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Abstract—In wireless sensor networks, the energy consumption
of participating nodes has crucial impact on the resulting
network lifetime. Data compression is a viable approach towards
preserving energy by reducing packet sizes and thus minimizing
the activity periods of the radio transceiver. In this paper, we
propose a compression framework utilizing a stream-oriented
compression scheme for sensor networks. It is specifically tai-
lored to the capabilities of employed nodes and network traffic
characteristics, which we determine in a characterizationof WSN
traffic patterns. To mitigate the inapplicability of tradit ional com-
pression approaches, we present the Squeeze.KOM compression
layer. By shifting data compression into a dedicated layer,only
minor modifications to applications are required, while efficient
data transfer between nodes is provided. As a proof-of-concept,
we implement a stream-based compression algorithm on sensor
nodes and perform an experimental analysis to determine the
potential gains under realistic traffic conditions. Results indicate
that our presented lossless stream-oriented payload compression
leads to considerable savings.

I. I NTRODUCTION

In most wireless sensor networks (WSNs), energy budgets
of nodes are tightly limited [1], necessitating the design of
applications with increased awareness to their energy con-
sumption. As radio transmissions are an inherent and crucial
characteristic of WSNs [2], but current radio transceivers,
such as the widely used CC2420 device, still expose static
power consumptions of tens of milliamperes [3], permanent
operation of the radio transceiver leads to quick depletionof
the battery in both transmission and reception mode. This
issue can be approached in several ways, reaching from
energy-aware MAC protocols to highly application-specific
data compression algorithms, with the common purpose of
minimizing the period in which the radio transceiver is active.
These local energy optimizations can be supplemented by
network level approaches, such as data aggregation [4], [5]
or coding by ordering [6], both exploiting spatial correlation
of sensor data.

Low power MAC protocols, like the synchronized S-
MAC [7] or the asynchronous B-MAC [8], perform duty-
cycling of radio transceivers to reduce the energy consumption
and thus increase node lifetime. On application level, data
compression specifically tailored to the purpose allows high
compression efficiency, even when operating on sophisticated
data structures, such as low-complexity video [9] or code
updates [10]. Generic approaches towards packet level data
compression are situated in-between these two layers, targeting

to save energy by efficiently downsizing packet payloads or
headers. A scheme for packet header compression is proposed
for 6LoWPAN [11], while S-LZW [12] compacts blocks of
logged data before transmission. We are however not aware
of any lossless payload compression mechanisms that operate
on generic data streams in WSNs.

In this work, we hence present our Squeeze.KOM com-
pression layer, a transparent extension to sensor node plat-
forms that allows to compress data efficiently in a lossless
application-agnostic manner while requiring only minor mod-
ifications to existing application code. Energy efficiency is
ensured by performing compression only if savings can be
achieved thereby. Complex and highly demanding compres-
sion operations are inherently excluded, as they do not only
decrease energy efficiency, but also add latency to the trans-
mission. As Squeeze.KOM encapsulates all functions within
a separate layer, it can be combined with application level
data encoding, energy-aware MAC protocols, data aggregation
mechanisms, or header compression. In the worst case, i.e. in
applications with incompressible payload data, a mere one byte
increase per packet is required, while significant savings can
be realized when sensor data streams with temporal correla-
tions are processed. Especially in delay-sensitive applications,
payload compression becomes meaningful as other means
of downsizing packets, such as data aggregation, cannot be
applied due to the latency constraints.

We analyze application domains of wireless sensor networks
and determine characteristics of the employed data packets
in Section II. Data compression mechanisms are briefly reca-
pitulated in Section III, with special regard to their applica-
bility in WSNs. Subsequently, we present the Squeeze.KOM
compression layer in detail (see Section IV) and evaluate its
performance in Section V. Related work on data compression
in sensor networks is presented in Section VI, and we draw
conclusions in Section VII.

II. CHARACTERISTICS OFSENSORNETWORK DATA

Radio traffic in sensor networks exhibits distinct character-
istics, primarily influenced by the scenarios in which WSNs
are deployed. We analyze applications domains and sensor
network deployments in this section, and determine properties
of sensor network traffic.
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A. Sensor Network Application Domains and Deployments

The design space for sensor networks is multi-dimensional
[13], and existing applications can be located anywhere within
this scope. Estrin et al. have identified application areas
for WSNs in [14] and [15], including environmental and
physiological monitoring, precision agriculture, smart spaces
and inventory tracking. While in monitoring scenarios, sensor
readings are commonly transferred to an external sink node,
where they are centrally collected and analyzed [16], networks
can also operate in ad hoc fashion, exchanging sensor readings
and performing data processing on a local scale. In both
cases, sensor readings taken from the physical environment
surrounding the node are the predominant type of traffic on
the radio.

