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Abstract—In wireless sensor networks, the energy consumption to save energy by efficiently downsizing packet payloads or
of participating nodes has crucial impact on the resulting headers. A scheme for packet header compression is proposed
network lifetime. Data compression is a viable approach toards for 6LOWPAN [11], while S-LZW [12] compacts blocks of

preserving energy by reducing packet sizes and thus minimiag .
the activity periods of the radio transceiver. In this paper we logged data before transmission. We are however not aware

propose a compression framework utilizing a stream-oriened ~ Of any |0§3|935 payload cpmpression mechanisms that eperat
compression scheme for sensor networks. It is specificallygit on generic data streams in WSNSs.
lored to the capabilities of employed nodes and network tréffc In this work, we hence present our Squeeze.KOM com-

characteristics, which we determine in a characterizatiorof WSN ression laver. a transparent extension to sensor node blat
traffic patterns. To mitigate the inapplicability of tradit ional com- P yer, P P

pression approaches, we present the Squeeze.KOM compressi forms that allows to compress data efficiently in a lossless
layer. By shifting data compression into a dedicated layeronly —application-agnostic manner while requiring only minordno

minor modifications to applications are required, while effcient ifications to existing application code. Energy efficiensy i
data transfer between nodes is provided. As a proof-of-compt, ansured by performing compression only if savings can be

we implement a stream-based compression algorithm on senso achieved thereby. Comblex and hiahly demanding compres-
nodes and perform an experimental analysis to determine the Y. P gnly 9 P

potential gains under realistic traffic conditions. Resuls indicate ~ Sion operations are inherently excluded, as they do not only
that our presented lossless stream-oriented payload comession decrease energy efficiency, but also add latency to the-trans
leads to considerable savings. mission. As Squeeze.KOM encapsulates all functions within
a separate layer, it can be combined with application level
data encoding, energy-aware MAC protocols, data agg@yati

In most wireless sensor networké/gNs), energy budgets mechanisms, or header compression. In the worst casen i.e. i
of nodes are tightly limited [1], necessitating the desidgn @pplications with incompressible payload data, a mere gte b
applications with increased awareness to their energy comcrease per packet is required, while significant savirags ¢
sumption. As radio transmissions are an inherent and drudi@ realized when sensor data streams with temporal correla-
characteristic of WSNs [2], but current radio transceivergons are processed. Especially in delay-sensitive agidics,
such as the widely used CC2420 device, still expose stagyload compression becomes meaningful as other means

power consumptions of tens of milliamperes [3], permanest downsizing packets, such as data aggregation, cannot be
operation of the radio transceiver leads to quick depletibn gpplied due to the latency constraints.

the battery in both transmission and reception mode. This\ye analyze application domains of wireless sensor networks
issue can be approached in several ways, reaching gy determine characteristics of the employed data packets
energy-aware MAC protocols to highly application-specifify section II. Data compression mechanisms are briefly reca-
data compression algorithms, with the common purpose gfylated in Section Il, with special regard to their apgh
minimizing the period in which the radio transceiver is @eeti bility in WSNs. Subsequently, we present the Squeeze.KOM
These local energy optimizations can be supplemented Qympression layer in detail (see Section IV) and evaluate it
network level approaches, such as data aggregation [4], Rrformance in Section V. Related work on data compression
or coding by ordering [6], both exploiting spatial corré@@t j, sensor networks is presented in Section VI, and we draw

of sensor data. _ _ conclusions in Section VII.
Low power MAC protocols, like the synchronized S-

MAC [7] or the asynchronous B-MAC [8], perform duty-

cycling of radio transceivers to reduce the energy consiompt ~ |l. CHARACTERISTICS OFSENSORNETWORK DATA

and thus increase node lifetime. On application level, data

compression specifically tailored to the purpose allowshhig Radio traffic in sensor networks exhibits distinct characte
compression efficiency, even when operating on sophisticaistics, primarily influenced by the scenarios in which WSNs
data structures, such as low-complexity video [9] or codwme deployed. We analyze applications domains and sensor
updates [10]. Generic approaches towards packet level dagdwork deployments in this section, and determine pragzert
compression are situated in-between these two layergtiagy of sensor network traffic.
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A. Sensor Network Application Domains and Deployments

