
[RHG+O8] Andreas Reinhardt, Jan Hennecke, Steffen Gottwald, Matthias Kroptf. Johannes Schmiff,
Matthias Hollick, Ralf Steinmetz; Tubicles: Heterogeneous Wireless Sensor Nodes -
Testbed Objectives and Assembly Instructions. no. TR-KOM-200809. December 2008.

Tubicles: Heterogeneous
Wireless Sensor Nodes
Testbed Objectives and Assembly lnstructions
Technical Report TR-KOM-200&09,22 December 2008
Andreas Reinhardt, Jan Hennecke, Steffen Gottwald,
Matthias Kropff, Johannes Schmitt, Matthias Hollick, RaH Steinmetz

Technische Universität Darmstadt
Department of Electrical Engineering and Information Technology

Department of Computer Science (Adjunct Professor)
Multimedia Communications Lab

Prof. Dr.-Ing. Ralf Steinmetz

Thbicles: Heterogeneous Wireless Sensor Nodes
Testbed Objectives and Assembly Instructions

Technical Report KOM-TR-2008-09

BY
Andreas Reinhardt, Jan Hennecke, Steffen Gottwald,

Matthias Kropff, Johannes Schmitt, Matthias Hollick, Ralf Steinmetz

Contact
andreas.reinhardt@kom.tu-darmstadt.de

http://www.kom.tu-damtadt.de

First published: 25 November 2008
Last revision: 22 December 2008

For the most recent version of this report See
ftp://ftp.kom.tu-damtadt.de/pub/TR/KOM-TR-2@@8-@9.pdf

Front Page photo source: http: //www. ipernity . com

Abstract

Real sensor network deployments often exhibit characteristics that significantly differ from simulations. Various factors
are known to have an impact on application behavior, including real radio characteristics, sensor readings, and timing
constraints. Incomplete or stochastic models employed in current simulation utilities do not Cover these aspects in their
entirety, possibly leading to a limited applicability of the results. A feasible approach to address this problem is the
deployment of a testbed and the evaluation of applications on real sensor node hardware.

Testbeds can provide different means of developer support, ranging from extensive logging and deployment support
to pure ad hoc node deployments with barely any assistance to the User. The demand for heterogeneity in various
dimensions also becomes increasingly important, and similarly considenng mobile and moving nodes becomes a major
issue to evaluate user-centric applications and algorithms, i.e., applications focussing on monitoring persons instead of
environmental Parameters. The analysis and verification process of smart applications, i.e., applications that dynamically
adapt to arising requirements during runtime, poses additional constraints on the testbed.

Taking these desired features into account, we have elaborated a Set of design requirements for a heterogeneous sensor
network testbed suited to evaluate the behavior of smart applications in [I]. Apart from sophisticated support during
deployment and experiment runtime, our testbed has been designed to provide versatility in t ems of heterogeneity,
portability rnobility, and application debugging support. These means prevent the testbed from being confined to a small
subset of application domains.

In this technical report, we present the tubicle node platform, a heterogenous sensor node forming the basic compo-
nent of our TWiNS.KOM testbed. Heterogeneous in terms of computational power, available memory, radio protocols,
and sensing capabilities, the platform allows to analyze the impact of heterogeneity on applications. The support for
portability allows to relocate nodes easily, an essential prerequisite to perform experiments in situ. The capability of
integrating mobile Sensors, and the versatile debugging and deployment support, are further assets of our platform.

This technical report presents profound details on the selected hardware and software components, and provides
detailed information about the process of assembly and programming of the nodes. Binary distributions of the presented
software bundles are available for download at http://www. kom. tu-darmstadt .de/twins. Feedback and questions are
appreciated, please address your messages to Andreas.Reinhardt@KOM.tu-darmstadt.de.

Contents

1 lntroduction
. 1.1 Motivation
. 1.2 Conmbution

. 1.3 Outline

2 The Tubicle
2.1 SystemOveMew .
2.2 Hardware .

. 2.2.1 Gumstix Verdex
2.2.2 SunSPOT .
2.2.3 motesky .
2.2.4 n o n .
2.2.5 Bluetooth Dongle .
2.2.6 Webcam .
2.2.7 USBHub .

2.3 Software .
2.3.1 The Operating System .

. 2.3.2 mbicle Management System
. 2.3.3 Application Deployment
. 2.3.4 Debugging Capabilities

3 Assembly lnstructions
3.1 Bill of Materials .

. 3.2 Hardware Modifications
. 3.2.1 TmstUSBHub

. 3.2.2 Webcam
3.2.3 rmotesb .

. 3.2.4 Gumstix Verdex
. 3.2.5 SunSPOT

3.2.6 XPort .
3.2.7 Remaining Intercomections .

4 Software and Operating System
4.1 Step-by-Step Setup of a Tubicle .
4.2 Setting up a Development System (on Debian/Ubuntu) .
4.3 Customizing OpenEmbedded .

4.3.1 Installing and Uninstalling Packages on the Gumstix .
4.3.2 Cross-Compiling Applications and Kerne1 Modules for the Gumstix .

4.4 Interfacing the SunSPOT and the tmote sky .
. 4.5 General Information

5 Summary

Acknowledgements

References

1 lntroduction
The emerging field of Wireless Sensor Networks (WSNs) encompasses the deployment of many small wireless nodes
(motes) in selected application scenarios, targeted to take environmental readings, perform distributed processing tasks
on the sampled data, and forward them over the radio to neighboring nodes or extemal sinks [2]. The vision of smart
dust assumes these nodes are both tiny and cheap, and do hence suffer from restrictions in terms of computational power,
memory Storage space, and the available energy budget [3].

In recent years, a variety of node platforms has been developed, heterogeneously differing in many regards, including
price, size, energy consumption, computational power, available sensors and supported operating systems. Often, sensors
for solar radiation, temperature, and humidity are present on current motes. However, some platforms do also provide
accelerometers or even more sophisticated sensors like webcams.

A common radio protocol for WSNs is the IEEE 802.15.4 standard [4], which allows low-power wireless communica-
tion. Sharing the 2.4 GHz frequency band with other wireless technologies, such as WiFi and Bluetooth, it is not unlikely
that interference is likely to occur in environments where multiple wireless links of different kinds are present. These
real-life aspects are however not covered in many simulation tools; instead, simulation models for both sensors and radio
are often reduced to stochastical models for simplicity reasons, rendering the results inapplicable on real deployments
in many cases. Experiments in real environments dedicatedly regard these infiuences, however at the cost of additional
efforts that are required to Set up nodes, deploy application images, and perform analyses of observed behavior.

1 .I Motivation

The evaluation of simulated algorithms on real sensor node hardware is essential in the process of application develop-
ment, ensuring that systems perform their dedicated task at all times. Operating on real underlying systems also allows
to determine how applications handle enforced resource constraints, real sensor readings and radio channels. While
on-the-fly deployments suffice to evaluate applications on a small number of nodes, they expose a number of downsides
that reduce their applicability in many cases. Primarily, the time required to distribute new application images to all
participating nodes, Set them up in the desired topology, and finally perform an analysis of the measured characteristics
log files, is a time-consuming process.