In the Great Duck Island project, data packets were com-
posed of a 25 byte payload containing temperature, humid-
ity, barometric pressure, and light level readings [17]. In
GlacsWeb, Martinez et al. deployed probes with temperature,
pressure, orientation, external conductivity, and straingauge
sensors into a glacier [18], and transferred their readingsin a
16 byte payload. The social behavior of zebras was tracked in
ZebraNet [19], where GPS coordinates were transferred to a
base station in packets of 64 bytes each. The SATIRE body
area network targets to trace human activity patterns and keep
track of the current location [20]. To cover rapid movements,
it collects sensor readings at a rate of 55 packets per second
with a payload size of 68 bytes each.

B. Data Characteristics in Wireless Sensor Networks

The prevalence of sensor readings in the payload of radio
packets is a distinct characteristic of WSNs. As opposed
to random values, sensor data originating from the physical
environment often exhibits correlation in both spatial and
temporal dimensions. Depending on the physical phenomenon
of interest, readings may change slowly (such as humidity
values), or even remain steady for long periods of time (e.g.lo-
cation information in a network with low node mobility).

Spatial correlation is commonly addressed by means of clus-
tering and data aggregation, effectively reducing the number of
packets required to transfer data from a specific region within
the sensor network to the destination. In contrast, temporal
similarities of successive sensor readings make the resulting
stream of data well suited for compression. The applicability
of data aggregation is limited in some scenarios, like inventory
tracking and user-centric sensing, where different users or
objects within close proximity to each other will most likely
return different sensor data. However, the temporal resem-
blance of sensor data is not affected hereby, so stream-oriented
compression can still be applied to exploit this property.

Small packet sizes are a second inherent characteristic
of sensor networks, and need to be considered specially.
Sensor nodes fitted with IEEE 802.15.4 compliant transceivers
are limited to a maximum packet length of 127 bytes, as
defined by the standard [21]. Furthermore, these packets are
typically addressed to a small set of recipients, predominantly
nodes on the route to the sink, or local neighbors. A last

Fig. 1. Common sequence of compression steps

characteristic aspect of sensor networks is the frequency of
packet transmission; while data in environmental monitoring
applications is often transmitted periodically or at the request
of other nodes, other applications, such as directed diffusion
[22], follow a push-based approach where the availability of
requested sensor information initiates a transmission.

III. A PPLICABILITY OF DATA COMPRESSION

Research on reducing the size of executables and data files
has been conducted for many years to save valuable space
on costly storage devices. After Ziv and Lempel presented
their LZ77 algorithm in 1977 [23], many further approaches
have been made towards compressing data. For a complete
reference, we refer the interested reader to [24], while we
only regard algorithms suited for sensor nodes, i.e. devices
with tight resource constraints, at this stage.

Two kinds of compression algorithms exist: Whilelossy
compression is used to achieve significant savings at the cost of
distorted or lost information,lossless compression algorithms
ensure that compressed data can be entirely restored. We focus
on lossless data compression in this paper, as many sensor
network applications are susceptible to errors introducedby
lossy compression. As lossy compression algorithms addition-
ally require information about both the targeted precisionand
the structure of the data to be compressed to minimize the loss
of accuracy, they can not be applied in the desired application-
agnostic manner and are thus not investigated in further detail.

A. Lossless Data Compression

Most lossless data compression algorithms comprise the
sequence of actions shown in Fig. 1. In a firstpreprocessing
step, data structures are re-arranged to increase their compress-
ibility by reversibly rearranging the bytes. The most common
algorithms include Move-to-Front (MTF) coding [25], and
the Burrows-Wheeler transformation (BWT) [26], although a
variety of modifications and alternatives are known (cf. [27]).

Subsequently, datacompression takes place, reducing the
size of the preprocessed data by eliminating redundancies.
Run-length encoding (RLE) is a technique to reduce multiple
successive appearances of the same symbol within an input
string by replacing its repetitions with an appearance count
field. The more complex LZ77 [23] and LZW [28] algorithms
compare sequences in the input data to elements contained
in a sliding window or a dictionary, respectively, and replace
matching elements by according references.

