
CBFR: Bloom Filter Routing with Gradual Forgetting for
Tree-structured Wireless Sensor Networks with Mobile Nodes

Andreas Reinhardt∗, Olivia Morar∗, Silvia Santini†, Sebastian Zöller∗, Ralf Steinmetz∗

∗Multimedia Communications Lab, Technische Universität Darmstadt, Germany
{andreas.reinhardt, olivia.morar, sebastian.zoeller, ralf.steinmetz}@kom.tu-darmstadt.de

†Wireless Sensor Networks Lab, Technische Universität Darmstadt, Germany
santinis@wsn.tu-darmstadt.de

Abstract—In tree-structured data collection sensor networks,
packets are routed towards a sink node by iteratively choosing
a node’s immediate parent node as the next hop. It is however
beyond the scope of these routing protocols to transfer messages
along the reverse path, i.e., from the sink to individual nodes in
the network. In this paper, we present CBFR, a novel routing
scheme that builds upon collection protocols to enable efficient
point-to-point communication. We propose the use of space-
efficient data structures known as Bloom filters to efficiently
store routing tables on the networked devices. In particular,
each node in the collection tree stores the addresses of its direct
and indirect child nodes in its local Bloom filter. A packet is
forwarded down-tree only if the node’s local filter indicates the
presence of the packet’s destination address among the node’s
descendants. In order to cater for the presence of mobile nodes,
we apply the concept of counting Bloom filters to allow for
the removal of elements from the filter by means of gradual
forgetting. The effectiveness of our approach in achieving both
high delivery rates and low overhead is demonstrated by means
of simulations and experiments.

I. INTRODUCTION

The flow of data in Wireless Sensor Networks (WSNs) is
commonly directed from a large number of sensing devices
towards a data-collecting sink node. In order to deliver the
collected readings to the sink, convergecast routing protocols
like MintRoute [1] or the collection tree protocol (CTP) [2]
are commonly being used. While these collection protocols
cater for an efficient collection of sensor data, directed
communication from the sink to individual sensor nodes is
beyond their scope. A back channel is however essential in
many scenarios, e.g., in order to alter the reporting intervals
of specific sensors or change their configuration [3].

Existing approaches to realize back channels mostly either
rely on dissemination protocols or use point-to-point routing
schemes. However, neither approach fulfills the requirements
of the application scenario at hand. Dissemination protocols
like Trickle [4] enable the sink node to propagate informa-
tion to all devices in the WSN, but do not support addressing
individual nodes. In contrast, point-to-point routing schemes
like DSDV [5] enable message passing between any two
nodes in the network, but come at the cost of a large
overhead to build and maintain the routing tables.

We leverage the tree structures established by collection
protocols for enabling lightweight point-to-point commu-
nication. On each sensor node, a Bloom filter (BF) [6]
is used to maintain the identities of all its descendants at
a constant memory overhead. This routing information is
forwarded towards the sink (i.e., up-tree) along the existing
collection tree. Once information about the BFs of all nodes
has reached the sink, each node in the network possesses
knowledge about the addresses of all of its direct and indirect
child nodes. This knowledge is then used by the nodes
to verify their list of reachable nodes before forwarding a
message addressed to a specific node with greater depth in
the tree (i.e., down-tree).

Since Bloom filters are probabilistic space-efficient data
structures, they can be used conveniently even on memory-
constrained sensor nodes. Thanks to the combination of
collection trees and Bloom filters, our Counting Bloom Filter
Routing (CBFR) scheme caters for efficient point-to-point
communication at: (1) lower messaging overhead than ap-
proaches based on flooding; (2) lower memory demand than
traditional point-to-point routing schemes; and (3) lower
delay than typical dissemination protocols.

The main contributions of this paper are the following:

• We discuss the operation of our routing scheme for the
case of static network topologies.

• We introduce the gradual forgetting component, based
on counting Bloom filters, in order to account for node
mobility.

• We evaluate CBFR in both simulations and experiments
and show its performance in terms of packet delivery
ratio and overhead.

After revisiting the targeted scenario and our basic as-
sumptions in Sec. II, we present our CBFR approach in
detail in Sec. III. In Sec. IV, we describe the design of
the gradual forgetting component, while the evaluation of
CBFR through simulations and real-world experiments is
reported in Sec. V. After discussing related work in Sec. VI,
we summarize the key contributions of this work and high-
light possible directions for further research in Sec. VII.

rst
Textfeld
Andreas Reinhardt, Olivia Morar, Silvia Santini, Sebastian Zöller, Ralf Steinmetz: CBFR: Bloom Filter Routing with Gradual Forgetting for Tree-structured Wireless Sensor Networks with Mobile Nodes. In: Proceedings of the 13th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-9, June 2012. IEEE Press, ISBN 978-1-4673-1239-4.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



II. SCENARIO AND ASSUMPTIONS

Before elaborating on the details of CBFR, we briefly
introduce the assumptions made for the underlying network.

A. Data Collection Protocol

The majority of WSNs is based on the collection of
data from sensor nodes deployed within a region of inter-
est. Common application domains include environmental or
habitat monitoring, industrial process surveillance, or struc-
tural health monitoring (e.g., [7], [8]). In such data collection
networks, sensor readings captured by the deployed nodes
are generally forwarded to one or multiple sink nodes in a
multipoint-to-point manner. To this end, collection protocols
are predominantly employed, which establish a spanning tree
rooted at the sink. In order to route packets towards the sink,
each node retains local knowledge about the next routing
hop, i.e., knowledge about the address of its parent in the
tree. Due to the acyclic property of spanning trees, nodes in
a stable tree can be assumed to have at most one parent.

The existence of a tree-based routing structure is an
essential prerequisite for the operation of our CBFR scheme.
For the sake of simplicity, we will assume this underlying
protocol to be CTP [2], a well-known best-effort collection
protocol for WSNs. However, CBFR can operate on top of
any arbitrary tree-based collection protocol.

B. Node Mobility

Collection protocols in general (and CTP in particular)
are tailored to purely static sensor networks and thus only
have indirect ways to cope with node mobility. In order to
reduce the messaging overhead for the tree construction and
maintenance, CTP progressively increases the time interval
at which beacons are transmitted for neighbor discovery.
Only when inconsistencies in the routing tree (e.g., loops)
are detected, CTP resets its beaconing interval to a default
minimal value of 128ms [2]. In other cases, however, the
maximal length of the beaconing interval increases up to
512,000ms, i.e., more than 8 minutes, by default. As a result,
topology changes incurred by the motion of mobile nodes
may remain undiscovered or even lead to routing loops. To
accommodate a more reactive behavior in the presence of
mobile nodes, we thus reduce the upper bound of CTP’s
exponentially increasing beaconing interval to 10,240ms. As
a result, the faster integration of new devices and mobile
nodes, such as sensors attached to autonomous robots, into
the collection tree is enabled. If mobile nodes are moving
at a slower speed or their presence needs to be detected less
accurately, the upper limit of the adaptive beaconing should
however be adapted to the scenario requirements at hand.

For the remainder of this paper, we assume a WSN in
which the sink node is static, whereas intermediate nodes
are possibly mobile. All mobility-related parameters used in
our simulations are discussed in detail in Sec. V along with
the experimental setup.

1

3

6

2

54

7

Reachable nodes:
6,7

Reachable nodes:
3,4,5,6,7

Reachable nodes:
2,3,4,5,6,7

Figure 1. Local knowledge of addresses of direct and indirect child nodes

III. BLOOM FILTER-BASED ROUTING FOR WSNS

Our CBFR scheme provides point-to-point routing func-
tionalities between nodes in a WSN. Similar to other proac-
tive distributed routing schemes, each node maintains a
routing table that stores the addresses of its directly and
indirectly reachable nodes1. In contrast to fully distributed
schemes, however, CBFR exploits the presence of an exist-
ing collection tree to cater for a directed routing of messages
towards their destination. Fig. 1 exemplary shows an excerpt
of a tree-based routing topology with corresponding anno-
tations about the reachable descendants of three nodes.

A major difference to traditional routing schemes is the
fact that CBFR does not store the set of direct and indirect
descendants as a dynamically expanding list. Especially in
operating systems without support for dynamic memory
allocation, such as TinyOS [9], worst-case assumptions need
to be made when allocating memory to the routing tables. In
an exemplary tree topology comprised of 511 nodes, each of
the one-hop neighbors of the sink node would thus have to
allocate memory for at least 509 addresses in their routing
table. Under the assumption that a 16-bit-wide address field
is used, the memory demand for the routing table exceeds
1,000 bytes. However, in the more likely case of a balanced
binary tree, only 254 entries, i.e., less than half of the worst-
case requirement, would be needed. Instead of relying on a
priori estimations of the expected number of entries in the
routing table, we utilize a BF in order to store only the actual
set of reachable children. In contrast to allocating memory
according to the worst-case assumptions, the space-efficient
probabilistic data structure only incurs a constant memory
demand of the routing table, and thus strongly contributes to
its applicability on resource-constrained embedded systems.

1An extension of our concept would be to store the routable destination
addresses for each direct child node. This would however require an
individual list for each direct child and thus infer an additional demand
for memory.



A. Bloom Filters Revisited

The operation of a BF comprises two methods: (1) element
insertion to store new elements into the filter; and (2)
membership query to verify whether an element is present
in the filter. It needs to be remarked at this point that BFs
do not provide support for the deletion of entries by design.

1) Element Insertion: A BF is typically implemented as
an array of m bits, which are initially all set to ‘0’. In order
to insert a data element into the bit array, h hash functions
are calculated over the element to insert. In our case, such
an element is a unique address of a sensor node. Each of
the hash functions returns the index of an element of the bit
array, which is accordingly set to ‘1’. The insertion of an
element thus corresponds to setting the h bits signaled by the
hash functions to ‘1’. In case a bit has already been set to ‘1’
prior to the insertion operation, its state is not altered. Fig. 2
displays the insertion of two elements input1 and input2 into
a BF with m=16 bits and h=3. The figure also shows a
collision at the sixth position of the BF, where the hash
functions map to the same entry for both input sequences.
Such collisions cause the occurrence of false positives, as
detailed below.

0 1 0 1 0 1 0 0

Hash(input1) Hash(input2)

1 0 0 0 0 0 1 0

Figure 2. Insertion of two elements into a Bloom filter (m=16, h=3)

2) Membership Query: In order to check whether an
element is contained in a BF, the hash functions of the
input element are calculated first. If any of the bits at the
h positions in the BF is set to ‘0’, the input element is
certainly not contained in the BF. When all bits at the h
positions are set to ‘1’, the input symbol is a member of the
BF with a certain probability. Depending on the number of
hash functions and the length of the bit array, a membership
query might however return a false positive statement.

The likeliness of false positives depends on the values
of m and h as well as on the number t of elements
already inserted into the BF. Under the assumption that the
outputs of the hash functions are independent and uniformly
distributed, the probability of a membership query to return
a false positive, indicated as PFP , is calculated as [6]:

PFP = (1− (1− 1

m
)ht)h ≈ (1− e−ht

m )h

User-specified estimations for the desired false positive
probability and for the expected number elements (t) allow
to specify the parameters of a BF as h = d−log2PFP e and
m = d ht

ln(2)e.

B. Bloom Filter Dimensioning and Population

Let us refer back to the example introduced in the
beginning of this section. Using the above equations, a BF
capable of storing an average number of 254 elements at a
false positive probability below 0.07 would require the use of
h=4 hash functions and a BF size of m=1,466 bits (i.e., about
184 bytes). This represents an 82% gain in terms of space
efficiency with respect to the aforementioned example of a
routing table with 509 entries. However, in order to avoid
the propagation of incomplete routing information due to
packet losses, we have imposed a constraint on the BF size,
namely that it should be sufficiently small to completely fit
into an IEEE 802.15.4 frame [10]. The only way to reduce
the size of the filter for a given number of expected entries
is by increasing the allowance for false positives.

Each node stores a BF, which can be queried for the
presence of node addresses in the down-tree neighborhood.
The size of the BF as well as the number and definition
of the hash functions are identical across all nodes in the
network. The BF is initially only populated with the node’s
own address, resulting from the application of the h hash
functions to the node’s address and setting the corresponding
entries in the local BF. Upon each reception of BF update
from a child node (described below), the local BF is updated
in order to reflect the presence of all direct and indirect child
nodes.

C. Bloom Filter Forwarding

After its deployment, the WSN is organized as a tree
by CTP. Instead of adapting the internals of the CTP
implementation to carry specific packet payloads for the
required routing messages, our design relies on the interfaces
publicly exposed by CTP as visualized in Fig. 3. Concretely,
the following two interfaces to the CTP engine are used by
our BF-based routing:

1) The up-tree collection interface to forward messages
to the sink node.

2) The interface to intercept messages received by a child
node on their way towards the sink.

Besides the interface provided by the collection protocol,
our scheme employs a direct connection to the radio stack
in order to send and receive broadcast messages. The reg-
ular operation of our routing scheme commences by the
aforementioned step of initializing the local BF, followed
by the publication of the routing table to the next hop in
the direction of the tree root. In other words, the up-tree

Bloom
filter

routing Intercept

Up-tree
collection

Down-tree
broadcast

Broadcast 
reception

CTPBroadcast

Figure 3. Interfaces of our routing scheme to the wireless channel



collection interface is used to transfer the BF towards the
sink and thus update the BFs of all intermediate nodes. In
its practical realization, the updates of the BF can also be
piggybacked on CTP beaconing messages in order to reduce
the additionally introduced communication overhead.

In contrast to the regular operation of CTP, which trans-
parently forwards packets towards the sink, we have attached
CBFR to CTP’s interception interface. If an intercepted
packet contains regular sensor data, it is passed on to the
regular up-tree collection mechanism. However, if a repre-
sentation of the BF is present in the intercepted message,
the receiving node removes the message from the CTP
retransmission queue and forwards it to the BF routing
mechanism, which calculates the bitwise logical disjunction
of both bit vectors and stores the result into its own BF. As a
result of the bitwise logical OR operation, the local BF also
contains a combined list of directly and indirectly reachable
nodes.

BFlocal := BFlocal ∨BFrecv

After updating the local Bloom filter’s bit array according
to the intercepted BF update message, the node again uses
the up-tree collection interface to forward its own updated
BF towards the root. In the regular operation mode, the BF
is transmitted at a defined update period φ only; this interval
is slightly randomized [4] to avoid continuous collisions of
BF update messages. In order to quickly integrate new nodes
into the BFs of all up-tree nodes, we have supplemented the
periodic transmission of updates by a fast update mecha-
nism. Whenever the BF of a down-tree node is received, its
content is matched against the local BF, and the local BF
content is immediately forwarded up-tree in case a difference
is detected. The fast update approach has been chosen to
improve the responsiveness of the approach, while ensuring
that immediate updates are only transmitted when changes
to the topology occur. The up-tree communication of BFs is
summarized in Algorithm 1.

Algorithm 1 Local forwarding decision for up-tree traffic
BFlocal: Locally stored Bloom filter
BFreceived: Bloom filter in intercepted up-tree packet
φ: Periodic up-tree update interval

if (packet intercepted from up-tree forwarding) then
if ((BFrecv ∨BFlocal) 6= BFlocal) then

Immediately forward the packet up-tree
BFlocal := BFrecv ∨BFlocal

else
Queue forwarding until expiry of current interval φ

end if
end if

D. Hash Function Selection

In order to ensure the efficient operation of the BF, a
fast hash function with low energy demand is required. The

Table I
EXECUTION TIME AND RESOURCE DEMAND OF THE HASH FUNCTIONS

Hash function Execution (µs) ROM (bytes) RAM (bytes)
Thomas Wang 27 178 2

hash7shift 28 188 2
Bob Jenkins 28 196 2
hash32shift 59 198 2

hash32shiftmult 104 162 2
MurmurHash 204 522 32

CRC16 438 410 1060

task of the hash function is to map an input value, i.e.,
the address of a node in the network, to a set of values
that point to offsets in the BF, which are then set to ‘1’
in the bit vector. Collisions, i.e., identical hash values for
different input sequences, are almost impossible to avoid
because the universe of keys is usually larger than the
number of possible output values. Ideally, however, the used
hash function should have a low number of collisions whilst
being applicable on nodes with limited resources and tight
energy budgets.

In order to select a suitable hash function, we have imple-
mented several hash functions in TinyOS and assessed their
performance. Each hash function calculates the hash values
for 16 bit wide input values which have been generated using
a random number generator. The size of 16 bits has been
particularly selected, because it represents the size of node
addresses when the 16 bit addressing mode of the IEEE
802.15.4 standard is selected. The generated random node
addresses have been hardcoded into our TinyOS implemen-
tation to minimize possible delays for data access during
our experimental evaluation. Table I shows the average
execution time for processing each input values and the
memory consumption of each function for the same input
data set. While the required program memory does not
vary much between the implementations, the differences in
execution times are remarkable. The hash functions proposed
by Thomas Wang [11] and Bob Jenkins [12] are clearly
faster than a standard 16 bit CRC. In our implementation,
we have thus selected Thomas Wang’s hash function.

E. Packet Routing

The CBFR scheme caters for the transmission of messages
in a point-to-point manner. Each routing process begins with
a transfer of the message to the root node of the tree via
the up-tree collection interface. Forwarding to the root is
essential due to the inherent possibility of false positives,
i.e., the local knowledge that the destination node might
be among the direct and indirect children is insufficient
to exclude the possibility that the destination is located
in another part of the network. The transfer towards the
sink node is performed by encapsulating the source and
destination address as well as the payload within a CTP
message.

Once the packet has been received at the sink, its further
processing is shown in Algorithm 2. The sink node starts



by applying the h hash functions to the destination address.
Subsequently, it checks if the h offsets are all set to ‘1’ in its
local BF. If this step fails, the message is discarded, because
the destination node cannot be part of the network due to
the fact that false negatives can never occur in the BF. In
case the check succeeds and all h bits are set in the BF, the
message is broadcast to the one-hop neighborhood of the
sink, where the process is restarted. To minimize the traffic,
nodes only accept broadcast messages from their parent and
ignore the messages broadcast by other nodes. It should be
noted at this point that the down-tree forwarding of messages
is realized by broadcasting and does not rely on the address-
free CTP. As a result, the recipient of a broadcast message
can easily identify whether the originating node is identical
to its CTP parent or not.

Algorithm 2 Local forwarding decision for down-tree traffic
H(x): Hash values for input x
Adest: Destination address of the packet
Alocal: Local node address
Aparent: Local node’s parent address

if (packet source != Aparent) then
Discard the packet

else if (Adest == Alocal) then
Forward packet to application

else
Compute H(Adest) for each of the h hash functions
if (all fields H(Adest) are set in BFlocal) then

Re-broadcast the packet down-tree
else

Discard the packet
end if

end if

IV. GRADUAL FORGETTING FOR MOBILITY SUPPORT

Up to this point, we have shown the algorithm’s behavior
for a static deployment of nodes. However, as outlined in
Sec. II-B, nodes in the envisioned application area may
expose mobile behavior or lose connectivity to the network
due to other reasons. Despite the fact that traditional BFs do
not allow for the deletion of elements, nodes disconnected
from the network would be unable to transmit unregistration
messages in any case. A corresponding functionality to per-
mit updating the tree to changed topologies without specific
unregistration announcements has thus been regarded when
adapting our routing algorithm for the presence of node
mobility. In order to achieve this, we have used counting
Bloom filters (CBFs) [13] instead of traditional BFs. In
contrast to the traditional BFs, CBFs allocate an integer
value to each position in the bit vector instead of using
binary fields. To maintain the applicability of CBFs on
resource-constrained WSN hardware, we have limited the
counters to a size of 4 bits each.

Analog to the use of traditional BFs, only bit vectors con-
taining routing information are being forwarded to a node’s
parent. On each reception of a routing information message,
the local CBF is incremented by one at each position which
is set in the received BF. As soon as the full capacity β of
the position is reached, no further incrementation operation
is performed. In order to manage node mobility and outages,
the CBF is periodically decremented, i.e., each of its entries
is reduced by one after a given timeout ρ. Each position in
the CBF can thus be modeled as a leaky bucket of equal
capacity β and equal leak rate ρ. In case a node fails, no
update is received and it is accordingly removed from the
filter after the deletion timeout period, which is at most equal
to β ·ρ. For stability reasons, the timeout ρ needs to be larger
than the typical update interval φ, described in Sec. III-C.

V. EVALUATION

In the previous sections, we have presented the concept
of CBFR. We now analyze CBFR’s behavior with respect
to packet delivery rates and delays considering different
network settings both with and without the presence of
mobile nodes. To this end, we have implemented CBFR in
TinyOS and simulated it in the the COOJA simulator [14]
with the Mobility extension. The reference platform for
our simulations is the TelosB [15]. We have designed the
BF in our CBFR scheme to use two hash functions (h=2)
and optimized the BF for the insertion of t=25 elements.
Accordingly, we have chosen m=64 bits, i.e., 8 bytes, in
order to achieve a false positive probability of less than
0.25 while catering for a low memory demand. An overview
of the notations used in the following simulations and
experiments can be found in Table II.

A. Static Network Topology

The first simulation has been performed for the static
network topology presented in Fig. 4. The network has 10
sensor nodes with the root having identifier 1. The root
periodically creates data messages and sends them to node
4, which is 3 hops away from the root. Following the
established tree topology, the messages sent from node 1
are relayed by nodes 7 and 10 before reaching node 4. In
the simulations, the parameters have been set to h = 2,
m = 64, ρ = 40s, β = 15, and φ = 25s. These numbers
represent a CBF with 64 entries of 4 bits size each. The
filter is forwarded to the node’s parent at least every 25

Table II
SUMMARY OF USED NOTATIONS

Symbol Interpretation
h Number of hash functions
m Total number of entries in the BF
ρ Time interval after which the CBF is decremented by one
β Maximum value of an entry in the CBF
φ Time interval for the up-tree transmission of CBF updates



1

2 6

5

7

3

10

8

9

4

Figure 4. Static network topology (CTP tree indicated in the form of bold
and connectivity as dashed lines)

seconds, whereas its counters are decremented every 40
seconds. The particular numbers have been adapted to an
application scenario in which no mobile nodes are present.
As a result, comparably long timeouts have been selected,
e.g., the node deletion timeout is equal to ten minutes.

In our simulation, the root node transmits 500 data
messages to each node in the network, using intervals of
100ms, 250ms, 500ms, and 1 second between messages.
After the simulation had finished, we have analyzed the
packet delivery ratio of all 4,500 packets, and determined a
probability of successful packet delivery of 99.6%, regard-
less of the transmission interval. These results confirm that
the algorithm performs very well in a simple scenario with
a static network topology. In an additional experiment, we
have analyzed the time required to detect the presence of a
new node in the network. To this end, we first simulated the
network without the presence of node 10, and only added the
device after the collection tree had been established. Across
ten repetitions of the experiment, the average delay between
the physical addition of the node to the network and its
presence in the root node’s CBF has been shown to be 22
seconds. The fact that this period is smaller than φ results
from the use of our fast update mode (cf. Sec. III-C).

We have furthermore simulated two static tree topologies
comprised of 50 nodes each. Again, one of the nodes was
acting as the sink node, while the remaining 49 nodes
were deployed as follows. In scenario S1, the nodes were
densely deployed around the sink at distances between one
and three hops with an average distance of 1.5 hops. In
contrast, scenario S2 was comprised of a deeper tree, with
nodes at distances between one to eight hops away from
the sink node. In S2, the average distance to the sink was
4.0 hops. The resulting packet success probabilities for each
number of hops to the sink are tabulated in Table III. From
the table, lower success probabilities for the nodes farther
away from the sink can be determined. This observation

Table III
PACKET DELIVERY RATES, 50 NODES

Number of hops from the sink
1 2 3 4 5 6 7 8

S1 95.2% 75.7% 54% – – – – –
S2 99.4% 90.5% 74.3% 94.7% 82.0% 90.0% 82.7% 78.5%

can be attributed to the higher node densities around the
destination nodes (S1) or along the path (S2), respectively,
which led to a slightly increased number of packet collisions.
Still, CBFR has quickly established routes to all nodes; in
less than 30 seconds after booting the nodes, a complete
bidirectional routing tree is available.

B. Mobile Destination Node

In order to assess the impact of node mobility on the per-
formance of CBFR, we verify whether our routing scheme
is able to deliver data messages to a moving node. The
topology used in this scenario is shown in Fig. 5, with the
connectivity between nodes indicated by dashed lines and
the CTP-tree indicated by bold lines. As in the previous
small-scale experiment, the network is comprised of 10
sensors with node 1 being the root. All the nodes in the
network are static, except for nodes 2 and 3, which move
according to a Random Waypoint Model with a speed
between 0.5 m/s and 1.5 m/s, simulating the regular walking
speed of a human. The positions of nodes 2 and 3 at different
points in time are also visualized in the figure.

The root node periodically computes data messages and
sends them to node 3, which in turn logs a debugging
statement upon receiving a message. The parameters have
been again set to h = 2, m = 64, ρ = 40s, β = 15, and
φ = 25s as in the previous evaluation and the root node 1
has again been configured to transmit 500 messages to each

1

8

3
t=0

6

5

10

7

9

4

2
t=0

3
t=1

3
t=2

3
t=3

2
t=1

2
t=2

2
t=3

Figure 5. Network topology with mobile destination (initial CTP tree
indicated as bold and initial connectivity as dashed lines, positions of mobile
nodes as dashed circles annotated with respective time t)



Table IV
COMPARISON OF CBFR AND FLOODING IN TERMS OF MESSAGES

Parameter measured Flooding CBFR
Number of messages sent 9 9

Number of messages overheard 330 68
Number of messages forwarded 65 11
Number of Bloom filter updates – 23

destination node. During the simulation, between 92.4% and
100% (on average 95.7%) of all messages transmitted to
nodes 5 through 10 were successfully received by their
destinations. In contrast, due to the frequent disconnection
from their respective parents, only 56.2% of the packets
could be successfully delivered to the two mobile nodes 2
and 3. At only 26.8%, the packet reception rate at node 4
was lowest in our simulations, which originates from the
fact that it was generally disconnected from the network,
but only integrated if one of the mobile nodes (i.e., nodes 2
or 3) could act as its parents and thus connect it to the tree.

C. Traffic Reductions by Directional Routing

We have compared our directional approach to a flooding-
based dissemination of data. The static network topology
visualized in Fig. 4 has been used and message counters have
been added to the original routing scheme implementation.
In the simulation, the root sends a data message to each
node in the network at a rate of one packet per second. The
number of intercepted and forwarded BF update messages
has been counted for each node. Furthermore, the worst-
case number of BF update messages that could have been
transmitted during the simulation has been included in
order to allow for a fair comparison. Additionally, a second
implementation has been provided in TinyOS to implement
a flooding-based dissemination of messages. In order to
minimize the amount of traffic generated by flooding, a
sequence number mechanism has been used. Based on this
mechanism, a node forwards a data message only in case
no other message with the same sequence number has been
received before.

The results for the number of packets transferred are
presented in Table IV. In both cases, nine packets have been
emitted from the sink, one addressed to each node in the net-
work. In the flooding-based solution, we regard repeatedly
received messages that have already been forwarded by a

1 5

6

4

2

37m

2.5m

7m 10m

4m

Figure 6. Visualization of the used real-world network topology

Table V
RESOURCE OVERHEAD OF OUR CBFR SCHEME

CBF size 64 entries 256 entries
Program memory 2,162 bytes 2,162 bytes

RAM 2,581 bytes 2,869 bytes

node as overheard. Similarly, in CBFR, overheard messages
are defined as messages that are received by a node, but not
forwarded further, because the contained destination address
is not present in the CBF. Finally, the number of forwarded
messages indicates the total number of retransmissions of
the nine messages throughout the entire network. As it may
be seen, the CBFR scheme reduces the number of overheard
messages by 79.3%, as well as eliminating the need for 83%
of the messages forwarded when flooding is employed. Even
when the BF update messages are regarded in the analysis,
the total number of messages is reduced by more than 72%
when CBFR is being used.

D. Real-world Evaluation

After analyzing the performance of CBFR by means of
simulation, its applicability has been tested on real TelosB
hardware. We have therefore compiled CBFR for the TinyOS
operating system and integrated it with the existing imple-
mentation of CTP. The resource demands of CBFs of two
different sizes are presented in Table V. The real-world tests
have been performed in an indoor environment. Three nodes
were positioned along a hallway and three other nodes in a
room adjacent to it. The resulting topology is visualized in
Fig. 6; all edges are annotated with the distance between
nodes in meters.

The root node has been assigned the identifier 1 and been
configured to send 50 data messages to each node in the
network. On the nodes, we have implemented a function
to respond to each incoming message with a specifically
defined acknowledgment message, which is returned to the
root by means of CTP’s collection feature. The root node
measures the delays between transmission of a packet to
a destination in the network and reception of the corre-
sponding acknowledgment. The purpose of these tests is
to determine the time elapsed between the moment a data
message was sent by the root and the time at which the
acknowledgement was received by the root, i.e., the round
trip time (RTT). The average RTTs as well as extremal

Figure 7. Visualization of the minimum, maximum, and average RTTs in
real-world tests



values have been determined from the 50 measurements
conducted per node and are presented in the box plot shown
Fig. 7. As expected, nodes located further away from the
sink (nodes 3 and 4) have a longer RTT, whereas node
5, which is directly connected to the sink, has the fastest
response time. In comparison to Trickle [4], which operates
on time scales of seconds to minutes, the observed RTTs of
less than 100ms clearly show the faster delivery of messages
when CBFR is being used.

VI. RELATED WORK

Collection protocols for WSNs typically create tree-based
routing structures to forward data packets from any node
within a network towards a sink node. For instance, the
Collection Tree Protocol [2] represents an efficient and
reliable implementation of a collection service for WSNs.
However, it does not provide any mechanisms to enable
explicit communication from the sink to the nodes. Other
collection protocols like Dozer [16] or DISSense [17] do
provide such down-tree communication channels, but do not
permit the addressing of individual nodes. Dozer constructs
an explicit slot-based mechanisms to propagate packets
from parent nodes to their children. In contrast, DISSense
piggybacks information on the control packets used for tree
construction and maintenance, thereby creating an implicit
backward communication channel. In both cases, however,
information is disseminated to all reachable nodes and
communication to a specific node within the network is
not supported. Instead, our approach exploits the tree-based
structure built by collection protocols to offer a directed
propagation of information between intermediate nodes.

Dissemination protocols, most notably Trickle [4] and
DIP [18], provide reliable mechanisms to make sink nodes
share a value with all other nodes in the network. Such
protocols can thus be used to, e.g., propagate new parameter
values. However, addressing one particular node is generally
not supported by dissemination protocols either. Point-to-
point routing approaches have been investigated extensively
in research on mobile ad hoc networks (MANETs). The
inherent differences between MANETs and WSNs however
render most MANET routing protocols inapplicable in the
application domain of WSNs [19].

Specifically tailored to WSNs, the ROLL initiative caters
for routing over low-power and lossy networks by moving
the burden of centrally collecting routing information to
nodes with additional storage capacity, which act as inter-
mediate routers [20]. Our approach overcomes the limitation
of being confined to a small number of routers by leveraging
the favorable properties of Bloom filters. Furthermore, our
CBFR scheme guarantees prompt reactiveness to routing
requests by updating the Bloom filter regularly. In reactive
routing protocols like DSR [21], routes are computed on
demand only when communication needs to take place.

Although reactive solutions may be effective when point-to-
point routing requests are infrequent, they also induce sig-
nificant delays in packet delivery and do not take advantage
of an existing collection tree. Publications on collection and
dissemination in the presence of node mobility include [22],
which introduces a protocol for per-packet based routing
towards highly mobile sinks. Similarly, the HYPER proto-
col [23] can quickly repair collection tree topologies when
nodes move within the network. By using Bloom filters,
however, our approach introduces an element of novelty with
respect to these and other related publications.

Last but not least, the adoption of Bloom filters has
been investigated for several purposes within and beyond
the realm of address-centric routing in WSNs. For instance,
scope decay Bloom filters have been proposed to steer the
propagation direction of rumor routing and thus increase its
success probability [24]. In DIP [18], the use of Bloom filters
makes search for stale items in WSNs quicker and more effi-
cient. Bloom filters have been used in the context of point-to-
point routing in MANETs [25], as well as to store semantic
data type information in WSNs [26]. Other uses include Web
caching [13] or peer-to-peer networks [27]. To the best of our
knowledge, however, we are the first to propose the use of
Bloom filters to provide for efficient address-based routing
in conjunction with tree-based collection protocols in WSNs.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a generic approach to extend tree-
based collection protocols with point-to-point routing capa-
bilities. Instead of maintaining complete and dynamically
growing routing tables at each node, our CBFR scheme
uses a Bloom filter to efficiently store information about
the reachability of a node’s direct and indirect child nodes.
The constant memory overhead of such filters makes our ap-
proach readily usable on resource-constrained sensor nodes,
which typically do not support dynamic memory allocation.
We have implemented CBFR in TinyOS and tested its perfor-
mance in different settings. Our experimental results show
that, with respect to flooding-based routing, our approach
significantly reduces the communication overhead needed
to deliver a message to a specific node in the network.

The CBFR scheme leverages the CTP collection protocol
both to forward the Bloom filter up-tree as well as to support
an efficient down-tree broadcast to transmit packets to their
destination. As a next step, we plan to embed our approach
in CTP transparently, so that it can be used as a tunable
CTP option. For instance, propagation of information could
be performed leveraging CTP’s own routing beacons. Future
work also includes testing of our approach on WSN testbeds
in order to assess its scalability in large networks.

ACKNOWLEDGMENT

The authors would like to thank Delphine Christin for
her valuable comments. This research has been supported



by the German Federal Ministry of Education and Research
(BMBF) and by the LOEWE research initiative of the State
of Hesse, Germany, within the Priority Program Cocoon.

REFERENCES

[1] A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Net-
works,” in Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, 2003.

[2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection Tree Protocol,” in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, 2009.

[3] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi,
and M. Maroti, “Constraint-Guided Dynamic Reconfiguration
in Sensor Networks,” in Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks,
2004.

[4] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance
in Wireless Sensor Networks,” in Proceedings of the 1st Sym-
posium on Networked Systems Design and Implementation,
2004.

[5] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-
Sequenced Distance Vector Routing Protocol (DSDV) for
Mobile Computers,” in Proceedings of the ACM SIGCOMM
’94 Conference on Communications Architectures, Protocols
and Applications, 1994.

[6] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with
Allowable Errors,” Communications of the ACM, vol. 13,
no. 7, 1970.

[7] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson, “Wireless Sensor Networks for Habitat Monitor-
ing,” in Proceedings of the 1st ACM International Workshop
on Wireless Sensor Networks and Applications, 2002.

[8] J. Paek, K. Chintalapudi, J. Caffrey, R. Govindan, and
S. Masri, “A Wireless Sensor Network for Structural Health
Monitoring: Performance and Experience,” in Proceedings of
the 2nd Workshop on Embedded Networked Sensors, 2005.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter, “System Architecture Directions for Network Sensors,” in
Proceedings of the 10th Conference on Architectural Support
for Programming Languages and Operating Systems, 2000.

[10] IEEE Std, “802.15.4 Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for
Low-rate Wireless Personal Area Networks,” 2006.

[11] T. Wang, “Integer Hash Function,” Online: http://www.
concentric.net/∼ttwang/tech/inthash.htm, 2007.

[12] B. Jenkins, “4-byte Integer Hashing,” Online: http://
burtleburtle.net/bob/hash/integer.html, 2006.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
Cache: A Scalable Wide-area Web Cache Sharing Protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3, 2000.

[14] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón, “COOJA/MSPSim:
Interoperability Testing for Wireless Sensor Networks,” in
Proceedings of the 2nd International Conference on Simu-
lation Tools and Techniques for Communications, Networks
and Systems, 2009.

[15] TelosB Datasheet, MEMSIC Inc., 2011, http://memsic.com/
support/documentation/wireless-sensor-networks/category/
7-datasheets.html?download=152:telosb.

[16] N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer:
Ultra-Low Power Data Gathering in Sensor Networks,” in
Proceedings of the 6th International Conference on Informa-
tion Processing in Sensor Networks, 2007.

[17] U. Colesanti, S. Santini, and A. Vitaletti, “DISSense: An
Adaptive Ultralow-power Communication Protocol for Wire-
less Sensor Networks,” in Proceedings of the 7th International
Conference on Distributed Computing in Sensor Systems,
2011.

[18] K. Lin and P. