40th Annual IEEE Conference on Local Computer Networks

LCN 2015, Clearwater Beach, Florida, USA

Nils Richerzhagen, Tao Li, Dominik Stingl, Bjorn Richerzhagen, Ralf Steinmetz, and Silvia Santini:
A Step Towards a Protocol-Independent Measurement Framework for Dynamic Networks. In: 40th Annual IEEE
Conference on Local Computer Networks (LCN 2015), p. 671-674, October 2015. ISBN 978-1-4673-6770-7

A Step Towards a Protocol-Independent
Measurement Framework for Dynamic Networks

Nils Richerzhagen*, Tao Lif, Dominik Stingl*, Bjérn Richerzhagen*, Ralf Steinmetz*, and Silvia Santini
*Multimedia Communications Lab, Technische Universitit Darmstadt, Darmstadt, Germany
Email: {nils.richerzhagen, dominik.stingl, bjoern.richerzhagen, ralf.steinmetz } @kom.tu-darmstadt.de
T"Embedded Systems Lab, Technische Universitit Dresden, Dresden, Germany
Email: {tao.li, silvia.santini} @tu-dresden.de

Abstract—Existing measurement frameworks typically assume
that the communication protocols and mechanisms running on
the devices do not change during network operation. How-
ever, recent research efforts show that by enabling devices
to switch between protocols and mechanisms at runtime the
overall network performance can be improved. In this paper, a
novel measurement framework that enables the continuous and
consistent measurement of monitoring metrics even across such
adaptations in networks is presented. The framework exploits
monitoring metrics locally on the devices (i) irrespectively of the
used mechanisms or protocols on the devices and (ii) allows other
mechanisms and applications in the network to adapt to changes
by referring monitoring information from the framework. A
proof-of-concept prototype of the measurement framework is
used to show that the work represents a promising step towards
protocol-independent, adaptive monitoring in dynamic networks.

I. INTRODUCTION

A large number of communication mechanisms for static
and dynamic networks have been presented in the literature.
The characteristics of these mechanisms may vary significantly
depending on their goal and the specific type of network
they have been designed for. For instance, in wireless sensor
networks (WSNs) communication protocols must be able to
operate on sensor nodes, which have very limited compu-
tational and memory resources [1]. In mobile networks, the
mobility of the nodes must be taken into account [2]. In delay-
tolerant networks communication mechanisms must cope with
frequent and possibly long periods of lack of connectivity [3].

This large variety of available communication mechanisms
— hereafter also referred to as protocols, for simplicity — allows
to cope with an accordingly large number of different network
conditions. However, these conditions rarely remain constant
during network operation. For instance, the average velocity
at which nodes move or the occurring data traffic load might
change over time or can be different in parts of the network.
Accordingly, the ability of a protocol to provide for good
performance might also change.

As an example, consider a network of 50 nodes running the
Optimized Link State Routing (OLSR) [4] protocol. Figure 1
shows that the performance of OLSR — expressed in terms
of overall data delivery ratio — decreases significantly when
the average velocity of the nodes increases from 0 to 7 m/s.
Under the same conditions, the data delivery ratio of nodes
running the Ad hoc On-Demand Distance Vector Routing

(AODV) protocol [5] remains nearly constant. Thus, changing
at runtime the mechanisms that operate in the network can
result in better network performances, as also recently shown
in [6], [7], [8].

Whether or not a mechanism should be replaced at runtime
depends on current network and environmental conditions
as well as on application-specific requirements. To gather
information about these conditions and requirements a moni-
toring mechanism is needed. Existing monitoring approaches,
however, typically assume static, non-changing mechanism
configurations. To address this issue, we present a measure-
ment framework, dubbed Proton, that can operate in networks
in which communication mechanisms change at runtime.

Proton is a modular measurement framework that relies
on a set of generic interfaces to measure relevant data about
communication mechanisms running on network nodes. This
data can then be reported to other nodes using state-of-the-
art data collection mechanisms, such as [8], [9], [10], which
can be readily integrated in Proton. We implement a proto-
typical version of Proton on the OMNeT*™ simulator and
evaluate its feasibility. In particular, we show that Proton can
continuously and consistently measure monitoring metrics in
ad hoc networks in which routing protocols can be exchanged
at runtime. The evaluation of Proton in more generic settings —
e.g., other type of protocols, networks, and a multi-mechanism
scenario — is left to future work.

The remainder of this paper is organized as follows. In
Section II we outline the main requirements Proton must be
able to comply with and describe its architecture. Section
IIT describes Proton’s preliminary proof-of-concept evaluation
results. In Section IV we review representative examples of
monitoring frameworks for wireless networks. Finally, Section
V concludes the paper.

II. PROTON: DESIGN OF A PROTOCOL-INDEPENDENT
MEASUREMENT FRAMEWORK

The main rationale behind the design of the measurement
framework is to enable a node to continuously measure basic
monitoring metrics also when (protocol) adaptations occur at
runtime. In this section, we first highlight the requirements
Proton must be able to comply with. Subsequently, we present
Proton’s architecture, focusing on its key components.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and
technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not
withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms
and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

978-1-4673-6770-7/15/$31.00 ©2015 |IEEE 671

rst
Textfeld
Nils Richerzhagen, Tao Li, Dominik Stingl, Björn Richerzhagen, Ralf Steinmetz, and Silvia Santini:
A Step Towards a Protocol-Independent Measurement Framework for Dynamic Networks. In: 40th Annual IEEE Conference on Local Computer Networks (LCN 2015), p. 671-674, October 2015. ISBN 978-1-4673-6770-7

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

@
(=]

-A-A0ODV|
—-OLSR

~
o
4

[o2]
(=]

[$))
o
T

S
I
B
-

\

Data Delivery Ratio [%]
w
o

n
o
T

o 01 05 1 3 5 7
Node speed [m/s]

—
o

Fig. 1: Average data delivery ratio obtained for the routing
protocols AODV and OLSR under different node velocities.

A. Requirements

Proton must be able to provide information about the
functioning (or malfunctioning) of a network irrespectively
of which specific configuration of communication protocols
and mechanisms is currently operating in the network. Con-
sequently, Proton must be profocol-independent. Furthermore,
Proton must be adaptive, i.e., it must be able to operate without
disruptions when protocols or mechanisms are exchanged at
runtime. Proton must also be lightweight because it is expected
to run on a large number of — possible resource-constrained —
devices, Its code-size and computational and memory overhead
must thus be kept as low as possible. At the same time, Proton
must provide a comprehensive monitoring service. This im-
plies that Proton must enable the collection of a representative
set of monitoring metrics, which in turn might need to be
collected according to different modalities — e.g., at regular
time intervals or upon the occurrence of an event. We designed
Proton to make it able to comply with the requirements listed
above. In the following, we provide a brief description of
Proton’s architecture and prototypical implementation. Due to
space constraints, a more comprehensive description of Proton
is left to future work.

B. Architecture

Figure 2 shows the generic architecture we devise for
Proton. We define three main abstractions: Monitoring Com-
ponents, a Controller, and Monitoring Access Points (MAPs).
Proton distinguishes between two types of metrics: low-level
and high-level metrics. The former do not require complex
computations or coordination among nodes to be measured.
Also, low-level metrics can be collected for the majority of
existing mechanisms. Examples of low-level metrics include
the number of messages sent and received by routing pro-
tocols. High-level metrics are instead computed as functions
of one or more low-level metrics. The number of expected
transmissions [11] and the expected transmission time [12] are
examples of high-level metrics. The extension and refinement
of the set of metrics is part of our future work especially, when

S

Subscription -
Monitoring Components Message;—

Subsr\lJer/
Publisher
Paradigm

U:pda(e
Message |

Protocol/
" Mechanism A
m,! Protocol/
Mechanism B
= Protocol/
W Mechanism C

Fig. 2: Proton’s main components: Monitoring Components,
Controller, and Monitoring Access Points (MAPs)

Controller
\2

Data
Collection/
Aggregation

Local
Storage

High-level metrics
Low-level metrics

combining Proton with adaptive overlay mechanisms, such as
(61, [71.

Making Proton protocol-independent requires making it ag-
nostic to the specific mechanisms that are currently operating
on the nodes. This is achieved through the use of Monitoring
Access Points (MAPs), which represent interfaces through
which Proton can gather information from the mechanisms. A
MAP specifies a set of metrics that can be measured along with
corresponding tunable options (e.g., granularity, frequency).
The monitored mechanisms must implement a MAP in their
own code. We have implemented a prototypical version of
Proton in OMNeT ™ and can show that the implementation of
MAPs causes a negligible increase of the overall code size of a
protocol. For instance, the code snippet below shows the logic
needed to update the value of a metric, which is implemented
in only three lines of code.
if (monitoringOn) {

forwarded_packet++;

monitoring_access_point—>

updateMetricValue (” forwarded_packet”,
forwarded_packet);

The fact that the use of Proton requires the code base
of existing protocols to be modified is probably the most
significant drawback of our framework. On the other side,
making networks able to change protocols and mechanisms
at runtime will inevitably require changes to network stack
implementations.

The Controller shown in Figure 2 allows Proton to com-
municate with the monitored mechanisms. The communica-
tion between MAPs and the Controller adopts a subscriber-
publisher paradigm to enable flexible selection and harvesting
of monitored metrics. In Proton, the Controller subscribes to
metrics. MAPs located in each protocol are the corresponding
publishers of these metrics. The Controller creates a subscrip-
tion message that contains the required metrics, including
the specification of their updating strategy (e.g., periodical
or threshold-based). MAPs in turn decode the subscription
packet and adapt their own configuration accordingly. Once a
metric is subscribed to, its values are published using update
messages. The reasons behind our choice of a subscriber-
publisher-model are (i) the heterogeneity of the mechanism
(with respect to available metrics) and (ii) the heterogeneous
requests for different dimensions in granularity of the moni-
tored data.

672

Description Symbol Value Unit
Total simulation time Tim 300 S
Network deployment area Ly X Ly 2500 x 1500 m
Number of nodes Fnodes 50

Inter Packet Interval (IPI) Tipr 0.5 S
Randomization of IPI Trand [-0.1...0.1] s
Protocol switch times tr 80, 160, 240 S
Randomized node start time startTime [1...60] S

TABLE I: Descriptions, symbols, and values of the most
relevant simulation parameters.

The role of the Controller is that of dispatching messages
from and to Monitoring Components and MAPs. Thereby,
the Controller can include additional logic to pre-process the
data in a protocol-dependent manner whenever needed or
appropriate. Thus, it is assumed that the Controller is aware
of the deployed protocols on the node. This allows for ad-
ditional flexibility and better decoupling between Monitoring
Components and MAPs. The presence of the Controller is also
meant to support situations in which more than one protocol
is active at the same time. We assume this situation to be
likely to appear for short time periods when an adaptation is
performed.

Key features of the Monitoring Components abstraction
are the local storage and component for data collection.
The storage locally records metrics measured from protocols.
Proton allows using different data structures or connecting
with a database as the storage back-end. In the prototype of
Proton, we use a cyclic queue to manage measured metrics
on one single node. The data collection component can in-
herit complex collection and aggregation mechanisms such as
[8], [9], [10]. In doing so, Proton can focus on local data
measurement whereas other mechanisms that are specifically
developed for data collection or aggregation can be plugged
into the framework to enable intercommunication between
monitoring devices.

III. EVALUATION

The prototype of Proton allows us to show its ability to
provide for monitoring capabilities in adaptive networks. In
particular, we show that Proton is able to measure monitoring
information across protocol adaptations irrespectively of the
specific protocol running on the node. To this end, we consider
two representative routing protocols — AODV and OLSR [5],
[4]. We program Proton to monitor an exemplary low-level
metric, the number of control packets sent by the routing
protocol, indicated with C'P;,. For the simulation we rely on
a scenario as specified by the parameters listed in Table I. We
simulate a network of 50 nodes that are uniformly deployed
at random over a rectangular area of 2500m x 1500m. Nodes
move through the modeled area using the default MassMobility
model of OMNeT++. We let each node generate a data packet
at a pre-defined Inter Packet Interval (IPI), which is to 0.5
seconds. To avoid packet collisions, we also add a random
delay of £0.1 seconds to the IPI. Also, nodes start actively
sending both control and data packets in the network only

AODV OLSR AODV OLSR

Tiss1

14001
12001
1000

800

600

of sent CP

’Fﬁ/T 580

400r

2001

0 40 80 120 160 200 240 280
Simulation time [s]

Fig. 3: Number of transmitted control packets over time for
the node with ID 24.

1500,
o 7
© 1000 7
c
a / /
g 500 S/ D
= -
7, / ~ 7/ 7
24;—\'\;\ // ' /) R
1 e e, 7] —
=" A 540280
%y 12 9 A~ 160200° e\
- g0 120120 yme

6 5, 80 i
3 0&(0 40 s'\mu\a“

Fig. 4: Number of transmitted control packets over time for
25 nodes (identifiers 0 to 24).

after a startTime delay has passed. The value of this delay is
determined individually by each node and is chosen uniformly
at random from the interval [1s, 60s]. We let the simulation run
over 300 seconds so that at least a few hundreds packets can be
transmitted by each node. In the beginning the AODV protocol
is deployed on the nodes. At a pre-defined time, an adaptation
is triggered and the OLSR protocol is dynamically loaded onto
the nodes to replace AODV. At a later point in time, OLSR is
replaced by AODV and then takes over again. We specify the
timestamps for these adaptations to be 80s, 160s, and 240s.
As a reminder, the pre-defined protocol adaptations are used
in this proof-of-concept evaluation as a replacement for future
adaptations triggered by other mechanisms like [6], [7], [8].

Figure 3 shows the progress of the local value of CPy,
over the complete simulation time for a randomly picked node.
The picture also outlines the different protocol adaptations and
the exact values of C'Py, measured right after an adaptation
occurs. During the first approximately 15s the value of C' Py,
is zero due to the random start-up delay. Figure 4 shows the
same plot as Figure 3 but for all nodes with identifiers between
0 and 24. Both figures show that Proton continuously captures
monitoring metrics even when adaptations occur.

IV. RELATED WORK

For consistency with the mentioned example and the evalu-
ation that both consider mobile (ad hoc) networks, the related

673

work focuses more on that network area. Many monitoring
solutions focus on the collection of monitoring data over the
network, assuming that the monitoring data is already present
locally. It is not further investigated how to measure and access
data on nodes in the network. To tackle this problem the local
data measurement is of main interest. Some approaches collect
monitoring data through dedicated devices that are co-located
with the network to monitor. They build a separate network
for passive monitoring. MMAN [13] relies on dedicated
nodes that passively collect data by overhearing messages
exchanged by the monitored nodes. Similar to MMAN, the
framework presented by Badonnel et al. [14] relies on separate
nodes to capture and process the data over a two-tiered
architecture. Badonnel et al. present an extensive network
information model that can be extended to collect additional
metrics specific to the underlying routing protocol. However,
both passive approaches lack the possibility to retrieve more
detailed information that cannot be overheard. Furthermore,
none of the approaches is able to handle a protocol adaptation
at runtime. The concept of Proton instead is not bound to
a specific protocol or mechanism, as the concept of generic
monitoring access points entails the flexible measurement of
metrics during adaptations.

Active monitoring approaches directly measure data on the
respective nodes. DAMON [15] is an example of such a
two-tiered monitoring-architecture. It uses network nodes to
periodically capture relevant monitoring data and then lets
the nodes subsequently push this data to dedicated sinks. In
addition to the monitoring of network metrics, DAMON is
able to capture relevant statistics of AODV. Approaches like
DAMON heavily rely on the availability of a specific routing
protocol to work properly. Thus, they are unable to adapt
protocol transitions that can occur at runtime. Mesh-Mon [16]
and the Grid Base Hierarchy [17] operate on different routing
protocols or can be extended to capture relevant metrics of
a new routing protocol [18]. However, they are not able to
adapt to the transition of a routing protocol at runtime and to
capture protocol-independent metrics. Other very sophisticated
data collection and dissemination approaches such as [8], [9],
[10] assume that data is present locally on the nodes. Proton
can be used for such approaches as component to measure that
data.

V. CONCLUSIONS AND OUTLOOK

In this paper we have described the preliminary design and
implementation of Proton, a protocol-independent measure-
ment framework for dynamic networks. In this context, we
derived the requirements that must be met by a measurement
framework. Although still limited in terms of functionality,
Proton represents a first concrete step towards enabling reliable
local measurement in adaptive networks.

Our future work includes the extension of the metric set sup-
ported by Proton as well as the consideration of more advanced
Monitoring Components. In particular, we until now focused
on the local behavior of Proton on a single node. We plan to
extend Proton’s implementation with adequate collection and

aggregation mechanisms such as [8], [9], [10]. Incorporating
such approaches is highly relevant for the monitoring, as more
accurate regional and global knowledge can be established
and analysis steps are distributed in the network. Furthermore,
we plan to use the framework in other scenarios than the
one proof-of-concept scenario of this paper. One example
for that may be a more user-centric application such as live
video-streaming [6] or context based publish/subscribe [7].
As such applications/systems also need network information
to derive the overall system load, a monitoring system has
to continuously observe the system state even when e.g.
dissemination or scheduling schemes are changed.

ACKNOWLEDGMENT

This work has been funded by the German Research
Foundation (DFG) as part of projects BO1/C02 within the
Collaborative Research Centre (CRC) 1053 — MAKI.

REFERENCES

[1] K. Akkaya and M. Younis, “A Survey on Routing Protocols for Wireless
Sensor Networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 — 349, 2005.

[2] S. Taneja and A. Kush, “A Survey of Routing Protocols in Mobile Ad
Hoc Networks,” Innovation, Management and Technology, vol. 1, no. 3,
pp. 279-285, 2010.

[3] S. Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant Network,”
in ACM SIGCOMM, 2004, pp. 145-158.

[4] T. H. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626, 2003.

[5]1 S.R.Das, E. M. Belding-Royer, and C. E. Perkins, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561, 2003.

[6] M. Wichtlhuber, B. Richerzhagen, J. Riickert, and D. Hausheer, “TRAN-
SIT: Supporting Transitions in Peer-to-Peer Live Video Streaming,” in
IEEE/IFIP Networking, 2014.

[7]1 B. Richerzhagen, D. Stingl, R. Hans, C. Gross, and R. Steinmetz, “By-
passing the Cloud: Peer-assisted Event Dissemination for Augmented
Reality Games,” in /IEEE P2P, 2014.

[8] N. Richerzhagen, D. Stingl, B. Richerzhagen, A. Mauthe, and R. Stein-
metz, “Adaptive Monitoring for Mobile Networks in Challenging Envi-
ronments (accepted for Publication),” in JEEE ICCCN, 2015.

[9] D. Stingl, C. Gross, L. Nobach, R. Steinmetz, and D. Hausheer,

“BlockTree: Location-aware Decentralized Monitoring in Mobile Ad

Hoc Networks,” in IEEE LCN, 2013.

D. Stingl, R. Retz, B. Richerzhagen, C. Gross, and R. Steinmetz, “Mobi-

G: Gossip-based Monitoring in MANETS,” in IEEE/IFIP NOMS, 2014.

D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-

Throughput Path Metric for Multi-Hop Wireless Routing,” Wireless

Networks, vol. 11, no. 4, pp. 419-434, 2005.

R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop

Wireless Mesh Networks,” in ACM MobiCom, 2004.

H. Kazemi, G. Hadjichristofi, and L. A. DaSilva, “MMAN - A Monitor

for Mobile Ad hoc Networks: Design, Implementation, and Experimen-

tal Evaluation,” in ACM WiNTECH, 2008, pp. 57-64.

R. Badonnel, R. State, and O. Festor, “Management of Mobile Ad Hoc

Networks: Information Model and Probe-based Architecture,” Network

Management, vol. 15, no. 5, pp. 335-347, 2005.

K. N. Ramachandran, E. M. Belding-Royer, and K. C. Almeroth,

“DAMON: A Distributed Architecture for Monitoring Multi-Hop Mobile

Networks,” in IEEE SECON, 2004.

S. Nanda and D. Kotz, “Mesh-Mon: A Multi-Radio Mesh Monitoring

and Management System,” Special Issue: Modeling, Testbeds, and

Applications in Wireless Mesh Networks in Computer Communications,

vol. 31, no. 8, pp. 1588-1601, 2008.

I. Gupta, R. van Renesse, and K. P. Birman, “Scalable Fault-Tolerant

Aggregation in Large Process Groups,” in /EEE DSN, 2001.

R. Riggio, M. Gerola, D. Miorandi, A. Zanardi, and F. Jan, “A

Distributed Network Monitoring Framework for Wireless Networks,” in

IFIP/IEEE IM, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

674