The main compression operation is then followed by anen-
tropy coding step that reduces the entropy of the output
data. Range Coding (RC) reduces the information entropy by
iteratively dividing a finite length number range proportionally
to the occurrence count of all symbols within the input, and
generates a single floating point number representing the entire



TABLE I
MAXIMUM ACHIEVABLE COMPRESSION RATIO FORPERMASENSE DATA

Compressor Output Size Bytes per Packet Output Ratio

Uncompressed 591900 bytes 30 bytes 1.0
GZIP 263746 bytes 13.37 bytes 0.45
BZIP2 297340 bytes 15.07 bytes 0.50

7-Zip LZMA 149078 bytes 7.55 bytes 0.25
7-Zip PPMD 284232 bytes 14.40 bytes 0.48

input sequence. A Huffman tree contains bit representations of
used symbols, with their length inversely proportional to the
frequency of their occurrence within the input stream. Entropy
decoders either need the used symbol dictionary in advance,or
operate on a static dictionary with strongly decreased coding
gain. This limitation can be overcome by using adaptive coding
approaches, e.g. dynamic Huffman codes [29].

As nodes in wireless sensor networks are generally fitted
with low-power microcontrollers to allow for long lifetimes
when operated on batteries, they are limited in terms of
both CPU speed and available memory. Especially when
applications with high memory demands are run on sensor
nodes, additional data compression algorithms must expose
small code and memory footprints. All algorithms presentedin
this section have been selected with regard to these constraints.

B. Compressibility of Sensor Data

The limited memory and computing resources on sensor
nodes, and the precondition that data compression must be
efficient in terms of energy consumption, prove many generic
compression algorithms inapplicable. We have applied afore-
mentioned compression algorithms on packets taken from the
PermaSense project [30], the data being present in a packet of
30 bytes length with the structure shown in Fig. 2. Concisely,
a 2 byte sequence number is followed by ten sensor readings
of 2 bytes each, and the packet is terminated by an 8 byte
timestamp.

Byte 0 1 2 21 22 29
+-----+-----+-----+----+ - +----+-----+---- - ----+
| Sequence# | Sensor . . . Readings | Timestamp |
+-----+-----+-----+----+ - +----+-----+---- - ----+

Fig. 2. Sample packet structure from the GSN PermaSense project

We have downloaded the data measured by PermaSense
node 2036 from 15 November through 15 December 2008,
yielding 19,730 packets, and analyzed the data set regarding
its overall compressibility. The results are shown in TableI. It
becomes clear that depending on the employed compression
type, savings of up to 75% can be achieved when compressing
the data in its entirety and making use of adaptive statistical
compression techniques. Subsequently, the packets have been
compressed one by one by a number of different combinations
of the presented algorithms, and average resulting output sizes
are shown in Table II. It is obvious from the results that
only some sequences employing range coding provide results
that are slightly smaller than the corresponding input data.
However, in the worst case, the output was twice as large as
the input, clearly disqualifying these compression mechanisms
on a per-packet basis for sensor network traffic.

TABLE II
OUTPUT SIZE AND COMPRESSION RATIO OFPERMASENSE DATA

Operation Entropy Coding
Sequence None Huffman Range Coding

30 bytes (1.0) 47.4 bytes (1.58) 28.7 bytes (0.96)
MTF 30 bytes (1.0) 51.4 bytes (1.71) 28.9 bytes (0.96)
BWT 34 bytes (1.13) 50.6 bytes (1.69) 31.9 bytes (1.06)
RLE 31 bytes (1.03) 47.9 bytes (1.6) 29.5 bytes (0.98)
LZ77 49.4 bytes (1.65) 60.6 bytes (2.02) 42.2 bytes (1.4)
LZW 32.6 bytes (1.09) 31.8 bytes (1.06) 31.8 bytes (1.06)

MTF RLE 30 bytes (1.0) 52.2 bytes (1.74) 29 bytes (0.97)
BWT RLE 37.5 bytes (1.25) 52.1 bytes (1.74) 34.5 bytes (1.15)
MTF LZ77 49.4 bytes (1.65) 60.6 bytes (2.02) 42.2 bytes (1.4)
BWT LZ77 49.4 bytes (1.65) 60.6 bytes (2.02) 42.2 bytes (1.4)
MTF LZW 32.6 bytes (1.09) 58.6 bytes (1.95) 31.8 bytes (1.06)
BWT LZW 32.6 bytes (1.09) 58.6 bytes (1.95) 31.8 bytes (1.06)

IV. T HE SQUEEZE.KOM COMPRESSIONLAYER

Packet compression can assist in maximizing the lifetime
of WSNs by reducing the energy consumed by radio trans-
missions. The analysis of sensor data compressibility has
however made clear that compression algorithms operating on
an individual packet cannot achieve high compression gains
due to the limited correlation between its payload contents.

