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Abstract—Mobile applications increasingly rely on frequent
and accurate position updates—e.g., with GPS- or Wi-Fi–assisted
localization techniques—to provide for functionality to their
users. The service quality and acceptance of the application
depend strongly on the localization accuracy and the introduced
costs, in form of the resource consumption, of the used local-
ization technique. Current mechanisms for location retrieval,
however, are limited to non-mobile scenarios or still introduce
high costs while obtaining the location. In this work, we propose a
collaborative location retrieval service for location-based services
in mobile scenarios that combines the location information of a
subset of users with the connectivity information between users
to enable accurate and cost-efficient location estimations. We
evaluate a prototype of our solution to study the impact of
service compositions in changing environments and to assess the
potential of our proposed service compared to the current state-
of-the-art used within location-based services. Our results reveal
that, depending on the localization technique, the costs can be
reduced significantly while the achieved sensing accuracy and
fairness among users improves strongly at the same time.

I. INTRODUCTION

Wireless networking communications and technologies wit-
ness an evolution in both their growth and their applications.
Especially in future Internet scenarios, such as the Internet of
Things (IoT) and mobile social networks, wireless communi-
cations offer great potential. Many of the applications used
in these scenarios are implicitly bound to the users and their
personal surroundings. A very prominent class of applications
are location-based services, which comprise, e.g., augmented
reality games, such as Google Ingress and Pokémon Go. This
class of applications requires frequent and accurate location
updates of the users to provide functionality. Unfortunately,
accurate location retrieval can be difficult with localization
technologies such as the global position system (GPS) or
Wi-Fi / cellular triangulation, offering diverse accuracies.
Furthermore, erroneous sensors readings may further decrease
the accuracy. With frequent individual location measurements,
the acceptance of the location-based services shrinks as every
accurate location measurement is a battery-intensive task [1].
Especially on resource-constrained devices, high battery usage
is unintended.

Current state-of-the-art mechanisms for location retrieval in
mobile wireless scenarios rely on fingerprinting, geometric es-
timations [2], or local sharing of positions between devices that
have access to accurate positions and those who have not [3],
[4]. These mechanisms have one thing in common: they pursue
a given utility function—mostly providing accurate position
estimations—while not considering the introduced cost or the
fairness of the resources consumed on the mobile devices.
Additionally, many of the approaches rely on measurements
of every device having access to localization technologies,
irrespective of the accuracy or cost of the specific localization
technology.

In this work, we target the currently missing joint consid-
eration of (i) position accuracy, (ii) cost-awareness, and (iii)
fair usage of resources within location retrieval in mobile
wireless scenarios. To this end, we propose a collaborative
monitoring approach for location-based services on the ex-
ample of location estimation. Our proposed service combines
the selection of relevant anchor nodes, which measure their
location, with connectivity information between neighboring
nodes to provide for accurate and cost-efficient position esti-
mations of all nodes in the network. By design, based on an
in-depth analysis of current location estimation approaches, the
proposed collaborative monitoring service is able to pursue dif-
ferent utility functions such as low energy usage, fair resource
consumption, and high accuracy. We rely on the Simonstrator
platform [5], [6] to assess the performance characteristics of
the proposed collaborative location retrieval service and to
compare it with the current de facto standard (i.e., GPS- and
Wi-Fi–assisted location retrieval). In our evaluation, we ana-
lyze (i) the impact of different compositions of our proposed
service, such as the used anchor node selection strategy, and
the influence of changing environmental conditions on the po-
sition accuracy, cost, and fairness. Additionally, (ii) we assess
the performance–cost–trade-off using our proposed service
in comparison with the de facto standard used for location-
based services today. Our results reveal that, depending on the
location-sensing technology at hand, the introduced cost can
be reduced significantly while the achieved sensing accuracy
and fairness can be improved considerably at the same time.978-1-5386-4725-7/18/$31.00 ©2018 IEEE
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The remainder of this paper is structured as follows. In
Section II, characteristics of the scenario are detailed. The
related work on location estimation in mobile networks is
classified and discussed in Section III. Details of the design
of the proposed collaborative monitoring service for location
estimation, which is the core contribution of this work, are
given in Section IV. The proposed service relies, other than
its related work, on the selection of relevant anchor nodes,
which execute the location measurement in combination with
connectivity information of the mobile nodes to estimate the
locations of all nodes. In Section V, we evaluate a prototype
of our proposed service and present the results in an in-depth
simulation-based evaluation. Finally, Section VI concludes.

II. SCENARIO

In the scenario considered in this work, mobile devices are
able to connect to the Internet and to other mobile devices
based on ad hoc wireless communication technologies such
as Wi-Fi ad hoc or Bluetooth LE. This enables a multitude of
mobile social applications such as the well-known augmented
reality games Google Ingress and Pokémon Go. For all of
these location-based services, determining the user’s location
continuously is essential.

As mobile social applications exhibit strong bounds to the
user and her smart device, the prevailing environmental condi-
tions are determined by the users’ movement and the current
location characteristics. The movement of people is influenced
by their attraction to specific places, social ties, and interaction
patterns with others. Obviously, obstacles such as roads and
buildings need to be considered as well. Thus, people are
restricted to walk on streets and pathways in the urban area,
while being able to directly communicate with others in the
range of the currently used communication interface. The
smart devices, carried by the users, are equipped with off-the-
shelve communication interfaces for cellular communication,
Wi-Fi, Bluetooth and Bluetooth LE.

We assume that the proposed location retrieval service is
running on all devices carried by the users and a cloud-
based entity. Additionally, a location-based service runs on the
mobile devices to generate location requests in certain intervals
as workload for the proposed location retrieval service. This
location-based service is used to assess the accuracy and
achieved utility function of the location estimation service
under changing environmental conditions.

III. RELATED WORK

Location retrieval approaches such as LOCALE or GMAN
[7], [8] or the work by Kampis [9] focus on location esti-
mation in sparsely populated networks based on readings of
positions of neighbors over time used for prediction of the
own position. However, these approaches are relying on all
nodes having access to localization techniques to perform the
measurement to provide for accurate results, which is not cost-
efficient. Furthermore, nodes are assumed to be non-mobile,
which is unrealistic in today’s networks and not sensible
in the area of mobile social applications. Chan et al. [10]

propose an approach for indoor localization of mobile nodes.
However, the assumed maximum distance of 0.5m between
nodes in the formed clusters is not feasible in most scenarios.
Additionally, assuming the presence of static anchor nodes
used to re-calibrate positioning errors needs pre-configuration
of the environment, which further limits the usability of the
approach presented in [10]. A collaborative approach for loca-
tion estimation relying on so-called multidimensional scaling
and maximum-likelihood estimation is proposed in [3]. Their
approach focuses on accurate location retrieval for non-mobile
environments with densely interconnected nodes in a grid
structure. In a static network of sensors, a grid structure may be
plausible; however, in the presence of mobile social networks,
this assumption does not hold true. The authors of [4] use
GPS-equipped mobile anchor nodes in a wireless sensor
network to provide for location information by broadcasting
the location information to non-mobile nodes. Hu et al. [2] use
the Monte Carlo Localization method for location retrieval in
mobile sensor networks. Still, introducing additional overhead
for local communication among nodes limits the applicability
of the approach. Availability of neighborhood information, as
used in our approach, in location-based services is likely.

Similar to the approaches presented before, the authors of
[3] also rely on reference points that know their exact position
without any additional error. None of the approaches focus on
the per-node or overall cost of the location retrieval process,
which is crucial concerning the resource-constrained devices
in today’s and future networking scenarios. Doherty et al. [11]
suggest to use connectivity information in the location retrieval
process similar to the proposed approach in this work. But, the
authors assume the following unrealistic requirements (i) error-
free sensor readings, (ii) non-mobile nodes, and (iii) a-priori
knowledge of the network characteristics. The authors limit
their work on a rectangular scenario with different densities
while needed anchor nodes are placed, beneficial for their
approach in the corners of the network, based on the a-priori
knowledge of the network characteristics.

The influence of location error on the application perfor-
mance is discussed using the example of a geo-based content
sharing approach in [12]. The results indicate that often used
movement models such as the random waypoint [13] or the
Gaussian movement model [14] exhibit stronger dependency
to location errors because users do not interconnect as fre-
quently as in movement models that incorporate realistic social
ties between users. Obviously, the authors of [12] indicate that
the impact of location error is depending on the application
as well as on the location retrieval approach. Current state-of-
the-art location retrieval approaches are mainly focusing on the
accuracy of the location estimation they provide. Cost and fair-
ness of the resource consumption are considered rarely. How-
ever, especially with respect to today’s resource-constrained
smart devices and different application requirements, a joint
consideration of (i) position accuracy, (ii) cost-awareness, and
(iii) fair usage of resources within location retrieval is essential
to allow for wide acceptance and applicability.
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IV. COMON: COLLABORATIVE LOCATION RETRIEVAL

The goal of this work is to enable the joint consideration of
(i) position accuracy, (ii) cost-awareness, and (iii) fair usage
of resources within location retrieval. To this end, we propose
the collaborative location retrieval approach for location-based
services COMON. The service allows for different composi-
tions of its components to pursue various utility functions for
location retrieval. Furthermore, instead of relying on every
node’s measurements COMON is able to select a subset of
anchor nodes for cost-intensive location measurement, result-
ing in a significant reduction of the induced cost while still
providing accurate position estimations. In the following, the
design requirements of COMON are outlined. Afterwards, the
main components of COMON are explained in detail. This
includes the anchor point selection and clustering strategies
used in our approach. Additionally, we elaborate on how
different utility functions can be mapped with COMON.