Testbeds generally alleviate this situation, as they present a ready-made deployment of nodes with versatile application
developer support in different regards. Application images can be deployed easily, experiments can be controlled and
supervised during runtime, and measured results and log files are processed and presented to the User after an experiment
for detailed analysis of the application behavior. Especially in cases where simulated behavior and measurements on
real hardware do not match, the debugging capabilities of a testbed are very useful tools to determine the origin of the
discrepancy. By logging application behavior and fonvarding this data, the user can synoptically view encountered events
and errors and derive improvements to the application from the observations.

1.2 Contribution

In the Course of conducting research on WSNs, the Ubiquitous Communications Group at the Multimedia Communica-
tions Lab (KOM) of Technische Universität Darmstadt, has decided to set up the TWiNS.KOM testbed, a Testbed for a
Wireless Network of Sensors. Towards achieving this goal, we have determined a Set of design considerations for success-
ful testbed operation in [I]. Following these objectives, we have developed a heterogeneous node platform, the tubicle.
Supporting multiple dimensions of heterogeneity (computational power, radio protocols, sensor devices, available mem-
ory), and the possibility of simple relocation due to its portable design, the platform can be used to perform a broad range
of experiments. Covering WiFi, Bluetooth, and the IEEE 802.15.4 radio standard, a variety of sensing devices operating
on any of these protocols can be integrated with the nodes easily.

The node platform has been designed with special regard to allow usercentric operations, where users canying sensor
nodes, such as mobile phones or internet tablets, may also be Part of the network. This is significantly different from
common sensor nenvork approaches where fixed autonomous nodes with pre-defined energy budgets comprise the main
elements of the sensor network, as mobile devices can rather be assumed to be perpetually recharged by their users,
while constant availability within the network cannot be guaranteed.

Our testbed comprises twenty tubicles, and offers a convenient Set of support features for application developers.
It aiiows versatile experimental analysis and evaluation by providing extensive deployment support in terms of simple

application deployrnent and node Status analysis. The inherent debugging capabilities allow to analyze application
behavior in detail and provide helpful clues to the developer to determine the origin of encountered errors. We provide
a detailed assembly instruction for the tubicle platform, with all technical details required to build a tubicle from its
components. Special attention is also paid to provide a step-by-step manual for compiling the operating system from
scratch. Stable revisions of our current system images are also available for download on the TWiNS.KOM webpage,
found at http: //www. kom. tu -dmstadt .de/twins.

1.3 Outline

We present a detailed overview of the tubicle in Chapter 2, with details on the employed hardware devices, their intercon-
nections and the resulting functionalities offered by the node platform. Subsequently, we provide step-by-step manuals
on how to assemble and modify the hardware in preparation for their operation in the tubicle in Section 3. Optional
steps are marked as such, allowing to selectively disregard them during the construction process. The process of Setting
the system up from scratch is presented in Section 4. Steps range from the basic bootstrapping process to compiling
dedicated device drivers, e.g. for the integrated webcam or any peripherals connected to the external USB sockets. We
summarize this document in Section 5.

2 The Tubicle
The first revision of the tubicle is illustrated in Fig. 2.1, made up from a 40cm
(16inch) acrylic glass tube with a Set of integrated hardware devices. The
components are placed on a Plexiglas carrier board located in the Center of
the tube. Vacant sites on the carrier board allow to extend the tubicle by
further peripheral devices, such as additional Sensors, more sophisticated User
interface elements, or audio equipment.

The tube exposes an outer diameter of lOOmm (3.9inch) at a thickness
of 3mm (0.12inch). Top and socket parts are both manufactured from solid
aluminum, with diameters of lOOmm (3.9inch) for the top part, and 140mm
(5.5inch) for the socket part, respectivelp A cut-out in the socket seats a
pnnted circuit board (PCB) with power inlet and an Ethemet jack, while
two USB jacks are located in the top to allow connecting additional periph-
erals. The enclosure provides basic protection against splashing water, and
prevents the integrated components from accidental damage. A Set of LEDs
in the socket is used to illuminate the acrylic glass tube and the carrier board,
thus indicating operation of the tubicle.

Only the connection to the power supply wall plug (or alternative15 a stor-
age battery) is mandatory to operate the tubicle, although the rare case of re-
covering from an erroneous write operation to the kerne1 flash memory (thus
rendering the tubicle unable to boot) requires an additional connection to the
wired Ethernet. By the use of a Power-over-Ethernet (PoE) splitter, such as
the DLink DWLP200, the required cabling can be reduced to a single PoE
connection.

Apart from the custom housing, all components are available off-the-shelf,
allowing the gentle reader to construct a tubicle without further requirements.
The housing however is an optional feature to increase portability and address
the protection of the integrated components; it is not necessarily required to
operate the tubicle.

2.1 System Overview

Three commonly known sensor node platforms have been integrated within
the tubicle. The low-power tmote sky sensor node hereby represents the least
powerful platform with tightest resource constraints. In contrast, the Gumstix
embodies the most powerful device integrated, with a multiple of the tmote's
memory and processing power. Its performance is comparable to the one of-
fered by current smartphones. The SunSPOT platform represents an inter- ~i~~~~ 2.1: ~h~ erst tubicle prototype
mediate System that allows to run algorithms that would exceed the computa-
tional capabilities of the tmote sky, while still being more resource-constrained
than the Gumstix.

Apart from the sensor node platforms, additional devices are integrated to interconnect all nodes as well as to provide
deployment Support. Inside the socket, shown in Fig. 2.2(a), an XPort has been integrated, transferring data received
over the Ethernet to a serial console of the Gumstix platform, as well as forwarding reset requests to any of the three
devices. The Gumstix offers USB host capabilities, allowing to attach further peripherals. As only a single connector is
present, the tubicle makes use of a 7-port USB hub mounted on the back side of the carrier board. At the current stage,
both SunSPOT and tmote sky are attached to the hub, as well as an additional Bluetooth dongle, a webcam, and the
two USB jacks in the top part, which can be seen in Fig. 2.2(b). Another jack is left available inside the tubicle to allow
attaching further devices at later Stages. Also, the audio connectors of the Gumstix base board are currently unconnected,
but allow connection of both speakers and microphones.

An overview of the devices and interconnections is given in Fig. 2.3, additionally indicating the supported radio
protocols. Four different types of connections are indicated in the hgure: Reset Signals are generated by the XPort and

forwarded to each comected Sensor node platforrn. As the SunSPOT requires a reset irnpulse during prograrnming, a
logical OR gate has been added to the signal to allow both Gurnstix and Dor t to trigger the signal. A serial connection
is present between XPort and the Gumstix board. It allows both remote reprograrnming of the entire Gumstix platforrn
as well as rnanagernent in emergency cases when no WiFi access to the Gurnstix is possible. The USB hub connects ail
integrated peripherals to the Gumstix, and additionally supplies power to all components.

(a) Socket (b) TOP

Figure 2.2: Top and socket parts of the tubicle

I I I ,

Active USB hub - USB Connection

Figure 2.3: Interna1 structure of the tubicle

2.2 Hardware

We introduce the integrated components in the following subsections, summarizing their functions, requirements, and
their task within the tubicle. The required modifications to the devices are not discussed in detail in these sections; we
refer the reader to Chapter 3 for according details.

2.2.1 Gumstix Verdex

The Gumstix Verdex XL6P board is an embedded system based on the PXA270
XScale processor, running at a clock frequency of 600MHz [SI. It is fitted with
128MB of on-board RAM and a 32MB flash chip to Store the Linux operating
system. An integrated USB Full Speed (vl.1) host controller allows to control
peripheral devices, and up to 98 general purpose 1/0 (GPIO) pins are available
to interface extemal devices. The device features three levels of power manage-
ment and three logic level serial ports at a board size of only 80mm X 20mm.
Hirose extension headers are present on the boards to connect additional ex-
tension boards.

The audiostix2 and netwifimicroSD extension boards extend the core system
by a Set of functionalities. While the former adds audio input and output jacks,
a micro USB connector, and soldering pads for both serial and GPIO pins, the
netwifimicroSD board provides an 802.11b/g compatible wireless networking Figure 2.4: Gumstix Verdex
adapter, wired 10/100baseT ethemet, and a microSD memory card slot, which
allows to extend the storage capacity and thus increase the space available to
the operating system.

2.2.2 SunSPOT

The SunSPOT is a sensor node manufactured by Sun Microsystems. Less powerful than
the presented Gumstix platform, its ARM9 CPU is still operated at a clock frequency of
180MHz [6]. Fitted with 512kB of RAM and 4MB for application code storage, the node
offers less resources than the Gumstix, but also consumes less energy during operation.
In contrast to the Linux operating system run on the Gumstix, SunSPOTs natively run the
SquawkVM Java virtual machine, hence only allowing the execution of Java applications.

Radio cornrnunication is handled by the on-board CC2420 radio transceiver, an IEEE
802.15.4 compliant 2.4GHz radio module [n. The implemented radio stack is provides
an implementation of 6LoWPAN [8], an energy-aware IPv6 stack for embedded systems.

The sensor board shipped with SunSPOT nodes provides a Set of sensors, comprising two
momentary switches, temperature and light sensors, and a 3-axis accelerometer. Eight tri-

Figure 2.5: SunSPOT
color LEDs can be used to indicate the node Status to the User, and six analog inputs, and five
general purpose I/O pins are available to attach extemal devices.

2.2.3 tmote skv

Moteiv's tmote sky platform, technically equal to Crossbow's TelosB, is a node platform
based on a low-power 16-bit Texas Instruments MSP430 microcontroller, operated at
8MHz clock frequency. It offers lOkB of RAM and 48kB of code flash, rendering it in-
compatible with Linux-based operating systems or even complex Java virtual machines.
To stiii run applications, special operating systems for embedded devices are necessary, e-
such as TinyOS [9], or the Contiki operating system [10].

Similar to the SunSPOT, the tmote sky employs the CC2420 transceiver for radio
transrnissions over the IEEE 802.15.4 standard. Communication with SunSPOTs is pos-

Figure 2.6: tmote sky
sible by either implementing 6LoWPAN on the tmote sky, or altematively modifying the
SunSPOT radio stack to Support inter-node communication. The platform additionally
offers 1MB of external serial flash memory, and sensors for temperature, humidity, and solar radiation. Two extension
headers allow to attach peripheral devices, and provide six analog inputs, up to four GPIO pins, and logic level I ~ C and
serial bus interfaces, as well as an interrupt input to wake the node up from low-power sleep modes, and a reset pin.

2.2.4 XPort

A dedicated Ethernet to serial converter device is present within the tubicle to allow for
bootstrapping in emergency cases, i.e. when neither platform is in an operable state to
fulfill its determined operations. The Lantronix Wort device comprises a small web Server
with telnet capabilities [ll] that allows to remotely execute commands on the Gumstix
platform, or even remotely reprogram it when the system boot scripts are damaged or
the system is irreversibly stalled. The XPort also offers three dedicated GPIO pins, which
have been connected to the reset signal lines of the employed node platforms. This wiring
allows to remotely reset stalled nodes or selectively deactivate nodes to keep them from
returning to their normal mode of operation. As the Wort has been designed to run on

Figure 2'7: "Ort a lower operating voltage and requires external components, a dedicated PCB has been
designed, and is presented in Sec. 3.2.6.

2.2.5 Bluetooth Dongle

To allow interaction between Bluetooth-based devices and sensors, a Hama Nano Bluetooth
dongle has been integrated. The compact USB device Supports Bluetooth Version 2.0 +EDR,
allowing for data rates of up to 3Mbit/s. Operating in Bluetooth Class 2, the adapter is de-
signed to achieve transmission ranges of up to 40 meters.

-3
\-

Attached to the Gumstix platform, applications can access the Bluetooth dongle over the
USB bus, allowing interoperability with Bluetooth-based sensors, such as calendar and address ~i~~~~ 2.8: N~~~
book applications on mobile phones.

2.2.6 Webcam

- Both still images and video streams from a node's surroundings can be captured by
the integrated USB webcam. We have selected the Labtec Webcam Pro in particular

r, because of its known interoperability with Linux operating systems and the low price.
The housing of the webcam has been removed to allow fitting it inside the tubicle,
also revealing Logitech as the real manufacturer of the hardware.

The webcam operates at a resolution of 640x480 pixels at 30 frames per second,
and a built-in microphone offers capabilities to also sample environmental sounds. As
with most current webcams, only manual focusing is available.

The Gumstix platform provides sufficient computational power to process captured
Figure 2.9: Labtec Webcam Pro data, allowing to use the webcam as a Sensor device. Versatile functions, including

motion and activity area detection thus render possible.

2.2.7 USB Hub

A USB hub has been integrated to attach the presented USB devices to the Gumstix
board. We have selected the Trust Hü-5870V because it fits inside the tubicle well due
to its triangular shape and offers seven ports, leaving room for prospective extensions
to the nodes.

W o of these seven connectors are employed to attach the tmote sky and SunSPOT
devices, and another two connect the Bluetooth dongle and the webcam, leaving three
ports available for other devices.

Two USB sockets have been mounted in the top part and were connected to the Figure 2.10: Trust HUS870V
available ports of the hub, allowing to easily connect new devices by the User. Finally, a
single slot is available inside the platform to permanently attach further devices.

While the SunSPOT features a dedicated Java virtual machine, and tmote sky application images also include the op-
erating system, the Gumstix is a fully fledged embedded system with Support for various operating systems. We give a

short overview of our setup in this section, but refer the interested reader to Chapter 4 for configuration and installa-
tion details. Similarly, our node management application and deployment support system is introduced in this section,
supporting developers in application development and offering sophisticated logging options.

2.3.1 The Operatina Svstem

We have based our application image for the Gumstix devices on the hgctröm-200i'.1 distribution of the OpenEmbedded
operating system, a Linux distribution specifically designed for embedded devices. Due to the limited size of the on-board
flash chip, a microSD memory card has been used to increase the space for the root file system.

Besides installing a complete build tool chain, we have also cross-compiled the kemel modules required for the at-
tached USB peripherals. This includes the rxtx and toscomm libraries for the serial cornrnunication with tmote sky and
SunSPOT, the bluez library for Bluetooth communications, and the gspca module for webcam support.

We have included the jamvm Java virtual machine as an execution environment for developed applications, and added
the SunSPOT and TinyOS SDKs to support data transfer and reprogramming of the attached node platforms. Applications
to interface the webcam (w3cam and xawtv) and the Bluetooth dongle (the bluez utility suite) have also been added, as
well as a dedicated Set of developed scripts to easily deploy application images on the anached nodes.

2.3.2 Tubicle Management System

To aid developers in application deployment and analysis, a server-based solution to control the tubicles has been de-
veloped and integrated. Our Tubicle Management System (TMS) keeps track of all available nodes within the nenvork,
and indicates their current status and location on an overview page. We have implemented an experiment scheduler,
which automates time slot selection for experiments and displays the current experiment queue. New jobs can easily
be added to the queue and are scheduled to time slots where the requested number of nodes is available. Additional
constraints, such as a preferred experiment execution time during night hours (where less Cross traffic is present in the
2.4GHz band) are also considered in the node selection process. A connected database stores all finished experiments
and the corresponding log files, and thus allows for both deferred experiment analysis and repetitions on demand.

A dedicated script on the tubicle allows the Gumstix to receive and install new application images for all integrated
platforms. As in the case of tmote sky and SunSPOT, only a single application can be run at a time, this operation
must be tnggered by TMS at the scheduled time slot. The OpenEmbedded distribution Supports concurrent execution of
applications on the system, assuming they do not require exclusive access to resources. TMS hence spawns new processes
for each application, which either terminate normally, or will be forced to exit at the pre-defined end of the experiment
runtime.

In some cases, symbols must be set in application images, such as the RF transmission power, or the local node address
of tmote sky nodes. To alleviate the process of setting these values independently for each node, the corresponding SDKs
were installed on the Gumstix, which can either set these values to pre-defined values, or values defined for a given
experiment in the TMS input form.

To successfully execute a Gumstix application, a manifest file needs to be present in the application archive, defining
the call sequence to the executable file, and any further setup commands or Parameters. The process handle of the shell
encapsulating the User applications is retumed to the TMS server on successful application start, and saved within TMS
to allow manual termination of the application at any time.

The possibility to perform node debugging is important in sensor networks, as many exceptional behavior schemes only
occur when nodes are distributed and real radio communication is taking place. Therefore, a set of debugging capabilities
have been integrated with the platform, allowing to support developers in many regards.

First of all, the data logged from the nodes' serial ports can be retrieved and compared. A synoptic view of status
and debug messages of all participating nodes allows to monitor node interactions and replay the sequence of occurred
events. Nodes that do not actively participate in experiments are also configured to monitor radio traffic by default,
allowing to passively inspect the traffic on the radio, providing support in both determining erroneously disregarded
packets or even falsely transmitted ones.

3 Assembly lnstructions
This section describes all steps necessary to construct a tubicle from scratch. All required components are listed, and a
detailed description on the assembly steps is provided.

3.1 Bill of Materials

In Table 3.1, all required materials and corresponding numbers to are listed. Prices are not quoted as they are subject to
change. However, as of October 2008, the overall cost for a tubicle is around 700 Euros (about 1000$ US).

Arnount Part Further specifications
1 Gumstix Verdex XL6P mainboard

Gumstix audiostix2 and netwifiSD modules Choose the module corresponding to your country
Gumstix screws and spacers Set
USB hub Trust HU-5870V model, or any other 7-port hub
tmote sky with sensors Or due to the lack of tmote sky availability, a TelosB
SunSPOT sensor node Including the Sensor board
Lantronix Xport Direct+
2GB MicroSD card Many 4GB SDHC cards do not work in Gumstix boards
Bluetooth Dongle
Web Camera Supported by Linux, e.g. the Labtec Webcam Pro

Table 3.1: List of required components

Amount Comvonent
LF33CDT Voltage Regulator
SMD Resistor 10k 1206
PCB Terminal Block 2pin 5mm grid
SMD Capacitor 2u2 0805
SMD Capacitor lOOn 0805
Secondary Plug 2.lmm
Headerhocket 0.1"
NPN Transistor
Resistor 4k7 0309
IN4148 diode

Distributor
Famell
Famell
Famell
Famell
Famell
Farnell
Famell
Famell
Famell
Famell

Part No
1087187
9335765
151789
9527702
1362552
1453757
9728910
1467880
9338829
9565124

2 USB connector male A Famell 1308875
4 Pin header 2row 0.1" Reichelt SL 2X36G
1 Pin header lrow 0.1" Reichelt SL 1X36G 2,54
1 Secondary Comector 2.lmm Reichelt HEBL M21
2 Reset and serial connectors Reichelt PS 25/3W BR
1 USB connectors female mountable Reichelt AK 674/2
2 USB extension cord 0.3m Reichelt AK 669-0,3
2 USB cable with Mini-B connector Reichelt AK 673-A

Table 3.2: List of required discrete electronic components

Besides some parts that are expected to be present in most electrical workshops (such as heatshrink and cable Straps),
a Set of further discrete components are required to successfully complete a tubicle. Details about these components,
their amounts, distributors and order numbers are listed in Table 3.2. Optional extensions, including mounting material,
LEDs, and the aluminum socket and top parts, are not included in the table.

3.2 Hardware Modifications

This section provides detailed descriptions about all required modifications that need to be performed on the integrated
devices. Keep in mind that basic mechanical and soldering skills are a prerequisite for some of the steps.

3.2.1 Trust USB Hub

In a first step, the triangular front Part of the USB hub must be removed, as modifications to the PCB are necessary for
operation. When the Cover has been removed, take the PCB out of the enclosing case. First, the diode next to the USB
input connection needs to be removed as it disallows powering the host device. Replacing the diode by a simple wire
allows to supply the Gumstix via its USB port and thus unnecessitates a separate power supply cable. This first step is
indicated in Fig. 3.1.

(a) Original state (b) Diode replaced

Figure 3.1: Required modifications to the USB hub

Subsequently, the USB cable needs to be removed as it is way too long and also is fitted with a male A type connector,
while the Gumstix would require it to expose a mini B type plug. Hence, completely desolder the USB cable, and replace
it by a cable with mini B connector, which has been cut down to a length of about 30 centimetres (12inch). Make Sure to
maintain the color scheme when connecting the shortened replacement cable.

Eventually, close the case again, and put the new USB cable through the opening that held the original USB cable.
Depending on the diameter of the conneted cable, it might be necessary to provide some pul1 relief.

3.2.2 Webcam

Start the disassembly process of the webcam by removing the screws on the back side of the case. Then carefully pry the
case Open using a small screwdriver or similar utility All screws that affix the PCB to the case must be removed in a third
step, and the PCB extracted from the housing. These steps are shown in Fig. 3.2.

(a) Opening the case (b) Removed front part of case (C) Removed back part

Figure 3.2: Removing the case of the webcam

Now remove the plastic socket piece carefully, so only the pin connectors remain on the PCB. After removing these
pins, and wiping the remaining solder lead bits, shorten the USB cable to about 15cm (6inch), and directly solder the
shortened cable to the solder eyes on the PCB. Hereby, make Sure to maintain the proper color order (white, n/c, green,
black, red), shown in Fig. 3.3.

(a) Removing the connector (b) Cleaning the solder eyes (C) Connecting the shortened cable

Figure 3.3: Required modifications to the webcam

3.2.3 trnote skv

The tmote sky does not require rnajor modifications to the integrated
circuits or SMD cornponents. To allow mounting it withing the tubi-
cle rnore easily, the battery cornpartment must be rernoved. This is
done easily by desoldering the two pins next to the USB connector.

In a second step, two-row standard 0.1" pin headers need to be
soldered to the extension header pins. When no further extensibility
is required, the six-pin header (which cornprises the reset signal) can
be solely populated, while the additional ten-pin connector allows Figure 3.4: tmote sky with extension headers
for further extensions at later Stages. The resulting board with both
connectors populated is depicted in Fig. 3.4.

3.2.4 Gumstix Verdex

The Gurnstix Audiostix2 extension board does not natively fonvard reset pins, nor does it feature a serial console. Hence,
both rnust be connected to the board to enable remotely resetting the node as well as rernote deployment of new OS
images and emergency node bootstrapping. To fulfill these requirements, the following steps are necessary.

Figure 3.5: Attaching the reset wire to the Hirose connector

Pin 37 on the 60-pin Hirose connector present on the audiostix2 base board is connected to the reset signal of the
Gumstix platform. As it is not connected to any other cornponent on the base board, the only way of interfacing external
signals to this pin lies in soldenng a thin copper wire to the Hirose connector. This is shown in detail in Fig. 3.5.

To additionally allow the recovery console connect to the Gumstix, a serial Port needs to be connected as well. Here-
fore, connect the RXD, TXD, and GND pins of the FFUART interface to a connector. To simplify construction, we have
ernployed a 0.1" connector simply affixed to the PCB using sticky tape. In addition to the reset signals and the serial port,
a GPIO line also needs to be forwarded to the connector, in order to reset the SunSPOT platform dunng programming.
We have arbitrarily chosen the LDD15 pin on the base board, which can be accessed via /proc/gpio/gpiol3. The resulting
connector attached to the PCB and providing the serial, reset, and GPIO connection, is shown in Fig. 3.6.

Figure 3.6: Required modifications to the Gumstix

3.2.5 SunSPOT

To allow remote reprogramming of the ! its reset signal must be triggered to the Gumstix. As the required signal
is present on the SunSPOT reset button aireaay, a simple connection to an external connector is required. Therefore,
Open the SunSPOT device by removing the screw and taking apart all contained components. The main board, featuring
the CPU, is attached to the plastic frame by molten plastic pins, which can however be easily separated using a sharp
knife.

(a) After drilling the hole (b) With the connector fitted

Figure 3.7: Required case modifications of the SunSPOT

When the main board is exposed, drill a hole next to the reset button and affix a simple 0.1" jack connector using
two-component adhesive. Hereby, be careful to maintain sufficient distance benveen the connector jack and the diode
on the main board. Additionaiiy, provide insulation by enclosing the bare meta1 with some heatshrink. These steps are
shown in detail in Fig. 3.7

(a) Connecting to the reset button (b) The external reset input

Figure 3.8: Required PCB modifications of the SunSPOT

Both solder pads of the reset button pointing inward the main board PCB expose the reset signal, while the comections
towards the rim of the PCB are at ground level. Hence, make Sure to solder a wire from the newly populated connector

to one of the inward pads. A detailed photo of this step is shown in Fig. 3.8. Subsequently, reassemble all components
and fit them together again with the screw.

3.2.6 XPort

To ailow sending reset signals to the devices and remotely accessing the Gumstix over its serial port, an XPort Direct+
has been integrated with the tubicle. The device however does not operate without some external circuitq hence a PCB
has been designed to provide some space for these Parts, and also allow for more convenient mounting.

r----------------
I Power
I VllJ 1

C.' D G']? GI 9

(a) Schematic of the XPort PCB (b) Layout of the XPort PCB

Figure 3.9: The PCB design for the XPort Direct+

Schematic and PCB layout of the board are presented in Fig. 3.9, and also available for download on the tubicle
website. It is recommended to check the output voltage of the linear voltage regulator before soldering the D o r t onto
the PCB. It should not exceed the nominal voltage of 3.3 volts. According photos of the populated board are shown in
Fig. 3.10

(a) Top view (b) Bottom view

Figure 3.10: The populated PCB for the XPort Directi

The logical OR gate that connects both XPort and Gumstix to the reset pin of the SunSPOT has not been assernbled
on a dedicated PCB, but instead corresponding pins of the discrete cornponents were simply connected. Both circuit
diagram and realization of the OR gate are shown in Fig. 3.11. No additional power supply is necessary, as the SunSPOT
internally provides a pull-up resistor to the reset pin.

(a) Schematic (b) Realization

Figure 3.11: The logical OR gate

3.2.7 Rernaining lnterconnections

Before operation is possible, the last step comprises interconnecting all components. Interconnections basically follow
the structure depicted in Fig. 2.3, and will be explained in more detail in this section.

To cater for the power supply, cut the USB hub's original power adapter cable in two pieces, leaving around 20cm
(8inch) of cable to the plug, and the remaining length on the adapter side. Solder the DC connector onto the adapter
side end, and optionally fill the plug with hot glue to increase its mechanical stability On the other side, connect the
plug to the USB hub and attach the wires into the terminals on the Dort PCB. Similarly, connect the LED cabling (if you
chose to integrate LEDs and the corresponding resistors into the socket) to the terminal on the PCB.

Two further connectors are present on the Dor t PCB; let's Start with the one that features the reset pins for all three
integrated node platforms (marked RST) and needs to be connected accordingly. The SunSPOT reset pin needs to be
connected to one resistor of the discrete OR gate described in the last section. The Gumstix reset is connected by directly
attaching the reset pin to the connector that features the connection to pin 37, while the tmote sky reset pin is located
on pin 6 of the 6-pin extension header. Finally, connect the LDDlS pin to the second resistor of the discrete OR gate, and
the common emitter of both transistors to ground level, to also allow the Gumstix to reset the SunSPOT. After connecting
the reset pins, the Gumstix must be connected to the Dor t via the serial connection. Therefore, solder the RXD, TXD,
and GND pins from the)(Port PCB to the 0.1" pin header that connects to the Gumstix board.

Eventually, plug all devices with USB connectivity into the USB hub and enjoy your brand new tubicle.

4 Software and Operating System
The operating system deployed on the Gumstix platform is based on the OpenEmbedded (OE) Linux distribution'. To
assist in the installation process, we present all necessary steps to create a fully functional system in Sections 4.2 to 4.5.
Alternatively, new tubicles can be Set up easily without configuring a dedicated cross-compilation host by following the
six steps presented in Sec. 4.1.

4.1 Stepby-Step Setup of a Tubicle

In preparation for setting up a new tubicle, make Sure to download the current SD card image (tubicle-sdhc-backup.tar.gz)
from the testbed website. Under a Linux operating system, perform the following steps:

1. Prepare the SD card by formatting it using the ext2 file system

2. Extract the downloaded archive to the root directory of the SD card

3. Run sudo chown -R 0:O cmount point of SDHC card> to fix the file ownerships

4. Make sure to note down the WiFi adapter's MAC address of the Gumstix, and enter it in newGum/files/mappings
if not already there

5. Insert the just prepared SD card into the Gumstix and boot the system

6. Login via the serial console or SSH (use root as User name, and gumstix as the corresponding password), and
execute /media/card/newGum/flashGum

By completing these steps, the tubicle has been configured properly and should be ready to operate. Applications can
either be installed manually (as shown in Sec. 4.5) or using the Tubicle Management System.

4.2 Settina ur, a Deveio~ment Svstem (on DebianIUbuntu)

On most current (as of November 2008) distributions of both Debian and Ubuntu Linux, the /bin/sh shell is linked to
/bin/dash. However, dash is known to cause corruption in OE files, resulting in build images that fail to boot. Running
sudo dpkg-reconfigure dash and changing /bin/sh to link to /bin/bash resolves this issue.

To fully perform the build process, a Set of additional packages are required on the development system. Make Sure to
install them in the package manager by executing the commands:

apt-get i n s t a l l texinfo libncurses5-dev Subversion helplman d i f f s t a t texi2html cvs gawk
apt-get i n s t a l l python-psyco python-dev python-pysqlite2 gnome-terminal

Subsequently, it is essential to create necessary Gumstix development directories and download the current version of
the Linux distribution by issuing the following sequence of commands (substituting [username] in the second command
by your user name):

sudo mkdir -p /usr/share/sources
sudo chown -R [username]:users /usr/share/sources/
mkdir -/gumstix/
cd -/gumstix
svn CO https://gunistix.svn.sourceforge.net/svnroot/gumstix/trunk gumstix-oe

Now, a Set of required environmental variables and paths for the bash environment need to be Set. This can be
accomplished by executing the following cornmands:

' http : //www. openembedded. org

echo ' source -/gumstix/gumstix-oe/extras/prof i l e ' >> -/ . bashrc
source -/gumstix/gumstix-oe/extras/profile
echo 'export PATH=$PATH:-/gumstix/gumstix-oe/tmp/cross/bin' >> -/.bashrc
export PATH=$PATH:-/gumstix/gumstix-oe/tmp/cross/bin

After completing the last step, a full Gumstix OpenEmbedded development host has been Set up. A minor set of
changes need to be integrated to adapt the distribution to the tubicles; as the tubicle image requires a slighly rnodified
root file system and kernel, create a new directory called -/gumstix-oe/user.collection. Due to a higher prionty number,
this directory overrides default recipes. Its contents are found in the user.collection archive, which can be downloaded
from the testbed website. After downloading, extract the contents into -/gumstix-oe/user.collection.

The default Bitbake configuration file, bitbake.conf, is located in the org.openembedded.snapshot/conf subdirectory,
and contains configuration information for all bundles contained in the collection. It needs the following modification:
Search for the line starting with GNOME-TERMCMDRUN and replace the terminating $(SHELLRCCMD) by $(SHELL
CMDS).

To speed up cornpilation on SMP (multi-core processor) machines, set PKRKLLEL-MAKE and BB-NUMBER-THREADS
in -/gumstix/gumstix-oe/build/conf/site.co according to your system.

At last, the Bitbake executable shipped with the distribution must be run to build a toolchain, application programs,
the kernel image and root file system for the Gumstix platform. This process takes quite some time and can be triggered
by executing the following commands:

cd -/gumstix/gumstix-oe/
bitbake gumstix-tubicle-image

Additional information regarding both the operating system and the underlying hardware can be found on the Gumstix
webpage2. Pre-built Linux images and software bundles can be found at the feeds section of the Gumstix page3. Instead
of the commonly employed make application, OpenEmbedded uses bitbake as its build tool. It hence requires recipes
(with an .bb extension) instead of makefiles. Recipes are bundled in collections, where each collection provides a priority
nurnber allowing to override settings in other recipe files with smaller priorities. The Gumstix distribution of OE, as used
for the tubicles, includes the following collections:

gumstix-oe/org.openembedded.snapshot, which provides basic features and hence has the lowest priority

gumstix-oe/com.gumstix.collection, with an extended set of applications

gumstix-oe/user.collection, which contains tubicle-specific changes by the user/developer

4.3 Custornizina O~enErnbedded

This section provides some more detailed descriptions of which changes have been made to the user.collection recipe. It
includes both modifications to the kernel as well as the root file system (rootfs) prior to installation, and a guideline to
application installation and removal during normal operation.

Configuring and Building the Kernet Image
To make modifications to the kernel configurations, it is recornmended to use the menuconfig User interface. Although

the kernel Comes nicely configured for tubicles, developers rnight Want to add additional rnodules for hardware that
is connected to the external USB ports, or change sorne other kernel Parameters. To set the kernel configuration up
accordingly, run the following commands:

cd -/gumstix/gumstix-oe/
bitbake gumstix-kerne1 -C menuconfig

Make sure to also save the new configuration (the menuconfig user interface offers a convenient function to save
the kernel configuration) to a location within the user.collection subdirectory. In this document, we assume the con-
figuration file has been placed in -/gumstix/gumstix-oe/user.collection/packages/lin~/~stix-kernel-2.6.2l/~st~-
custom-verdexldefconfig. Exact path names may vary with the used kernel version. To now compile the kernel and the
corresponding modules, simply execute bitbake gumstix-kerne1 c rebuild. The resulting kernel irnage can then be found
in -/g~m~tix/gum~tix-oe/tmp/deploy/glibc/images/gumstixcustom-verdex/.

http://www.gumstix.net
http ://www.gumstix.net/feeds

Building the Root File System (rootfs)
Before generating the root file system, all packages needed by gumstix-tubicleimage need to be created prior to

assembling them to the rootfs image. Once compiled, issuing the following command will place the full rootfs image into
- / g u m s t i x / g u m s t i x - o e / t m p / d e p l o y / g l i b c / i / :

bitbake task-base-gumstix -C rebuild && bitbake gumstix-tubicle-image -C rebuild

4.3.1 lnstalling and Uninstalling Packages on the Gumstix

OpenEmbedded uses the Itsy package management system, which is based on packages in the ipkg format. The use of
Itsy requires some prerequisites to be fulfilled:

After connecting to the tubicle via SSH, make sure to change to the destination directory /media/card before
triggering software installations. Some ipkg packages will not link properly otherwise.