We address the problem of limited compressibility by a
different approach, exploiting the inherent characteristics of
surveilled physical environments. As many environmental pa-
rameters exhibit high temporal correlation with slow changes
over time, two packets sent successively can be expected to
bear strong resemblance to one another. Based on transferring
these differences between packets in a compressed way, the
Squeeze.KOM sensor network compression layer can achieve
compression gains superior to plain packet compression while
consuming a modest amount of sensor node resources only.
This is different from compression layers present in other
radio stacks, such as the KSN RadioStack [31], which uses
the DEFLATE [32] algorithm with a default window size of
32 kilobytes on all outgoing data.

A. System Overview

Squeeze.KOM is a transparent compression layer that can
be seamlessly integrated with existing node platforms and
applications, as it replicates the interfaces provided by the
network layer. This necessitates only small modifications to
the application code, allowing to adapt existing applications
to the new layer easily. Operating on unidirectional streams of
data additionally allows to exploit computational heterogeneity
of platforms by selecting compression parameters with regard
to a node’s capabilities. A detailed overview of the elements
in the compression layer is depicted in Fig. 3.

Packets originating from the application are separated in
header and payload fields and forwarded to the core compo-
nent of the layer, the compression framework. A comparison
of the payload to a set of previously sent packets stored in a
local transmission history allows the framework to determine
whether transmitting a differential packet is feasible. Ifso, the
payload is replaced by a reference to the most similar history



Fig. 3. Internal structure of the compression layer

element, and the difference between both sequences. Subse-
quently, the payload is analyzed regarding its compressibility
and compressed if savings can be achieved thereby.

The receiver operates in reverse to the data encoding
at the sender. Received packets are forwarded to the local
compression framework, where compressed contents are first
decompressed. When packet differences have been transferred
only, the original sequence is restored by combining the
received difference data with the local history, while full
packets are directly forwarded to the application after inserting
their payload into the reception history.

In case energy-efficient multi-hop data transfer to a sink
node is required, i.e. no in-network processing needs to take
place, data can be directly forwarded without the need for
local decompression at intermediate nodes. The source address
must however be retained within the packets to indicate
to the receiver which index packet set to use. Extending
the compression layer by routing functionalities is possible,
though beyond the scope of this paper. Hence, currently all
incoming packets are decompressed before taking any further
actions.

B. Compression by Differential Transmission

Based on the determined characteristics that many subse-
quently sent packets in sensor networks bear high resemblance
to each other, we propose an encoding scheme based on
encoding payload differences to the last fully sent packet.To
differentiate packet types in this paper, we term packets that
were fully sent asindex packets, denoting their payload asIn,
wheren is the number of the entry within a locally stored
array of index packets. A separate transmission history of
index packets is maintained for each receiver node. It stores the
indexn, the corresponding dataIn and a hash valueHash(In)
of the data which is inserted in differential packets to ensure
sender and receiver are in sync. Opposed to index packets
which contain a full payload, we assign differential packets
the term∆n, wheren is the index of the referred index packet.

We have implemented three methods to generate the differ-
ential of In and the payloadP to be sent:

1) By means of bytewise arithmetic subtraction (P − In),
payloads with high similarity result in a sequence of
values close to zero.

2) Performing an XOR operation on the payloads of similar
packets (P⊕In) results in an output stream with a sparse
number of set bits.

3) Preceding the XOR operation in the previous method
by a conversion of the payloads to Gray Code [33]
results in an output stream (GC(P ) ⊕ GC(In)) with
an even higher number of ’0’ bits, however at the cost
of computationally expensive decoding.

To support compression of the bitstream generated by the
XOR operation, we have implemented a distance coding
scheme operating on bit level. As the maximum number of
bits in an IEEE 802.15.4 packet is limited by the standard,
we have used a variation of Golomb-Rice coding [34] that
encodes the distance between ’1’ bits, i.e. the length of runs
of ’0’ bits. This distance coding step simultaneously reduces
the entropy in the output. The resulting average number of
’0’ bit runs in the output are compared in Table III, where
differences of the current payloadPi to both the first packet
P0 and the previousPi−1 are compared. The threshold of RLE
was set to only compress sequences of two or more repetitions
of the same symbol, and the Golomb-Rice scheme was set to
operate on a basis of 8. The observed small benefit of applying
the Gray Code (GC) to the packets is however faced by an
increased decoding effort and thus neglected in the further
analysis.

The structure of our binary distance code is shown in
Table IV. When no ’0’ bit is encountered between ’1’ bits
in the input, the resulting code output is only one bit long,
thus not increasing the size of the output. Runs of ’0’ bits
with lengths of 1. . . 8 are encoded in a 5 bit symbol, while
run lengths of 9. . . 70 are represented in an 8 bit symbol.
Two symbols are reserved; an output with all bits set to ’1’
indicates the end of the input data (which is necessary as byte-
alignment is not ensured), while the same code with the LSB
unset signals that the number of ’0’ bits exceeds 71 and is
therefore calculated as the sum of 71 and the value of the
succeeding code.

TABLE IV
REALIZATION OF THE BINARY DISTANCE CODE

Bit Representation Interpretation

0 No zero bit
1 0 n2 n1 n0 n (1-8) zeroes
1 1 n5 n4 n3 n2 n1 n0 n (9-70) zeroes
1 1 1 1 1 1 1 0 71+n(next code) zeroes
1 1 1 1 1 1 1 1 End of data

If the application layer invokes a packet send call, the
corresponding payloadP is checked for similarities with the
elements in the history table. If no entries with sufficiently
high similarity are present, a new entry is created in the
history table, and assigned the next available index. In case
all indices are taken already, the existing index element which
has not been used for the longest time is replaced with the new



TABLE III
PERFORMANCE STATISTICS OF THE PRESENTED DIFFERENTIATION ALGORITHMS, APPLIED TO PERMASENSE DATA

Input Mean length Mean length Longest Longest Output Size after Compression/Coding
of ’0’ runs of ’1’ runs ’0’ run ’1’ run RLE Golomb-Rice Binary Distance

Pi 2.15 bits 2.16 bits 35 bits 20 bits 31.05 bytes 75.72 bytes 44.98 bytes

Pi − P0 2.35 bits 2.09 bits 95 bits 26 bits 29.49 bytes 72.89 bytes 43.05 bytes
Pi ⊕ P0 2.53 bits 1.89 bits 95 bits 15 bits 29.45 bytes 64.66 bytes 42.18 bytes

GC(Pi) ⊕ GC(P0) 2.58 bits 1.75 bits 98 bits 7 bits 29.82 bytes 45.71 bytes 42.10 bytes

Pi − Pi−1 16.45 bits 3.43 bits 237 bits 25 bits 21.40 bytes 34.40 bytes 15.17 bytes
Pi ⊕ Pi−1 18.40 bits 1.99 bits 237 bits 17 bits 21.39 bytes 20.71 bytes 13.39 bytes

GC(Pi) ⊕ GC(Pi−1) 18.23 bits 1.45 bits 237 bits 7 bits 21.38 bytes 16.97 bytes 12.98 bytes

index packet and the corresponding hash value is calculated.
On the other hand, if the similarity requirement is fulfilled,
the differential betweenIn andP is calculated. The resulting
∆n is then transferred in conjunction withHash(In) to
make sure an identicalIn is referred to at both sender and
receiver. If both packet payloads are identical, an empty∆n

is transmitted. Squeeze.KOM supports compression of both
index and differential packets, denoted asIn,enc and∆n,enc,
respectively. However, due to the small compression gain for
index packets observed in Table II, we focus on compression
of delta packets in this paper. In case compression does not
reduce the packet size or is not viable by means of energy
efficiency, the data is sent uncompressed.

Bit 0 1 2 3 4 5 6 7
+-----+-----+-----+-----+-----+-----+-----+-----+
| reserved | enc | I/∆ | History element index |
+-----+-----+-----+-----+-----+-----+-----+-----+

Fig. 4. Example bit structure of the status field

A status field is added to the data to transfer required infor-
mation to the receiver, such as the indexn of the element in the
history table, flags whether the payload is compressed and ifit
represents an index or a differential packet. Currently reserved
bits could be employed to provide QoS parameters to the
receiver in future implementations. A sample implementation
of the status field, as used in our current implementation,
is shown in Fig. 4. Limited to a single byte, the overhead
is reduced in cases of incompressible payload data, while
allowing for a history size of 16 elements.

The memory consumption of the compression layer is
dominated by the number of index packets stored for outgoing
and incoming connections, and can thus be reduced both by
limiting the number of entries for outgoing data, as well
as by notifying neighbor nodes to reduce the number of
entries allocated for their transmissions. Each sender node can
decide whether its outgoing links are fitted with unique index
lists, or if a common list is employed, however necessitating
mechanisms to ensure all neighbors are in sync with the latest
set of index packets.

C. Decoding the Data

To restore the packet payload contents from∆n,enc (or ∆n,
respectively), a local copy of the referred index packetIn
is required. Receivers thus have to keep track of incoming
index data, maintaining a history list with information about

the set of formerly received indicesn and the corresponding
index packetsIn, identical to the table present at the sender
side. The hash value does not need to be transferred with the
index packet; instead it is calculated locally on receptionof an
index packet. Incoming packets∆n,enc contain a copy of the
hash value ofIn and can thus determine whether the identical
history element is referred to. In our current implementation,
the length of the hash value has been defined as 8 bits. If
a mismatch is detected, the packet can either be discarded,
or the sender be prompted to retransmit the packet as an
index packet, depending on the importance of the data. This
check is essential to encounter lost index packets and ensure
that nodes rejoining the network do not operate on outdated
index data. By default, packets are transferred in a best-
effort manner, where the compression layer is not required to
provide any latency or delivery guarantees. If reliable transport
is required, additional QoS mechanisms can be integrated
by using the reserved fields, allowing to specify latency or
reliability requirements.

V. PERFORMANCEEVALUATION

The presented compression layer has been implemented
and analyzed in detail in a simulation environment. The
identified tunable parameters and their impact on the overall
performance of Squeeze.KOM are presented and discussed in
the following subsections. Finally, the application has been
ported and evaluated on SunSPOT nodes.

For the following experiments, we have set up a simple
network topology with one sender and a single receiver
node. Unless specified otherwise, we have assumed an ideal
communication channel (no packet loss). For the evaluation,
we have again used the PermaSense data set with the structure
given in Table 2. The entire 19,730 packets were used for
all conducted experiments, and the XOR operation onP

and In, followed by binary distance coding were used to
compress delta packet payloads, while index packets have
been transferred uncompressed. To maintain the clarity of our
analysis, we have empirically determined and retained some
parameters throughout the experiments. This provides a rep-
resentative assessment of the performance of Squeeze.KOM
when applied on real sensor data for the given scenario. A
generalization of the results can however not be performed
directly, as optimal results depend on both the applicationand
environmental parameters of the deployed WSN, which might
differ significantly.



(a) Ratio of mismatches with history, one stream (b) Compression gain, one stream

(c) Ratio of mismatches with history, four streams (d) Compression gain, four streams

Fig. 5. Impact of the similarity threshold on history mismatches and compression gain for one and four streams

A. Impact of the Similarity Requirement Threshold

To generate a compressible differential packet, the payload
to be compressed must exhibit sufficient similarity to an ele-
ment stored in the local history. As the XOR operation is part
of the differentiation step and needs to be performed anyway,
Squeeze.KOM uses the Hamming distance as its metric for
similarity to the history elements, i.e. it counts the number of
’1’ bits in the result of the XOR operation. It is necessary
to define a maximum allowed number of differing bits as the
threshold for similarity. Small threshold values hereby lead to
highly compressible differential packets, as the resulting data
features long runs of ’0’ bits and is thus well suited for the
binary distance code. However, choosing too small threshold
values also results in a greater number of mismatches with
the local history, and thus to an increased number of index
packet transmissions. In contrast, high threshold values result
in less compressible delta packets. The impact of the similarity
threshold has been analyzed for the single stream contained
in the data set, and the results are shown in Fig. 5(a).

Clearly, a high value for the similarity threshold results in
the smallest number of mismatches, and hence the smallest
number of required (uncompressed) index packet transmis-
sions. The compression gain, being an indicator for the achiev-
able size reductions by applying Squeeze.KOM, is analyzed
in Fig. 5(b) and confirms that high threshold values lead to
degraded compression ratios.

It is hence mandatory to find a compromise between thresh-
old and compression gain. In the following simulations, we

therefore assume a maximum allowed deviation of 40 bits
(equalling the sixth part of the overall payload length of 30
bytes) for the given data set, where an average number of
history mismatches of 9% has been determined.

B. Impact of the History Size

When a single stream of data with small changes over
time is transferred with the determined settings, the presented
algorithm leads to an average compression gain of around
35%. However, when multiple streams of data need to be
transferred between two nodes, a correlation between these
streams is not necessarily given.

The compression layer has hence been tested with four
different PermaSense streams being transferred in parallel. The
ratio of history mismatches is shown in Fig. 5(c), clearly
confirming that a history size smaller than the number of
distinct streams is insufficient to achieve gains by compression.
Instead, the compression layer will exclusively transfer index
frames in this case, thus increasing the packet size by one
byte due to the status field. The compression gain is depicted
in Fig. 5(d), proving that gains similar to the single stream
case are possible when the history is dimensioned well.

It can also be noticed that, in both cases, larger history sizes
lead to slightly increased maximum compression gains, but as
well shift the corresponding threshold value to the left. This
originates from the fact that less index replacements take place
when large history sizes are used, and thus old index entries
remain longer in the history list.



(a) Impact of the refresh interval on packet loss (b) Impact of the refresh interval on the compression gain

Fig. 6. Impact of the refresh interval on packet loss and compression gain

C. Impact of Packet Loss

The presented single-hop scenario was modified to use a
lossy channel, with packet success probabilities ofPS =
{0.95, 0.9, 0.8, 0.6}. The application was configured to use
a single PermaSense stream, a history size of one element
and a similarity threshold of 40 bits. To recover from the
loss of index packets, the sender node was extended by an
index refresh interval. When the number of sent delta packets
referring to the same index packet exceeds the refresh interval,
the data to be sent is transmitted as an index packet. This may
be the case even in cases when the similarity requirement is
fulfilled, but is important to keep the index packet list at the
receiver up to date.

It is clearly visible in Fig. 6 that in cases where index
packets are sent more frequently, a higher success probability
is given, however at the cost of not applying differential
compression on these index packets. The compression gain is
thus reduced in favor of an increased probability of receiving
correct and complete data. For a large refresh interval, the
overall packet loss rate roughly increases by 50% compared
to uncompressed transmission. However, the refresh interval
could easily adapt to the channel conditions and dynamically
adjust itself during runtime.

D. Summary of the Simulation Results

The compression gain analysis of Squeeze.KOM has shown
that under both idealized and realistic channel conditions, a
data set taken from a real sensor network deployment can be
reduced to less than two thirds of its initial size by using
our compression layer. The tunable parameters have been
presented, and the corresponding optimum settings for the
given scenario been analyzed. A history size equal to the
number of streams transported at a time has shown to already
result in good compression gains. A similarity threshold below
20% of the payload bit length exposes highest compressibility
values for the resulting differential packets due to the selected
binary distance code. Although missing index packets add
to the impact of packet loss when using the compression
layer, good compression ratios can already be achieved with
refresh intervals of only five packets, effectively alleviating the
problem of lost index packets.

E. Real-World Evaluation

The compression layer has been ported to the SunSPOT
platform1, and data from a SunSPOT’s integrated sensors was
transmitted to a set of four sink nodes, following the payload
structure indicated in Fig. 7. Identical to PermaSense packets,
the payload is composed of a 2 byte sequence number followed
by ten sensor readings (acceleration and tilt in three dimen-
sions, temperature, light intensity, the state of the integrated
momentary switches, and the current supply voltage level) of 2
bytes each, and an 8 byte timestamp. Although using the same
structure as the PermaSense data, the chosen set of sensors
differs, and the accelerometers introduce even faster changes
of sensor readings, decreasing the compressibility of the data.

Byte 0 1 2 21 22 29
+-----+-----+-----+----+ - +----+-----+---- - ----+
| Sequence# | Sensor . . . Readings | Timestamp |
+-----+-----+-----+----+ - +----+-----+---- - ----+

Fig. 7. Packet structure used for the real-world validation

The sink nodes were located in an office environment and
distributed around the sender, at a distance of 5 meters. The
sender was worn on the wrist of a typing person and configured
to transmit 10,000 successive packets with sensor readings,
sending each of them twice; once without compression to
get an estimate on the real channel loss rate, and once using
the Squeeze.KOM compression layer. The compression layer
was again configured to use a history size of one element, a
threshold value of 40 bits and a refresh interval of 5 packets, as
determined in the preceding sections for the PermaSense data.
Although this parameter set does not result from a previous
analysis of the data characteristics, the results for packet loss
and the savings achieved by packet compression compared in
Table V confirm that the Squeeze.KOM compression layer is
operating as intended on real hardware and exposes behavior
similar to the simulation results. Besides the expected slight
increase in unrecoverable packets, resulting from outdated or
missing index elements, the use of the compression layer leads
to compression gains of around 12% even in our scenario
where highly dynamic accelerometer data comprised a major
part of the payload.