The design space for sensor networks is multi-dimensiorte
[13], and existing applications can be located anywherkimwit
this scope. Estrin et al. have identified application areas
for WSNs in [14] and [15], including environmental and - .
physiological monitoring, precision agriculture, smapases characteristic ?‘SPeCt of sensor r_1etwor_ks s the frequt_ehc_y 0
and inventory tracking. While in monitoring scenarios, s@m pack_et t_ransm|35|on; while _data n e_znv_lronmental mormri
readings are commonly transferred to an external sink no plications is often transmitted periodically or at theurest

where they are centrally collected and analyzed [16], nekgvo of ‘other nodes, other applications, such as directed élfus

can also operate in ad hoc fashion, exchanging sensor geadﬁzl’ follow a push-based approach where the availabilfty o

and performing data processing on a local scale. In bort%quested sensor information initiates a transmission.

Preprocessing . Compression " Entropy Coding

Fig. 1. Common sequence of compression steps

cases, sensor readings taken from thg physical enviro_nment 1. APPLICABILITY OF DATA COMPRESSION
surrounding the node are the predominant type of traffic on _ . _
the radio. Research on reducing the size of executables and data files

In the Great Duck Island project, data packets were cofi@S Peen conducted for many years to save valuable space
posed of a 25 byte payload containing temperature, humfy? .costly storage deyu:es. After Ziv and Lempel presented
ity, barometric pressure, and light level readings [17]. I[i€i LZ77 algorithm in 1977 [23], many further approaches
GlacsWeb, Martinez et al. deployed probes with temperatufi@ve been made towards compressing data. For a complete
pressure, orientation, external conductivity, and stgange reference, we ref_er the mterested reader to [24]_, while we
sensors into a glacier [18], and transferred their readings ©NlY regard algorithms suited for sensor nodes, i.e. device
16 byte payload. The social behavior of zebras was trackedffjh tight resource constraints, at this stage. _

ZebraNet [19], where GPS coordinates were transferred to alWO kinds of compression algorithms exist: Whilessy

base station in packets of 64 bytes each. The SATIRE bof§mPression is used to achieve significant savings at thetos
area network targets to trace human activity patterns aeg k&listorted or lost informatioripssless compression algorithms
track of the current location [20]. To cover rapid movement§Nsure that compressed data can be entirely restored. i foc

it collects sensor readings at a rate of 55 packets per sec@fglossless data compression in this paper, as many sensor

with a payload size of 68 bytes each. network applications are susceptible to errors introduogd
S lossy compression. As lossy compression algorithms afditi
B. Data Characteristics in Wreless Sensor Networks ally require information about both the targeted precisiod

The prevalence of sensor readings in the payload of radi structure of the data to be compressed to minimize tise los
packets is a distinct characteristic of WSNs. As oppos&f accuracy, they can not be applied in the desired appbicati
to random values, sensor data originating from the physi@gnostic manner and are thus not investigated in furthaildet
environment often exhibits correlation in both spatial and
temporal dimensions. Depending on the physical phenomeﬁ%n
of interest, readings may change slowly (such as humidityMost lossless data compression algorithms comprise the
values), or even remain steady for long periods of time (e-g. sequence of actions shown in Fig. 1. In a fipséprocessing
cation information in a network with low node mobility).  step, data structures are re-arranged to increase thepressi

Spatial correlation is commonly addressed by means of clulslity by reversibly rearranging the bytes. The most conmmo
tering and data aggregation, effectively reducing the remob algorithms include Move-to-FrontMTF) coding [25], and
packets required to transfer data from a specific regionimiththe Burrows-Wheeler transformatioBWT) [26], although a
the sensor network to the destination. In contrast, tenipoxariety of modifications and alternatives are known (cf.]]27
similarities of successive sensor readings make the negult Subsequently, dataompression takes place, reducing the
stream of data well suited for compression. The applidgbilisize of the preprocessed data by eliminating redundancies.
of data aggregation is limited in some scenarios, like itmgn Run-length encodingRLE) is a technique to reduce multiple
tracking and user-centric sensing, where different users successive appearances of the same symbol within an input
objects within close proximity to each other will most likel string by replacing its repetitions with an appearance toun
return different sensor data. However, the temporal resefield. The more complex LZ77 [23] and LZW [28] algorithms
blance of sensor data is not affected hereby, so streamtede compare sequences in the input data to elements contained
compression can still be applied to exploit this property. in a sliding window or a dictionary, respectively, and rej@a