Design of the Collaborative Location Retrieval Service

The collaborative location retrieval service needs to allow
for accurate location estimation of all nodes in the network
while permitting different utility functions based on the re-
quirements of the location-based services. COMON combines
the dynamic selection of anchor nodes—a subset of the nodes
in the network that measure their location—and connectivity
information of the nodes to allow for cost-efficient but still
accurate location estimation. Accordingly, COMON contains
the following components (see Figure 1). The anchor selection
and clustering components are responsible for determining
anchor nodes and represent the most influential components
with respect to the utility function of our approach. In the
layout component, the location measurements of the selected
anchor nodes are combined with the connectivity information
obtained by the nodes to estimate each node’s location. As the
receiving range of the communication mean used to obtain the
connectivity graph is not known a-priori the range learner
component is used to learn the maximum communication
range over time. Different service compositions—also allow-
ing for multiple utility functions—are organized within the
composition component.

a) Anchor Node Selection and Clustering: Selection and
clustering is also highly relevant in the research area of
offloading applications [15], [16]. However, most of the ap-
proaches used in this area need recent position measurements
of all nodes. Thus, beside applicable selection strategies pro-
posed for offloading, such as energy-aware approaches [17],
[18], we propose selection strategies optimized for the use case
of location estimation in this work. The proposed strategies
are all based on information gained from the connectivity
graph or available within COMON to reduce further costs from
otherwise needed additional measurements. Those strategies
are used within the selection component, as shown in Figure 1.

Related to the centrality in social networks [16], [19],
selecting anchor nodes that are well connected to other nodes
and central according to [19] in the connectivity graph seems
beneficial. It would cause anchors to have many adjacent

Figure 1: Illustration of the components of COMON.

nodes, resulting in potentially lower offsets for the estimated
positions. However, as initial evaluation results revealed, such
a selection leads to a very dense population of anchor nodes
around the detected central point of the connectivity graph
leading to strong offset variations on the edges of the con-
nectivity graph. As a result, we use the negative interference
selection (NegInt) strategy. This strategy selects the best-
connected node as anchor, but then removes all nodes with
a direct connection to the selected anchor node from the list
of potential anchors. This allows for distances of at least two
hops between anchors, which still provides for a sufficient
amount of anchors in dense populated areas but results in a
better density-aware coverage of the network.

Contrary to the negative interference selection, the cluster
corner selection (ClusCor) strategy selects anchor nodes from
the outside of a cluster resulting in other non-anchor nodes
being surrounded by anchor nodes. If non-anchor nodes are
very likely within a given area spanned by the selected
anchors, the estimation of the individual locations can benefit
from the selected boundaries. However, without location in-
formation, the selection of anchors becomes more demanding.
The authors of [20] found a correlation between the number of
connected neighbors with the distance to the center of a node
in a cluster. Accordingly, we start from the best-connected
node(s) in the connectivity graph and exclude these node(s)
and their neighbors. The resulting ring of nodes around the
excluded nodes forms the initial set of potential anchor nodes.
The process of excluding further nodes if they have more
neighbors can be continued from there on. We stop this process
after three iterations, which is sufficient for most location-
aware clusters prevalent in mobile networks [21].
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Both approaches presented above do not consider the cost
introduced by the selected anchors as they are tuned toward
coverage. To this end, we rely on the cost-aware minimum cost
selection (MinC) and the fair-cost selection (FairC) strategies.
The minimum cost selection reduces (i) the number cost-
intensive location measurements, and (ii) the number of state
changes on the nodes, i.e., how often cost-intensive sensors
such as GPS are turned on and off. While this strategy may
reduce the number of state changes to allow for less expensive
continuous measurements on the nodes for a longer period
of time, the energy consumption is not distributed among
nodes in a fair manner. A fair share of the overall energy
consumption is important to not only allow for longer device
lifetimes but also for better acceptance of the approach. We
target this limitation with the fair-cost selection strategy. Here,
fairness is most important while still reducing the overall
energy consumption. Thus, few anchor nodes are selected but,
in contrast to the minimum cost approach, the nodes that are
selected as anchors are changed more frequently over time to
provide for a fairer utilization of resources on the nodes.

Clustering within COMON is used to split the complete
connectivity graph into smaller sub-graphs. This may lead
to more accurate position estimations because subsequent
computations (anchor selection and layout) are performed on
more regional graph structures. For clustering, we use (i) a
variant of the well-known density-based DBScan [22] clus-
tering algorithm called connection-based clustering (CBC),
(ii) the partition-based k-Means++ [23], and (iii) a grid-
density–approach, which builds upon [24]. The original DB-
Scan algorithm may classify some nodes as noise, which is
contradictory to the requirement of COMON to provide for
location estimations of all nodes in the network. Thus, nodes
that are not part of a cluster resulting from DBScan are
individually assigned to their own one-node clusters enabling
the reliable selection of anchors per-cluster for all nodes. CBC
starts with the best-connected nodes unlike the random node
sampling that DBScan uses. It then iterates over each node, in
descending order of the number of connections each node has.
For each node, the direct one-hop neighborhood is searched for
cluster affiliation. If no affiliation is found, the node is assumed
to be part of its own cluster, guaranteeing position estimation
for all nodes. The idea behind CBC is that well-connected
nodes are likely close together in each cluster. By starting
with the most connected node, and then iterating outwards, we
gather all nodes belonging to that cluster, but not the nodes
that are closer to another equally well-connected node.

b) Layout of the Connectivity Graph: The selected an-
chor nodes, representing a small subset of all nodes, measure
their position using a localization method such as GPS or
Wi-Fi triangulation. This information is combined with the
one-hop connectivity information of all nodes, resulting in
a connectivity graph per-cluster or for the whole network.
Still the resulting connectivity graphs might be partitioned.
To estimate the positions of non-anchor nodes utilizing the
connectivity graph we rely on a spring force layout algorithm
based on [25], [26] as well as on the layout algorithm proposed

by Kamada and Kawai in [27]. However, int the layout the
distance between locations of nodes without a connection
but with line-of-sight are further apart than the maximum
communication range of the used communication mean must
be considered. Thus, connected nodes must not be further apart
from each other than the maximum communication range.

Within the layout(s), anchor nodes are fixed in their position,
while non-anchor nodes are displaced after calculating so-
called forces for each node. The calculation of forces and
the following displacement is referred to as step [25]. After
a given amount of steps, the layout algorithm terminates with
the estimated positions for all non-anchor nodes. In the used
spring force layout, we iterate once over each node pair,
without repetition. If the node pair has a connection in the
connectivity graph, only attractive forces are computed. If
there is no connection between the pair, repulsive forces are
only computed if the two nodes positions in the layout are
closer together than the currently assumed communication
range (as provided by the range learner component). With
this needed customization of [25], [26], the computational
overhead is reduced drastically, as pairwise relations are taken
into account only once. The resulting complexity for n nodes
per step is given by Equation (1).

O
(
n
2

)
=

n−1∑
m=1

(m) =
(n− 1)

2
+ (n− 1)

2
(1)

Node distances do not necessarily behave like actual
springs. The likelihood for connected nodes being closer
together than the assumed maximum distance is larger than it
is for the case that they are much further apart. Accordingly,
the utilized spring forces are non-uniform. Instead of using
a single spring force multiplier ς as in [26], we rely on
three spring forces to improve the approximation of actual
node distances and the location estimation accuracy. A ς of
0.1 is used for connected nodes that are closer together than
the average distance in the connectivity graph. For connected
nodes whose estimated distance is larger than the maximum
communication range a ς of 0.8 is used so that those nodes
move together. A ς of 0.3 is used for connected nodes further
apart than the average distance in the connectivity graph, but
closer than the maximum communication range. The same ς
of 0.3 is used for unconnected nodes that are closer together
than the maximum communication range. In this case the
desired distance is at least the maximum communication range
obtained from the range learner component.

F(dA↔B) =
ddesired − dA↔B

dA↔B
(2)

The spring force multiplier value ς for two nodes A and B is
multiplied with the distance dependent force F(dA↔B) seen
in Equation (2). To prevent high degree nodes from slingshot
to another position we split the resulting forces between nodes
A and B reverse proportionally to their respective number of
connections. Thereby, a slingshot of a high-degree node in step
i and a resulting drag of all connected nodes in the next step
i+ 1 is prevented.
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c) Learning the Communication Range: Communication
ranges used in the layout algorithm may change over time,
as nodes venture into areas with different environmental
interference on the used communication mean. Considering
the heterogeneity of devices, they may also change from
device to device. Learning the possible communication ranges
at runtime not only improves the system’s adaptability to
environmental changes but also makes it more resistant to
inaccurate initial assumptions. The distances are computed
from information in the connectivity graph and accompanying
locations of anchor nodes. However, with the intended limited
number of position measurements, respectively anchor nodes,
we also incorporate the complete but biased values generated
by the layout algorithm for the learning process.

With no prior information on how the distance values
behave or change, as the kind and amplitude of change is
also unknown, we use two kinds of learners in addition to
a No Learning baseline. These are based on filter methods
used for example in signal processing. In our approach, they
serve as low pass filters, minimizing the effects of jitter values
extracted from the input.

The exponential smoothing algorithm takes the smoothed
communication estimate of the former measurement interval
it−1 into account for the current interval it. The estimated
distance et for interval it is computed as given by Equation (3).

et = α · d+ (1− α) · et−1 (3)

Here, d is the current computed distance and α is a weighting
factor for the ratio of the current value over the value from
the previous interval. The autoregressive filter algorithm is
similar to the exponential smoothing algorithms, but it takes
N previous outputs into account. The formula of the filter is
given by Equation (4).

et = α · d+ (1− α) · 1
N
·
N+1∑
n=1

et−n (4)

d) Multiple Utility Functions with Composition: To al-
low for different utility functions within the collaborative
location retrieval service, the composition component is used.
It determines the order in which the main components, i.e.,
anchor selection, clustering, and layout, are used and com-
bined. The outcome of the collaborative location retrieval
service changes if, e.g., the anchor selection is done on a
per-cluster basis instead of selecting anchors first and then
building clusters around the anchor nodes. The used layout can
be determined for all nodes (including potentially unconnected
graphs) or on a per-cluster basis to reduce the computational
load. With different combinations and used settings, a vari-
ation of utility functions can be pursued. However, a main
influencing factor is the anchor selection, which determines
the nodes that perform the measurements.

The select-and-layout (SL) composition starts with the
anchor node selection followed by a layout of the connec-
tivity graph with the selected anchors. Clustering is not used
in this composition variant. The cluster-select-layout (CSL)

composition generated clusters in the beginning, followed by
the selection of anchor nodes in each cluster. For clustering the
presented approaches DBScan [22], k-Means++ [23], and grid
density [24] are used together with the proposed connection-
based clustering approach. After the clusters and anchor nodes
are computed, the CSL composition executes the layout in
each cluster for the given amount of steps. This is followed
by a final layout on the merged connectivity graph to reduce
the potential of unlike placement decisions in clusters such as
placing several nodes within a cluster at the same location.

The select-layout-cluster (SLC) composition is similar to
the SL composition. However, a clustering is done after the
selection and the initial layout, which is followed by an
additional layout per-cluster. This is done to refine the position
estimates after the initial selection and layout in the smaller
clusters. In doing so, negative side effects caused in the layout
by nodes far away from a cluster are prevented.

V. EVALUATION

The evaluation of the proposed collaborative location es-
timation service addresses two main aspects. First, different
compositions of the location estimation service are compared
using variations in parameter and environmental settings (Sec-
tion V-B). Here, the impact of parameter settings and envi-
ronmental conditions is evaluated. Additionally, compositions
of COMON are compared with respect to different utility
functions. Second, we assess the potential of the collaborative
location estimation in comparison to the de facto standard,
i.e., GPS- or Wi-Fi–assisted localization, in Section V-C. In
the following section, we begin with explaining the setup as
well as the metrics used in the evaluation.

A. Evaluation Setup, Scenario Model and Metrics

We evaluate the prototype of COMON in the Simonstrator
framework [5]. It allows us to use a social movement model
that builds on OpenStreetMap map data for realistic node
mobility [6]. We rely on the Wi-Fi 802.11g model from
the ns-3 network simulator for local ad hoc communication
between nodes [28]. As the connectivity characteristics are
heavily influenced by human mobility, we compare the per-
formance achieved with our social movement model against
a Gaussian [14] and a random waypoint (RWP) [13] mobility
model. We simulate mobility within the urban city center
of Darmstadt with a area of 1500m×1500m. Considering
different node densities allows us to assess the usability of
the presented approach in sparsely and densely populated
scenarios. To assess the performance of COMON and to
allow for comparison with the state-of-the-art, we assume that
the position information is requested in intervals of different
length. Table I summarized the simulation setup, with default
values being underlined. We simulated 30min of operation
and recorded measurements after a warm-up period of 10min.

To assess the performance of our proposed collaborative lo-
cation retrieval service, we consider the following metrics: (i)
the achieved position offset (distance between the true and the
estimated position of a node) directly after the computations
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of COMON, (ii) the offset over time sampled every 5 s, which
changes with longer measurement intervals and the movement
of nodes, (iii) the measurement state ratios of the sensors on
the nodes as they allow us to assess the cost introduced with
the location retrieval service, and (iv) Jain’s fairness index
(FI) [29] as given in Equation (5) to assess the fair distribution
of the cost-intensive measurement tasks. Both offset metrics
are used to assess the accuracy of the approach.

FI(X) =
[
∑n

i=1 xi]
2

n ∗
∑n

i=1 xi
2

(5)

It ranges between 0 and 1, while an index of 0.1 implies
that the system is fair to 10% of the users. An index of
1 implies fair resource sharing for all users. However, the
index does not imply to which extent resources are consumed.
For example, with the cost-intensive measurement task, the
index might result in a 100% fair share, but the total number
of cost-intensive measurement tasks performed by each user
may highlight potential weaknesses of a system. Thus, when
considering quantitative fairness metrics, we must also take
into account the total value of the shared resource.

We rely on the measurement state of the sensor as abstract
cost metric instead of using a specific cost model because the
measurement state is more universal than a single cost model
and provides the same insights to the costs. The used measure-
ment states describe the life cycle phase of localization sensors
(e.g., GPS), which are activation, continuous measurement,
deactivation and no measurement. In the following we will
use the measurement state as a combination of the activation
and continuous state because these states introduce costs at
the nodes. We observe the ratios of the measurement states
because the overall number of states does only change with
the measurement interval. Box plots show the distribution of
the results. A solid line inside the box represents the median,
while the lower (upper) quartile are represented by the boxes
lower (upper) end of the box. Whiskers show the lower and
upper data point within 1.5 of the interquartile range. As box
plots show the results of a single simulation run, a marked
dot with error bars is plotted to the left side of the boxes
indicating the confidence intervals over 30 repetitions with
different random seeds.

B. Impact of Parameter and Environmental Settings

The de facto standard in location-based services is to rely on
measurements of all nodes—often using the accurate but cost-
intensive GPS localization technique. We assume different
sensing errors, depending on the localization techniques (e.g.,,
GPS or Wi-Fi triangulation). In the following, we assume
a perfect location sensing technique with zero error if not
otherwise stated; the impact of the sensing error is assessed
specifically in Section V-C.

The number of selected anchor nodes influences the re-
sulting estimation accuracy. With fewer selected anchors, the
collaborative location retrieval service has to estimate the
positions of a large share of the nodes in the layout. Here,
the select-and-layout composition strategy with the negative

Table I: Scenario and simulation setup.

Max. Wi-Fi Range 78m
Mov. Speed 1.5 m

s
–2.5 m

s
Movement Model social [6], gauss [14], RWP [13]
Density [ nodes

km2 ] 22–222; 88.8
Baseline Systems GPS (0m), GPS (0–15m), Wi-Fi (0–130m)

Layout Steps 30
Measurement Interv. 10 s, 20 s, 30 s, 60 s, 120 s

Composition select-and-layout (SL), cluster-select-layout
(CSL), select-layout-cluster (SLC)

Anchor Selection negative interference, cluster corner, minimum
cost, fair-cost, DEEC [17]

Anchor Fraction 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 0.9

Clustering connection-based (CBC), DBScan [22],
k-Means++ [23], grid density [24]

Layout spring force [26], Kamada Kawai [27]
Range Learner none, exp. smooth, autoregressive
Sensing Error no error (0m), GPS (0–15m), Wi-Fi (0–130m)

interference selection (see Table I) is used, and the fraction of
anchor nodes is varied between 10% and 90% for COMON
whereas the baseline approach uses 100% of the nodes as
anchors. The position estimation achieved with COMON using
only 40% of the nodes as anchors is less accurate than the
perfect zero-error localization (see Figure 2(a)). However, the
localization error ranges between 0m and 20m for three
quarters of the nodes, which is sufficiently accurate for many
applications. Still, the localization error may go up to 55m for
nodes that are not well connected to neighbors, e.g., over a
chain of nodes with only two adjacent nodes each. With more
anchor nodes, the achieved offset improves as more fix points
can be used in the layout. But, compared to the zero-error
localization, where all nodes use their error-free position sen-
sor, COMON reduces the cost significantly. Figure 2(b) shows
the ratio of measurement states for the different anchor node
fractions. With 40% of the nodes being anchors, COMON
reduces the ratio of nodes performing active measurements in
average by a factor larger than two. Obviously, the introduced
measurement costs show a linear dependency to the anchor
node fraction. Still, the box ranges in Figure 2(b) indicate an
unfair distribution of the measurement task among the nodes.
Active measurement states on nodes make up between 18%
and 70% of all states on the nodes (includign deactivation
and no measurement).

Thus, the impact of different selection strategies on the
introduced cost and, very importantly, the achieved fairness of
the cost-intensive measurement task must be assessed. To this
end, the anchor selection strategies presented in Section IV are
used: negative interference (NegInt), cluster corner (ClusCor),
minimum cost (MinC), fair-cost (FairC) and the energy-aware
selection strategy DEEC [17]. Jain’s fairness index [29], shown
in Figure 2(c), reveals that the fair-cost selection strategy is
able to provide for equal distribution of the measurement tasks.
As explained before, while the error-free baseline approach,
where all nodes measure their own position provides high
fairness, too, we have to consider the extent of measurement
tasks compared to other tasks. Figure 2(d) shows that, using
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Figure 2: Impact of the fraction of anchor nodes and the anchor
node selection strategy.

the baseline approach, all nodes need to use their cost-intensive
measurements, whereas using the fair-cost selection strategy,
only the subset of anchor nodes (40%) is required to measure
continuously. In total more measurements are required with
the fair-cost strategy compared to the cluster corner (ClusCor)
or DEEC selection strategies (see Figure 2(d)). However, com-
pared to the minimum-cost selection strategy, where the anchor
node fraction of 40% is selected once and then the selected
anchors are used for further measurement tasks, the equal
distribution of measurement tasks among the nodes guarantees
the fairness of the system (see Figure 2(c)). Furthermore, by
distributing the measurement tasks equally among the nodes,
the lifetime of the system can be improved because no node
measures its location throughout the entire simulation.

The large box range for the minimum-cost selection strategy
(see Figure 2(d)) is based on the characteristic that the strategy
uses a set of nodes that is selected once to perform the mea-
surements. Thus, 40% of the nodes perform the measurement
over the whole simulation while the other 60% never measure
their own position. Surprisingly, unlike the anchor selection,
the used clustering approach does not has a strong influence
on the estimation quality or introduced costs in COMON. The
reason is that with the selection strategy at hand a direct effect
on the nodes is achieved; with clustering, in contrast, nodes
may not be equally clustered, but still be selected as anchors.

As COMON is using the connectivity information of nodes
to estimate the positions of non-anchor nodes, the approach
shows a clear dependency on the node density in the network
(see Figure 3(a) and 3(b)). Denser environments result in more
connections among nodes, which is beneficial for the layout
used within COMON. Still, our approach is able to estimate the
positions of all nodes with an average offset of 16m utilizing

22 44 88 133 222

Density [nodes/km2]

0

5

10

15

Average Offset after Layout [m]

(a) Density: average offset

22 44 88 133 222

Density [nodes/km2]

0

10

20

30

40

50

60

70

80
Offset after Layout [m]

(b) Density: offset

10s 20s 30s 60s 120s
Measurement Interval [s]

0

20

40

60

80

100

Offset after Layout [m]

GPS w/o error

CoMon

(c) Interval: offset

10s 20s 30s 60s 120s
Measurement Interval [s]

0

10

20

30

40

50

60

70

80

Average Offset over Time [m] - SR 5s

GPS w/o error

CoMon

(d) Interval: avg. offset over time

Figure 3: Impact of the node density and the measurement
interval.

40% as anchor nodes even in sparse environments with
populations of 22 nodes per km2 (Figure 3(a)). Our approach
reduces the introduced cost by 50% compared to the baseline
approach while still delivering sufficiently accurate position
information for typical applications. In denser environments,
COMON benefits from more anchor nodes (while the fraction
remains the same) and more connections between nodes that
are used in the layout (see Figure 3(b)). The selected mea-
surement interval has two main influencing factors. First, the
amount of the resulting measurements, and thus the introduced
cost, increases significantly with shorter intervals. Second,
for mobile nodes, the retrieved location information is only
valid for the point in time at which it was obtained. Thus,
location measurements and estimations are time-dependent
information—significantly influenced by the duration between
new measurements and estimation calculations. Figure 3(c)
shows the offset after the layout for the different measurement
intervals ranging between 10 s and 120 s. COMON uses the
position estimates from the previous measurement interval
it−1. Hence, the offset increases with an increased measure-
ment interval as the estimates are very likely less accurate
with increasing age. The average offset over time (sampled
every 5 s) changes accordingly (see Figure 3(d)). With speeds
distributed between 1.5 m

s and 2.5 m
s , the offset over time

increases up to 60m even if all nodes measure their position
using GPS without sensor error. We employ a measurement
interval of 20 s if not otherwise stated (Table I).

Compared to the realistic social mobility model [6], used
in the evaluation, the characteristics of COMON remain the
same with Gaussian [14] or random waypoint [13] mobility
models. The random waypoint mobility model results in fewer
interconnections between nodes. In contrast, with Gaussian
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Figure 4: Performance and cost comparison of the collaborative location retrieval service compared to the baseline approaches
with GPS-assisted or Wi-Fi–assisted position sensing.

movement, nodes tend to gather in the middle of the map,
which is beneficial for COMON, but unrealistic concerning
the movement of nodes. The resulting evaluation figures and
the improvements achieved with the composition and range
learner are omitted here for space reasons.

C. Potential of Collaborative Location Retrieval

To assess the potential of our proposed collaborative lo-
cation retrieval service COMON, we compare our proposed
system with the baseline system as used today. The baseline
system describes the localization with either GPS or Wi-Fi
triangulation techniques. Thus, we evaluate different sensing
error models (with error range ε), as proposed in [30], while
omitting the cellular triangulation because it results in high
sensing errors of up to 600m: (i) the no-error sensing model
(ε0m), (ii) the GPS-assisted sensing error between zero and
15m (ε0–15m), and (iii) the Wi-Fi–assisted sensing error
between 0m and 130m (ε0–130m). The sensing errors follow
a circular error probable with its radius set to ε/2. In an
environment where GPS-assisted sensing is used, COMON
reduces the introduced cost of the location retrieval process
significantly compared to the baseline, where all nodes run
GPS localization. Figure 4(a) shows that, with COMON, nodes
are performing cost-intensive measurements for only a fraction
of the overall measurement intervals. Here, with 50% anchor
nodes and the negative interference selection, the fraction of
active measurements over all measurement intervals for the
observed simulation time ranges in its extremes between 20%
and 80%. On average, the needed cost-intensive measurements
can be reduced by 50% using COMON. However, reducing
the resource consumption of the nodes comes at the expense
that the achieved offset of the estimated positions increases.
Nevertheless, with only 50% of the nodes selected as anchor
nodes COMON delivers offsets below 22m for 75% of the
nodes which is only 10m less accurate than the GPS-assisted
baseline approach, as shown in Figure 4(b).

Using Wi-Fi–assisted position sensing is significantly less
cost-intensive than GPS-assisted position sensing, but with
sensing errors ranging between 0m and 130m ε0–130m [30].
Thus, such techniques are often neglected as the achieved po-

sition accuracy is not meeting required standards. Figure 4(b)
shows that, with COMON, the achieved position accuracy im-
proves considerably compared to the Wi-Fi–assisted baseline
approach with sensor error ε0–130m. Whereas the offset for
the Wi-Fi–assisted localization ranges between 30m and 95m
for 75% of the nodes, COMON reduces the offset to a range
between 15m and 35m—which is an improvement of up to
270% (see Figure 4(b)). Additionally, by selecting a subset of
nodes that use the Wi-Fi–assisted localization, the introduced
costs are reduced further even if Wi-Fi–assisted sensing is
already less cost-intensive than GPS-assisted sensing. Thus,
by incorporating additional available connectivity information
into the location retrieval service, as proposed in this work,
the achieved sensing accuracy can benefit strongly while the
introduced cost decreases significantly.

This trend is confirmed by Figure 4(c) and 4(d), which
show the average offset after the layout and the ratio of cost-
intensive states on the nodes for different anchor fraction
configurations of COMON compared to the respective baseline
approach. With no sensing error ε0m and the GPS-assisted
error model ε0–15m, COMON reduces the introduced cost,
at the expense of reduced sensing accuracy shown in the
increased offset (see Figure 4(c)). However, with 75% of the
nodes selected as anchor nodes, COMON achieves average
offsets only 10m larger compared to the baseline approach,
while still reducing the cost by 25%. With Wi-Fi–assisted
position sensing, the potential of COMON unfolds as the
Wi-Fi–based localization baseline approach is outperformed
with respect to (i) the achieved sensing accuracy and (ii) the
introduced costs. Additionally, with an anchor node fraction
of only 40%, COMON nearly matches the achieved offset
compared to using an anchor node fraction of 75%, with both
configurations doubling the achieved average sensing accuracy
as the average offset is reduced by 50%. Thus, with larger
sensor errors, i.e., using techniques such as Wi-Fi–assisted
sensing that are less expensive, it is sensible to select fewer
anchors and to rely on the position estimations achieved with
COMON. Practically, this further decreases the introduced cost
for smaller anchor fractions compared to the baseline approach
(see Figure 4(d)).
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VI. CONCLUSIONS

A plethora of applications and services for future Internet
scenarios, such as the Internet of Things and mobile social
networks, are of the class of location-based services. These
share their need for frequent and accurate position updates to
provide for functionality. However, accurate location retrieval
can be cumbersome with different localization technologies
such as GPS of Wi-Fi–assisted triangulation at hand. While
technologies based on GPS readings provide for more accurate
results, they introduce high costs, which reduce the acceptance
of the users to use such services. Wi-Fi–assisted technologies
may reduce the cost but lack the needed accuracy.

In this paper, we therefore propose the combination of
location and connectivity information between users to provide
for accurate position estimations at reduced cost. To this
end, we introduce the collaborative location retrieval service
COMON that estimates each user’s position by using position
measurements of a fraction of selected nodes in combination
with connectivity information among users. We analyze the
impact of different compositions of COMON with respect
to changing environmental conditions and the potential of
COMON compared to GPS- and Wi-Fi–assisted localization
in an in-depth simulation-based evaluation. In doing so, we
focus on (i) the achieved sensing accuracy, (ii) the introduced
costs of the location retrieval, and (iii) the fairness among
users with respect to the cost-intensive measurement task.
Our results show that, depending on the location sensing
technology, COMON reduces the introduced cost significantly
and improves the achieved sensing accuracy and the fairness
among users.

We are currently investigating how movement prediction can
improve the location estimation accuracy achieved COMON.
If the movement vector of individual nodes can be predicted,
the layout technique used in our approach can benefit from
the additional information when estimating the positions of
the mobile nodes. Beside this, we are planning a experimental
analysis of the proposed service to assess the services perfor-
mance under real-world influences, such as node churn.
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