1SunSPOTs have been selected for the sake of eased implementation.
Squeeze.KOM is however not limited to this mote platform.



TABLE V
REAL-WORLD EVALUATION OF THE COMPRESSION LAYER

Node 1 Node 2 Node 3 Node 4

Loss (uncompressed) 2.3% 6.4% 3.0% 4.3%
Loss (compressed) 2.7% 8.1% 4.7% 6.1%
Compression gain 12.1% 11.1% 12.0% 12.0%

VI. RELATED WORK

The area of data compression in wireless sensor networks
has been addressed in different ways in recent research.
Barr and Asanović have determined in [35] that the energy
consumed by the radio device to transmit one byte of data
on the radio can also be used to perform up to a thousand
CPU operations. This allowed them to conclude that data
compression was feasible by means of energy consumption
if less energy was consumed by the compression operation
than required to send the uncompressed packets. Their findings
were however based on Compaq Personal Server handheld
devices, offering many times the resources available on com-
mon WSN nodes. Sadler and Martonosi built on these results
and analyzed energy consumptions of common sensor network
platforms in [12], determining that between four thousand and
two million instructions (depending on the employed radio
transceiver device) can be executed by a MSP430 microcon-
troller at the same energy required to transfer one byte on the
radio, confirming the general idea that data compression is
viable on sensor nodes. They developed the S-LZW algorithm,
optimized to run on sensor nodes and compress blocks of data
stored on the node’s external memory.

In [36], Kimura and Latifi also noticed that most exist-
ing compression applications designed for computers with
megabytes of RAM and CPU speeds of hundreds of MHz,
are not suited to be run on resource-constrained sensor node
platforms. Instead, they summarize four approaches to com-
press different types of data in WSNs, applicable for resource-
constrained sensor nodes. However, the compared approaches
either specifically relate to spatially correlated data, ordescribe
highly application-specific means of data compression. Pattem
et al. also describe a scheme for routing with compression of
spatially correlated data in [37].

Our approach bears resemblance to the RObust Header
Compression framework (ROHC) [38], which recognizes sim-
ilarities in header data of packets and transmits the differences
only when it is sure that the receiver can decode them accord-
ingly. However, ROHC requires steady network topologies,
where sender and receiver can assume a long-term stability of
their link, which is commonly not given in sensor networks.
When packet structures are statically defined prior to node
deployment, and some fields are known to remain constant
or only change incrementally, the EasiPC packet compression
scheme by Ju and Cui can be used to transmit changed fields
only [39]. This method however requires developers to specify
the type of each payload field in advance and fails when con-
tents deviate from the definition. Another solution to transmit
compressed differential data is the VCDIFF protocol [40]. It
uses the original data to create a dictionary for compression of

further packets and only transmits these encoded differential
data to the receiver. As with ROHC, it must be ensured that
the original data is present at the receiver as well, so both
parties operate on the same dictionary.

Tsiftes et al. have focussed on compressing firmware up-
dates that are transferred over the radio, applying the SBZIP
algorithm [10], a derivative of the BZIP2 mechanism, modified
for operation in sensor networks. However, it does not target to
compress any application-generated data, but instead performs
stateless compression of application code, thus being a good
supplement to application-level encoding mechanisms. Finally,
a couple of lossy compression algorithms exist, such as the
transmission of packet predictions, as presented by Blass et
al. in [41]. The approach of using Kalman filters to predict
readings is however computationally expensive as well as
lossy, and thus not directly related to our approach.

VII. C ONCLUSIONS

We have presented Squeeze.KOM, a transparent compres-
sion layer that seamlessly integrates with any sensor node
platform. The layer operates transparently, rendering major
modifications to application software unnecessary. We have
presented a stream-oriented compression scheme that deliber-
ately exploits the temporal correlation of sensor data. Itsper-
formance on sensor data taken from real nodes has indicated
that significant savings can be achieved, even when applying
only basic differentiation and compression mechanisms.

Being entirely independent of application level compression
and fully interoperable with energy-aware MAC layers, our
solution can be integrated with any application, and on any
platform with resources to spare. As the packet headers
are left untouched, our approach can even be seamlessly
combined with header compression to further compact the
packet. Its lossless character allows to transfer both sensor
readings as well as network management and topology control
messages. Decreased packet transmission durations, resulting
from packet size reductions, lead to energy savings and thus
extended node lifetimes in WSNs.
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