Small packet sizes are a second inherent characteristiatching elements by according references.
of sensor networks, and need to be considered speciallyThe main compression operation is then followed byean
Sensor nodes fitted with IEEE 802.15.4 compliant transceivaropy coding step that reduces the entropy of the output
are limited to a maximum packet length of 127 bytes, atata. Range CodindRC) reduces the information entropy by
defined by the standard [21]. Furthermore, these packets aeeatively dividing a finite length number range propontdy
typically addressed to a small set of recipients, predontipa to the occurrence count of all symbols within the input, and
nodes on the route to the sink, or local neighbors. A lagenerates a single floating point number representing tlireen

Lossless Data Compression



TABLE |
MAXIMUM ACHIEVABLE COMPRESSION RATIO FORPERMASENSE DATA

TABLE I

OUTPUT SIZE AND COMPRESSION RATIO OFPERMASENSE DATA

None

Entropy Coding
Huffman

Range Coding

Compressor Output Size Bytes per Packet  Output Ratio Operation
Sequence
Uncompressed 591900 bytes 30 bytes 1.0
GzIP 263746 bytes 13.37 bytes 0.45
BZIP2 297340 bytes 15.07 bytes 0.50 MTF
7-Zip LZMA 149078 bytes 7.55 bytes 0.25 BWT
7-Zip PPMD 284232 bytes 14.40 bytes 0.48 RLE
Lz77
input sequence. A Huffman tree contains bit representaidn MT'-FZV%/LE
used symbols, with their length inversely proportionaltte t g\t r( g
frequency of their occurrence within the input stream. &oyr ~ MTF LZ77

decoders either need the used symbol dictionary in advance, EAWII I[%\Z\Z
operate on a static dictionary with strongly decreasednedi g\ (7w

30 bytes (1.0)
30 bytes (1.0)
34 bytes (1.13)
31 bytes (1.03)
49.4 bytes (1.65)
32.6 bytes (1.09)
30 bytes (1.0)
37.5 bytes (1.25)
49.4 bytes (1.65)
49.4 bytes (1.65)
32.6 bytes (1.09)
32.6 bytes (1.09)

47.4 bytes (1.58)
51.4 bytes (1.71)
50.6 bytes (1.69)
47.9 bytes (1.6)
60.6 bytes (2.02)
31.8 bytes (1.06)
52.2 bytes (1.74)
52.1 bytes (1.74)
60.6 bytes (2.02)
60.6 bytes (2.02)
58.6 bytes (1.95)
58.6 bytes (1.95)

28.7 bytes (0.96)
28.9 bytes (0.96)
31.9 bytes (1.06)
29.5 bytes (0.98)
42.2 bytes (1.4)
31.8 bytes (1.06)
29 bytes (0.97)

34.5 bytes (1.15)
42.2 bytes (1.4)
42.2 bytes (1.4)
31.8 bytes (1.06)
31.8 bytes (1.06)

gain. This limitation can be overcome by using adaptive cgdi
approaches, e.g. dynamic Huffman codes [29].
As nodes in wireless sensor networks are generally fitted

with low-power microcontr_ollers to allow for_ Iong lifetinse  pacyet compression can assist in maximizing the lifetime
when operated on batteries, they are limited in terms gf \ygNs by reducing the energy consumed by radio trans-
both CPU speed and available memory. Especially whelissions, The analysis of sensor data compressibility has
applications with high memory demands are run on Sengfyever made clear that compression algorithms operating o

nodes, additional data compression algorithms must expagengividual packet cannot achieve high compression gains
small code and memory footprints. All algorithms presemted e 1 the limited correlation between its payload contents
this section have been selected with regard to these comstra . oqdress the problem of limited compressibility by a

IV. THE SQUEEZE KOM COMPRESSIONLAYER

different approach, exploiting the inherent charactessof
Swrveilled physical environments. As many environmengal p

nodes, and the precondition that data compression mustrBH]et?rs exhibit high temporal correI§t|0n with slow chesig
efficient in terms of energy consumption, prove many gener‘?&’er time, two packets sent successively can be expected _to
compression algorithms inapplicable. We have appliedeafopear strpng resemblance to one anof[her. Based on trangferri
mentioned compression algorithms on packets taken from thgSe differences between packets in a compressed way, the

PermaSense project [30], the data being present in a pai:ke%gueeze'KOM sensor ne.twork compression layer can achigve
30 bytes length with the structure shown in Fig. 2. Concisel mpression gains superior to plain packet compressiokewnhi

a 2 byte sequence number is followed by ten sensor readi%%gsum'ng a modest amount of sensor node resources only.