The installation directory must not contain any symbolic links.

To install packages on the gumstix, perform the following steps, substituting <package> for the package narne:

cd /media/card
ipkg -d mmc i n s t a l l <package>
ipkg-link mount /media/card

Similarly, remove packages from the system is done as follows:

ipkg-link remove <package>
ipkg remove <package>

When using these methods, only the specified packages are removed, but not the corresponding dependencies. If these
should be removed as well, use ipkg remove -recursive Kpackagey.

4.3.2 Cross-Comwilina bwlications and Kernel Modules for the Gumstix

Although native compilation on the Gumstix is possible, it does generally exhibit far lower performance than compiling
on a dedicated cross-compilation system. Hence, after ensuring that all required tools are available, simply provide
the target platform during configuration on the host system (./configure -host=arm-angstrom-linux-gnueabi) to create
executables that can be run on the Gumstix.

Cross-Compiling the Webcam Kernel Module
A set of three steps are required to install the kerne1 module for the employed Labtec Webcam Pro. As Support for this

device (and many other webcams) is present within the gspca driver, it is used in the following steps. Compiling other
drivers for different webcam models can however be performed in a similar manner.

To install the gspca module, make Sure to get the latest release from its website4 and extract the contents into any direc-
tory of your choice. In a next step, edit the contained Makefile and change both the KERNELDIR and KERNEL-VERSION
to the current values, as determined in Section 4.3. In a next step, invoke the compiler with the following command:

make ARCH=arm CROSS=ann-angstrom-linux-gnueabi CC=arm-angstrom-linux-gnueabi-gcc \
LD=arm-angstrom-linux-gnueabi-ld

Finally, copy the resulting gspca.ko file to the /lib/modules/kernel~version/kernel/drivers/media/deo subdirectory on
the Gumstix.

http ://mxhaard. free. fr/spca5Bx/Download/

Grabbing Webcam Images and Conversion to PGM
In the current Gumstix feed (R318 as of November 2008), there is no pre-compiled binary for any utility that allows

to grab pictures from the webcam and subsequently save them to disk. Hence, we need to bitbake the w3cam tool and
ImageMagick to perform this task. Therefore, execute bitbake w3cam imagemagick tiff on the host system, and copy all
resulting files from the gumstix-oe/tmp/deploy/ subdirectory to the /media/card subdirectory on the Gumstix.

Now, log into the Gumstix via SSH and install the newly created packages by running the following commands (sub-
stituting the version numbers for the ones just generated). The last call triggers the webcam to capture a still image and
save it to filename.pgm for testing purposes. You may copy it to your local hard disk to view it with any image processor
tool.

cd /media/card
ipkg -d mmc i n s t a l l w3camß.7.2-r0-armv5te.ipk
ipkg -d mmc i n s t a l l libtiff3_3.7.2-r3-armvSte.ipk
ipkg -d mmc i n s t a l l imagemagick-6.3.5-10-rl-armv5te.ipk
ipkg -d mmc i n s t a l l imagemagick-dev-6.3.5-10-rl-armv5te.ipk
ipkg-link mount /media/card
vidcat - f ppm I convert - filename.pgm

4.4 lnterfacinq the SunSPOT and the tmote skv

To connect to the SunSPOT, the SPOTMangager application must be downloaded from Sun's website5 and installed on the
development system. Then simply copy the /sdk folder to /media/card/opt/SunSPOT/sdk on the Gumstix, a directory
referred to as sunspot.home from now On. Then create the /home/root/.sunspot.properties file on the Gumstix and insert
the following lines:

sunspot.home=/media/card/opt/SunSPOT/sdk
sunspot . lib=${sunspot . home}/lib
spot.library.name=transducerlib

Accessing Serial Connections in Java
To connect to the SunSPOT, Java uses JNI calls to access the serial connection. As direct communication is not

supported by the kemel, the rxtx library must be cross-compiled to run on the Gumstix. A Set of minor modifications
are essential here, hence extract its source code, located in the SunSPOT/sdk/extemal-src directory and copy both the
serial-port-name patch and the select-retry patch, found on the testbed website, to the Same location. You might have
to edit rxtx-2.ldr2-select-retry.patch and change define UTS-RELEASE "2.6.21" to the appropriate kemel version of the
Gumstix.

Afterwards, apply the patches and initiate the compilation process by running the following commands on the cross-
compilation host:

patch -i rxtx-2.1-7r2-select-retry.patch -p 1
patch -i rxtx-2.1-7r2-addSunSpot-Seria1PortName.patch -p 1
./configure --host=arm-angstrom-linux-gnueabi
make arm-angstrom-linux-gnueabi/librxtxSerial.la

arm-angstrom-linux-gnueabi-gcc -shared \
arm-angstrom-linux-gnueabi/.libs/fuserImp.o \
arm-angstrom-linux-gnueabi/.libs/SerialImp.o \
-1pthread -W1,-soname -Wl,librxtxSerial-2.1-7.so \
-0 arm-angstrom-linux-gnueabi/.libs/librxtxSerial-2.1-7.so

Finally, copy the newly generated RXTXcomm.jar and arm-angstrom-linux-gnueabi/.libs/librxtxSerial.so files to the
library directory on the Gumstix, located at sunspot.horne/sdk/libs

lnstall Apache Ant on the Gumstix
Apache Ant is required to download new application suites to the attached SunSPOT device. Hence, download the

current distribution from its webpage6 and extract it on the Gumstix into the /media/card/opt/ant directory. Next, add
/media/card/opt/ant/bin to your PATH environment variable by appending the location to your local profile:

ht tp ://wm. sunspotworld.com/SPOi?ianager
ht tp ://ant . apache .org/bindounioad.cgi

echo 'export PATH=\$PATH:/media/card/opt/ant/bin/' > /e tc /prof i le

lnstalling the Java Virtual Machine
As the current (as of November 2008) R318 release of OpenEmbedded does not provide a Java Virtual Machine,

while the older R316 release does, load the corresponding package from the R316 repository by executing the following
comrnands on the Gumstix:

wget http://gumstix.net/feeds/archive/316M/glibc/ipk/armv5te/jamvm1.5.@-rQ~amv5te.ipk
ipkg -d mmc i n s t a l l jmml.5.Q-r@-armv5te. ipk
ipkg-link mount /media/card

Communication with the SunSPOT
To upload new applications to the SunSPOT, which is connected to the USB Port /dev/ttyACMO, copy the imagesuite

file of the desired application into the sunspot.home directory on the Gumstix and execute:

ant flashapp -Dport=/dev/ttyACMQ

The tmote sky Serial Forwarder
TinyOS provides a set of tools that allow fonvarding data received from the tmote s b . Prior to installation on the

Gumstix, download the latest revision of TinyOS from the website7 and extract the archives on the development host in
the /opt directory. Then compile the applications by executing the the following commands:

cd /opt/tinyos-2.1.Q/support/sdk/c
. /bootstrap
./configure --host=arm-angstrom-linux-gnueabi
make

Finally, copy the created executables prettylisten, seriallisten, serialsend, sf, sfsend, sflisten to the Gumstix, preferably
into the /media/card/opt/tmote/tinyosTools directory, and test the connectivity by running:

s f 9QQ3 /dev/ttyUSB@ 1152Q@ &
p r e t t y l i s t e n localhost 9QQ3

4.5 General Information

After introducing the sequence to set a tubicle system up from scratch in the preceding sections, we have developed a
set of scripts to automate frequently performed steps, as well as coilected some general information about the software
installation on the tubicle.

Directory Structure on the SD Memory Card
The SD memory card (or SDHC in case of capacities of four gigabytes and more), plays a significant role for setting up

the tubicles. All software used is preinstalled there, and briefly presented in the following:

newGurn/ contains setup-scripts, tubicle-specific configuration files and the current Gumstix kerne1 image

flashGum herein is a shell script to update the Gumstix firmware without further interaction

initGum is a script which is run after every system boot-up to setup the tubicle and the attached platforms

opt/ contains a variety of required utilities

remoteDeploy is a client script to remotely install applications on the Gumstix, SunSPOT, or tmote sky

The remaining directories /etc, /lib, /usr contain pre-installed packages

' http://www. tinyos .net

Sensor Node Application Deployment
To deploy applications on the Gumstix or any of the attached motes, you only need the remoteDeploy.sh script, avail-

able from the testbed website, and SSH/SCP installed on your machine. To eliminate the need to enter a password, it
is recommended to provide a copy of the SSH private key in -/.ssh/id-rsa-gumstix for automated authorization. The
usage instructions of the script are as follows:

Usage: remoteDeploy.sh FILE TUBICLELISTlLISTFILE
FILE has t o be *.exe fo r tmote sky applications

* . su i t e fo r SunSPOT application su i t e s
*. tar .gz fo r zipped tar archives including a "runner.sh" manifest s c r ip t
newGum.tar.gz fo r kernel and rootfs updates

TUBICLELIST is a space seperated l is t of IP addresses
LISTFILE is a space/tab/newline seperated f i l e of IP addresses
example: ./remoteDeploy.sh foo.exe "18.8.8.11 18.8.6.12 18.8.8.13"

Flashing the Gumstix over Serial Line or Xport
In very rare Situations, e.g. when the kernel image has become corrupted during operation, the Gumstix will not boot

any longer, hence the corresponding image cannot easily be flashed from the console. In this situation, the XPort device
can be used to deploy the image over the comected serial line. On the tubicle website, you can find a kermit script which
flashes the Gumstix over either a direct serial line, or an Xport, if it is installed in a tubicle. To successfully recover your
tubicle, perfonn the following steps:

Download tubicle-sdhc-backup.tar.gz and gumstix-recover-xport-rs232

Extract newGum/images/rootfs.jffs2 and uImage.bin from the archive

Change line 2 and 3 in the script file according to the desired interface, i.e. whether you Want to use the XPort or
a serial line

Run kermit gumstix-recoverxport-rs232

The transmission of the entire kernel image takes up to 20 minutes, so it is recornmended to stay patient to avoid
persistent damage to the bootloader. Recovering from an overwritten bootloader is only possible by the use of JTAG.

5 Summary
In this technical report, we have briefly introduced our motivation to design and construct the tubicle platform. Being
heterogeneous in various dimensions, tubicles allow us to run practical experiments in both sensor network foundations
and higher-level applications on real hardware. Applications can be run on any of the integrated platforms, and by
integrating three hardware platforms, it is even possible to evaluate several applications at the Same time.

We have presented detailed step-by-step instructions for building a tubicle from scratch, including a detailed bill of
materials, and many photographs to Support the User in performing the necessary soldering steps. Our design relies on
integrating the hardware into a tube, however various further implementation options can be thought of.

At the current Stage, twenty tubicles are deployed in the rooms of the Multimedia Communications Lab of Technische
Universität Darmstadt, and used as both the versatile TWiNS.KOM sensor network testbed, as weii as a supplier for
context-aware communications, where plentiful information is required to decide on a user's current context [12].

Acknowledgements
Special gratitude is dedicated to Frank Jöst and the mechanic's workshop of the department of Electrical Engineering
and Information Technology at Technische Universität Darmstadt, especially Walter Creter, who offered help in word and
deed, and provided prototypical designs whenever needed. Photographs of our first tubicle have been kindly provided
by Hans-Jürgen Weber.

This work has been partly supported by the German Research Foundation (DFG) within the Research Training Group
1362 "Cooperative, Adaptive and Responsive Monitoring in Mixed Mode Environments". Partial Support was also given
by the Hessian Ministry of Higher Education, Research, and the Arts (HMWK) within the LOEWE CASED initiative. This
work would not have been possible without the sponsorship of the Adolf-Messer Foundation.

References
[l] A. Reinhardt, M. Kropff, M. Hollick, and R. Steinmetz, "Designing a Sensor Network Testbed for Smart Heteroge-

neous Applications," in Proceedings of the Third IEEE International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp), 2008.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A Survey on Sensor Networks," IEEE Communications
Magazine, vol. 40, pp. 102-114, 2002.

[3] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart Dust: Communicating with a Cubic-Millimeter Com-
puter," Computer, vol. 34, no. 1, pp. 44-51, 2001.

[4] IEEE Std, "802.15.4 Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-rate Wireless Personal Area Networks (LR-WPANs)," Online: http://www.ieee802.org/l5/pub/TG4.html,
2006.

[5] Gumstix Inc., "Gumstix - Way Small Computing," Online: http://www.gumstix.com, 2008.

[6] Sun Microsystems Inc., "Project SunSPOT - Sun Small Programmable Object Technology," Online:
http://www.sunspotworld.com, 2008.

[7] Texas Instruments Inc., "CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver (Rev. B)," Online:
http://www.ti.com/lit/gpn/cc2420, 2007.

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks,"
RFC 4944 (Proposed Standard), Online: http://www.ietf.org/rfc/rfc4944.txt, 2007.

[9] University of California, Berkeley, 'TinyOS - An Open-Source Operating System Designed for Wireless Embedded
Sensor Networks," Online: http://www.tinyos.net, 2008.

[10] Swedish Institute of Computer Science, "Contiki - A Memory-Efficient Operating System for Embedded Smart
Objects," Online: http://www.sics.se/contiki, 2008.

[I11 Lantronix Inc., "Lantronix XPort DirectX+ Embedded Device Server," Online: http://www.lantronix.com, 2007.

[12] J. Schmitt, M. Hollick, and R. Steinmetz, "Der Assistent im Hintergrund: Adaptives Kommunikationsmanagement
durch Lernen vom Nutzer," PIK II/2001- Current Trends in Network and Service Management, 2007.

