,11 0,22 26 30 0,11 0,22 0,16 0,33 
 

                      
 
The weight heuristic is most influential as it governs the impact of each individual player actions on 
the overall result. As complexity results in the largest value range of individual actions it also results in 
a larger variance in balancing, i.e. an average effort balance of 0.11 (worst case 0.25). This is due to 
single complex action skewing the result towards a single player. Using actual effects and input in 
contrast suggests that the game is more balanced, i.e. 0.11 (worst case 0.22) and 0.08 (worst case 
0.17). Therefore authors must select a heuristic that is most appropriate for the game under test over 
even annotate actions using their own weights. As the overall value range is between zero and one 
(one indicating completely unbalanced games), all of these values however suggest a relatively 
balanced game. 
 
When investigating the absolute effort player two has to provide 1% to 16% more effort over all paths, 
so the slight unbalance could be improved by shifting some actions to player one. The accuracy of 
these results is greater than 97% on average with a worst case of 75% on individual paths, meaning 
that there are only few actions that the players can choose to distribute themselves in order to 
influence the balancing. As the ActionSets behind those actions are relatively complex compared to 
the other ones their influence is most obvious when using this metric. 
 
Waiting times are also pretty balanced, with an average standard deviation of up to 0.13 (worst case 
0.26). The possibilities produce reasonable values as well, 0.16 on average, but the worst case of 
0.33 suggests that there are some paths through the game that do not balance the possibilities well. It 
is also interesting to note that this value gets much worse (0.32 instead of 0.15 on average) when 
there is no separate path calculated for the possibilities, as the effort path minimizes a completely 
different metric. The waiting times in contrast do not vary much when calculated on an effort path, as 
the metrics are similar to each other. 
 
In regards to computation time the initial setup including state space import takes about two seconds, 
the actual balancing calculations vary between ten and twenty seconds when only effort paths are 
calculated. As expected, this time is nearly tripled when the paths are also calculated for the other two 
metrics. Since our results already showed that effort and waiting time are quite similar, a better 
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approach would be to only calculate effort and possibilities, doubling the time. The runtime can be 
decreased further by using the A*-Algorithm instead of Dijkstra, which took 25% to 50% less time for 
our example game while yielding the same result. Nevertheless, all of these calculations can be done 
in almost real-time and therefore can be calculated quite often during development. 
 
7. Conclusion 
In this paper we proposed a balancing definition explicitly addressing collaborative games where 
multiple players work towards the same goals. This definition includes the effort required by each 
individual player to solve the game, their waiting time and the possible actions the game provides for 
them. We then developed an approach and formulas to approximately calculate the balancing of any 
given game and implemented this concept into an authoring tool for scene-based games. Using this 
implementation we showed that an example game that was described as generally balanced could 
indeed reach good values and that the calculations could be done in a reasonable time span of less 
than a minute. 
 
A current limit of this work is that while the general definition and concept can be used for any 
collaborative game, the implementation and results focus on scene-based games. As the state space 
of games from other genres is comparatively large it is not always possible to exhaustively calculate 
every path through them. It is therefore necessary to implement alternative path calculations in order 
to apply our approximations to other games as well, which will be part of our future work. 
 
Other future work will include not only pointing out imbalances, but extending our algorithms to also 
provide suggestions on how to fix anomalies. While being straightforward in unambiguous cases 
where every path through the game favours the same player, modifying actions in cases where only 
some paths are unbalanced might impact formerly balanced paths as well. Suggesting changes 
therefore constitutes a separate optimization problem. And aside from balancing the game during its 
creation, future work could also balance the game during runtime for differently skilled players by re-
assigning responsibilities on the fly. 
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