of 2 bytes each, and the packet is terminated by an 8 b is is different from compression layers present in other
radio stacks, such as the KSN RadioStack [31], which uses

B. Compressibility of Sensor Data
The limited memory and computing resources on sen

timestamp. _ . ; .
the DEFLATE [32] algorithm with a default window size of
Byte O 1 2 21 22 29 R ;
L . o e e Lol . 32 kilobytes on all outgoing data.
| Sequence# | Sensor . . . Readings | Tinestanp |
TR s s A oA e * A. System Overview
Fig. 2. Sample packet structure from the GSN PermaSensecproj

Squeeze.KOM is a transparent compression layer that can
We have downloaded the data measured by PermaSehgeseamlessly integrated with existing node platforms and
node 2036 from 15 November through 15 December 2008yplications, as it replicates the interfaces provided gy t
yielding 19,730 packets, and analyzed the data set regardietwork layer. This necessitates only small modificatians t
its overall compressibility. The results are shown in Tdblé the application code, allowing to adapt existing applwasi
becomes clear that depending on the employed compresdioithe new layer easily. Operating on unidirectional streafn
type, savings of up to 75% can be achieved when compressitaja additionally allows to exploit computational hetezngity
the data in its entirety and making use of adaptive stailstiof platforms by selecting compression parameters withroega
compression techniques. Subsequently, the packets have e a node’s capabilities. A detailed overview of the elersent
compressed one by one by a number of different combinatiansthe compression layer is depicted in Fig. 3.
of the presented algorithms, and average resulting ouipess s  Packets originating from the application are separated in
are shown in Table Il. It is obvious from the results thateader and payload fields and forwarded to the core compo-
only some sequences employing range coding provide resulent of the layer, the compression framework. A comparison
that are slightly smaller than the corresponding input dataf the payload to a set of previously sent packets stored in a
However, in the worst case, the output was twice as large lasal transmission history allows the framework to deterni
the input, clearly disqualifying these compression me@ms whether transmitting a differential packet is feasiblesdf the
on a per-packet basis for sensor network traffic. payload is replaced by a reference to the most similar hyistor



Application 1) By means of bytewise arithmetic subtractian € 1,,),
l i ' payloads with high similarity result in a sequence of

4 values close to zero.
Header|| Payload Algorithm Header | Payload 2) Performing an XOR operation on the payloads of similar
Library packets P@ 1,,) results in an output stream with a sparse
i number of set bits.
—— Compression 3) Preceding the XOR operation in the previous method
TX | =———— Framework RX by a conversion of the payloads to Gray Code [33]
1 1 results in an output streanG(C(P) & GC(I,)) with
an even higher number of '0’ bits, however at the cost
Header || Payload Hizc()ry Hilz:c()ry Header| | Payload of computationally expensive decoding.
To support compression of the bitstream generated by the
l I XOR operation, we have implemented a distance coding
Radio scheme operating on bit level. As the maximum number of
' bits in an IEEE 802.15.4 packet is limited by the standard,
Fig. 3. Internal structure of the compression layer we have used a variation of Golomb-Rice coding [34] that

encodes the distance between "1’ bits, i.e. the length o run

element, and the difference between both sequences. Su$e0’ bits. This distance coding step simultaneously restuc
quently, the payload is analyzed regarding its comprdigibi the entropy in the output. The resulting average number of
and Compressed if Savings can be achieved thereby_ '0’ bit runs in the output are Compared in Table Ill, where

The receiver operates in reverse to the data encodi@iferences of the current payload to both the first packet
at the sender. Received packets are forwarded to the loaland the previou#’;_; are compared. The threshold of RLE
compression framework, where compressed contents are fi¥gs set to only compress sequences of two or more repetitions
decompressed. When packet differences have been tramsfedf the same symbol, and the Golomb-Rice scheme was set to
only, the original sequence is restored by combining th@erate on a basis of 8. The observed small benefit of applying
received difference data with the local history, while fulthe Gray Code &C) to the packets is however faced by an
packets are directly forwarded to the application afteeitisg increased decoding effort and thus neglected in the further
their payload into the reception history. analysis.

In case energy-efficient multi-hop data transfer to a sink The structure of our binary distance code is shown in
node is required, i.e. no in-network processing needs te takable 1V. When no ’0’ bit is encountered between 1’ bits
place, data can be directly forwarded without the need fiit the input, the resulting code output is only one bit long,
local decompression at intermediate nodes. The sourcessidfhus not increasing the size of the output. Runs of "0 bits
must however be retained within the packets to indicagth lengths of 1...8 are encoded in a 5 bit symbol, while
to the receiver which index packet set to use. Extendifign lengths of 9...70 are represented in an 8 bit symbol.
the compression layer by routing functionalities is polssib Two symbols are reserved; an output with all bits set to '1’
though beyond the scope of this paper. Hence, currently lflicates the end of the input data (which is necessary a&s byt
incoming packets are decompressed before taking any furtaégnment is not ensured), while the same code with the LSB
actions. unset signals that the number of '0’ bits exceeds 71 and is

therefore calculated as the sum of 71 and the value of the

B. Compression by Differential Transmission succeeding code.

Based on the determined characteristics that many subse- TABLE IV

guently sent packets in sensor networks bear high reseg#lan REALIZATION OF THE BINARY DISTANCE CODE
to each other, we propose an encoding scheme based_on
encoding payload differences to the last fully sent packet. Bit Representation Interpretation
differentiate packet types in this paper, we term packeds$ th 0 No zero bit

; ; ; 1 0 ne mn1 no n (1-8) zeroes
were fully sent asndex packets, denotlng t_he|r payload Bs 1 ome o m mo . (6-70) zeroes
wheren is the number of the entry within a chally _stored 1 1 1 1 1 1 1 0] 71+n(next code) zeroes
array of index packets. A separate transmission history of 1 1 1 1 1 1 1 End of data

index packets is maintained for each receiver node. It stitie
indexn, the corresponding dafg and a hash valu& ash(1,,) If the application layer invokes a packet send call, the
of the data which is inserted in differential packets to easucorresponding payloa# is checked for similarities with the
sender and receiver are in sync. Opposed to index packelsments in the history table. If no entries with sufficigntl
which contain a full payload, we assign differential pasketigh similarity are present, a new entry is created in the
the termA,,, wheren is the index of the referred index packethistory table, and assigned the next available index. I cas
We have implemented three methods to generate the diffalt-indices are taken already, the existing index elemernthvh
ential of I,, and the payload® to be sent: has not been used for the longest time is replaced with the new



TABLE Il
PERFORMANCE STATISTICS OF THE PRESENTED DIFFERENTIATION AAORITHMS, APPLIED TO PERMASENSE DATA

Inout Mean length Mean length  Longest Longest Output Size aftenf@ession/Coding
p of 0" runs of '1’ runs ‘0’ run "1’ run RLE Golomb-Rice  Binary Btance
P; 2.15 bits 2.16 bits 35 bits 20 bits  31.05 bytes 75.72 bytes 981hytes
P, — Py 2.35 bits 2.09 bits 95 bits 26 bits  29.49 bytes 72.89 bytes 04Bytes
Pd Py 2.53 bits 1.89 bits 95 bits 15 bits  29.45 bytes 64.66 bytes 181Bytes
GC(P;) & GC(FPo) 2.58 hits 1.75 bits 98 bits 7 bits 29.82 bytes 45.71 bytes 10tpytes
P, —P;_4 16.45 bits 3.43 bits 237 bits 25 bits  21.40 bytes 34.40 bytes 5.17lbytes
P, ®P_1 18.40 bits 1.99 bits 237 bits 17 bits 21.39 bytes 20.71 bytes  3.39lbytes
GC(P;) & GC(P;—1) 18.23 bits 1.45 bits 237 bits 7 bits 21.38 bytes 16.97 bytes 2.98Lbytes

index packet and the corresponding hash value is calculatdte set of formerly received indices and the corresponding
On the other hand, if the similarity requirement is fulfilledindex packetd,,, identical to the table present at the sender
the differential betweer,, and P is calculated. The resulting side. The hash value does not need to be transferred with the
A,, is then transferred in conjunction witifash(l,,) to index packet; instead it is calculated locally on receptban
make sure an identical, is referred to at both sender andndex packet. Incoming packets,, .,,. contain a copy of the
receiver. If both packet payloads are identical, an empty hash value of,, and can thus determine whether the identical
is transmitted. Squeeze.KOM supports compression of bdtistory element is referred to. In our current implemeotati
index and differential packets, denoted &s.,c andA,, ..., the length of the hash value has been defined as 8 bits. If
respectively. However, due to the small compression gain fa mismatch is detected, the packet can either be discarded,
index packets observed in Table Il, we focus on compression the sender be prompted to retransmit the packet as an
of delta packets in this paper. In case compression does mutex packet, depending on the importance of the data. This
reduce the packet size or is not viable by means of energyeck is essential to encounter lost index packets and @nsur

efficiency, the data is sent uncompressed. that nodes rejoining the network do not operate on outdated
_ index data. By default, packets are transferred in a best-
Bit O 1 2 3 4 5 6 7 . . .
PN b bl bl el bl bl bl + effort manner, where the compression layer is not requived t
| reserved | enc | I/A| Hstory elenment index | provide any latency or delivery guarantees. If reliablasgort
Fo---- Fo---- Fo---- +o---- +o---- R R R + . . Ll . .

is required, additional QoS mechanisms can be integrated
Fig. 4. Example bit structure of the status field by using the reserved fields, allowing to specify latency or

reliability requirements.

A status field is added to the data to transfer required infor-
mation to the receiver, such as the indeaf the element in the ) )
history table, flags whether the payload is compressed ahd if The presented compression layer has been implemented
represents an index or a differential packet. Currentlgme=dy and analyzed in detail in a simulation environment. The
bits could be employed to provide QoS parameters to tiftentified tunable parameters and their impact on t_he dverall
receiver in future implementations. A sample implementati Performance of Squeeze.KOM are presented and discussed in
of the status field, as used in our current implementatiofe following subsections. Finally, the application hagrbe
is shown in Fig. 4. Limited to a single byte, the overheaRPrted and evaluated on SunSPOT nodes. .
is reduced in cases of incompressible payload data, while"0r the following experiments, we have set up a simple
allowing for a history size of 16 elements. network topology _vynh one s_ender and a single receiver

The memory consumption of the compression layer pode. Ur_lles_s specified otherwise, we have assumed an !deal
dominated by the number of index packets stored for outgoif§mmunication channel (no packet loss). For the evaluation
and incoming connections, and can thus be reduced both'4§ ha\_/e again used the Pe_rmaSense data set with the structure
limiting the number of entries for outgoing data, as wefiven in Table 2. The entire 19,730 packets were used for
as by notifying neighbor nodes to reduce the number 8f conducted experiments, and the XOR operation /on
entries allocated for their transmissions. Each sendee pad and I, followed by binary distance coding were used to
decide whether its outgoing links are fitted with unique idecompress delta packet payloads, while index packets have
lists, or if a common list is employed, however necessitatirfP€en transferred uncompressed. To maintain the clarityof o
mechanisms to ensure all neighbors are in sync with thetlat@galysis, we have empirically determined and retained some

V. PERFORMANCEEVALUATION

set of index packets. parameters throughout the experiments. This provides a rep
_ resentative assessment of the performance of Squeeze.KOM
C. Decoding the Data when applied on real sensor data for the given scenario. A

To restore the packet payload contents frdm.,.. (or A,,, generalization of the results can however not be performed
respectively), a local copy of the referred index packet directly, as optimal results depend on both the applicadiod
is required. Receivers thus have to keep track of incomimegvironmental parameters of the deployed WSN, which might
index data, maintaining a history list with information aibo differ significantly.
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Fig. 5. Impact of the similarity threshold on history misctas and compression gain for one and four streams

A. Impact of the Similarity Requirement Threshold therefore assume a maximum allowed deviation of 40 bits

To generate a compressible differential packet, the paylogdualling the sixth part of the overall payload length of 30
to be compressed must exhibit sufficient similarity to an el@Ytes) for the given data set, where an average number of
ment stored in the local history. As the XOR operation is pafStory mismaiches of 9% has been determined.
of the differentiation step and needs to be performed anyw .

Squeeze.KOM uses the Hamming distance as its metric %/r Impact of the History Size

similarity to the history elements, i.e. it counts the numbe  When a single stream of data with small changes over
"1’ bits in the result of the XOR operation. It is necessartime is transferred with the determined settings, the prtese

to define a maximum allowed number of differing bits as thalgorithm leads to an average compression gain of around
threshold for similarity. Small threshold values herebgdeo 35%. However, when multiple streams of data need to be
highly compressible differential packets, as the resgltiata transferred between two nodes, a correlation between these
features long runs of '0’ hits and is thus well suited for thetreams is not necessarily given.

binary distance code. However, choosing too small threshol The compression layer has hence been tested with four
values also results in a greater number of mismatches witfiferent PermaSense streams being transferred in paréiie

the local history, and thus to an increased number of indeatio of history mismatches is shown in Fig. 5(c), clearly
packet transmissions. In contrast, high threshold valassltr confirming that a history size smaller than the number of
in less compressible delta packets. The impact of the diityila distinct streams is insufficient to achieve gains by congioes
threshold has been analyzed for the single stream contaimestead, the compression layer will exclusively transfeteix

in the data set, and the results are shown in Fig. 5(a). frames in this case, thus increasing the packet size by one

Clearly, a high value for the similarity threshold results ibyte due to the status field. The compression gain is depicted
the smallest number of mismatches, and hence the smaliasfFig. 5(d), proving that gains similar to the single stream
number of required (uncompressed) index packet transmisse are possible when the history is dimensioned well.
sions. The compression gain, being an indicator for theezehi It can also be noticed that, in both cases, larger histosgssiz
able size reductions by applying Squeeze.KOM, is analyzkghd to slightly increased maximum compression gains, ut a
in Fig. 5(b) and confirms that high threshold values lead toell shift the corresponding threshold value to the leftisTh
degraded compression ratios. originates from the fact that less index replacements tédeep

It is hence mandatory to find a compromise between threskhen large history sizes are used, and thus old index entries
old and compression gain. In the following simulations, weemain longer in the history list.
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C. Impact of Packet Loss E. Real-World Evaluation
The presented single-hop scenario was modified to use a Né compression layer has been ported to the SunSPOT
lossy channel, with packet success probabilitiesFaf = platform!, and data from a SunSPOT's integrated sensors was

{0.95,0.9,0.8,0.6}. The application was configured to usdransmitted to a set of four sink nodes, following the pagloa

a single PermaSense stream, a history size of one elemgh{cture indicated in Fig. 7. Identical to PermaSense giack

and a similarity threshold of 40 bits. To recover from th&1e payload is composed of a 2 byte sequence number followed
loss of index packets, the sender node was extended byPynten sensor readings (acceleration and filt in three dimen
index refresh interval. When the number of sent delta pack&iOns, temperature, light intensity, the state of the irsttegl
referring to the same index packet exceeds the refrestvaiter Momentary switches, and the current supply voItage leved) o

the data to be sent is transmitted as an index packet. This njes €ach, and an 8 byte timestamp. Although using the same
be the case even in cases when the similarity requiremengigicture as the PermaSense data, the chosen set of sensors

fulfilled, but is important to keep the index packet list a¢ thdiffers, and the accelerometers introduce even fastergesan
receiver up to date. of sensor readings, decreasing the compressibility of #ta.d

It is clearly visible in Fig. 6 that in cases where _|nde>_< Byte 0 1 ) 21 29
packets are sent more frequently, a higher success prapabil ~+---- Hee He IR SEEEE SRR R RIS +
; ; : ; ; | Sequence# | Sensor . . . Readings | Tinmestanp |
is given, _however at 'Fhe cost of not applying dlff_erenngl R ees bl Loz VO A L L
compression on these index packets. The compression gain is
thus reduced in favor of an increased probability of recejvi Fig. 7. Packet structure used for the real-world validation
correct and complete data. For a large refresh interval, the ) ) ] )
overall packet loss rate roughly increases by 50% compared N€ sink nodes were located in an office environment and

could easily adapt to the channel conditions and dynargicai€nder was worn on the wrist of a typing person and configured
adjust itself during runtime. to transmit 10,000 successive packets with sensor readings

sending each of them twice; once without compression to

get an estimate on the real channel loss rate, and once using
D. Summary of the Smulation Results the Squeeze.KOM compression layer. The compression layer

was again configured to use a history size of one element, a

The compression gain analysis of Squeeze.KOM has showpeshold value of 40 bits and a refresh interval of 5 paclets

that under both idealized and realistic channel conditi@ns getermined in the preceding sections for the PermaSenae dat
data set taken from a real sensor network deployment canQghough this parameter set does not result from a previous
reduced to less than two thirds of its initial size by usingnalysis of the data characteristics, the results for gdoks
our compression layer. The tunable parameters have begR the savings achieved by packet compression compared in
presented, and the corresponding optimum settings for theple v confirm that the Squeeze.KOM compression layer is
given scenario been analyzed. A history size equal to tggerating as intended on real hardware and exposes behavior
number of streams transported at a time has shown to alreaghyjlar to the simulation results. Besides the expecteghli
result in good compression gains. A similarity thresholtbe jncrease in unrecoverable packets, resulting from outdate
20% of the payload bit length exposes highest compredgibiliyissing index elements, the use of the compression layes lea
Values for the resulting diﬁerential paCketS due to theﬁeU to Compression gains of around 12% even in our scenario
binary distance code. Although missing index packets aghere highly dynamic accelerometer data comprised a major
to the impact of packet loss when using the compressiggrt of the payload.
layer, good compression ratios can already be achieved with
refresh intervals of only five packets, effectively allding the 1SunSPOTs have been selected for the sake of eased impléiorenta
problem of lost index packets. Squeeze.KOM is however not limited to this mote platform.



TABLE V

REAL-WORLD EVALUATION OF THE COMPRESSION LAYER further packets and only transmits these encoded diffident
data to the receiver. As with ROHC, it must be ensured that
Node1 Node2 Node3 Node4 the original data is present at the receiver as well, so both

Loss (uncompressed)  2.3%  6.4%  3.0%  43%  parties operate on the same dictionary.

Loss (compressed) 2.7% 8.1% 4.7% 6.1% . . .

Compression gain  12.1%  11.1%  12.0%  12.0% Tsiftes et al. have focussed on compressing firmware up-
dates that are transferred over the radio, applying the BBZI
algorithm [10], a derivative of the BZIP2 mechanism, modifie

V1. RELATED WORK for operation in sensor networks. However, it does not tame

The area of data compression in wireless sensor netwodksnpress any application-generated data, but insteadrpesf
has been addressed in different ways in recent researsfateless compression of application code, thus being d goo
Barr and Asanovi¢ have determined in [35] that the energuypplement to application-level encoding mechanismsllyin
consumed by the radio device to transmit one byte of daiacouple of lossy compression algorithms exist, such as the
on the radio can also be used to perform up to a thousamansmission of packet predictions, as presented by Blass e
CPU operations. This allowed them to conclude that dath in [41]. The approach of using Kalman filters to predict
compression was feasible by means of energy consumptieadings is however computationally expensive as well as
if less energy was consumed by the compression operatlossy, and thus not directly related to our approach.
than required to send the uncompressed packets. Theirdsdin
were however based on Compaqg Personal Server handheld VIl. CONCLUSIONS

devices, offering many times the resources available on COM\pfe have presented Squeeze.KOM, a transparent compres-
mon WSN nodes. Sadler and Martonosi built on these resulfs, |ayer that seamlessly integrates with any sensor node
and analyzed energy consumptions of common sensor netWgikisorm  The layer operates transparently, renderingomaj
platforms in [12], determining that between four thousand a i, gifications to application software unnecessary. We have
two million instructions (depending on the employed radigrasented a stream-oriented compression scheme tharelib
transceiver device) can be executed by a MSP430 microcofa)y exploits the temporal correlation of sensor datapés
troller at the same energy required to transfer one byte en i, mance on sensor data taken from real nodes has indicated
radio, confirming the general idea that data compressionys gignificant savings can be achieved, even when applying
viable on sensor nodes. They developed the S-LZW algorithgy,y, pasic differentiation and compression mechanisms.
optlm(;zed tﬁ run gn'sensor ntlees and compress blocks of datgeing entirely independent of application level compressi
stored on the node's external memory. and fully interoperable with energy-aware MAC layers, our

In [36], Kimura and Latifi also noticed that most eXiStsq|ytion can be integrated with any application, and on any

ing compression applications designed for computers wi latform with resources to spare. As the packet headers
megabytes of RAM and CPU speeds of hundreds of MHZ.o et untouched, our approach can even be seamlessly

are not suited to be run on resource-constrained sensor nagg,ined with header compression to further compact the
platforms. Instead, they summarize four approaches to Cofy ot ts lossless character allows to transfer bothosens
Press d!fferent types of data in WSNss, applicable for reseur readings as well as network management and topology control
constrained sensor nodes. However, the compared appma‘mgssages. Decreased packet transmission durationgjngsul

either specifically relate to spatially correlated datajescribe from packet size reductions, lead to energy savings and thus
highly application-specific means of data compressiorteRat e>%tended node lifetimes in WSNs

et al. also describe a scheme for routing with compression o
spatially correlated data in [37]. REFERENCES
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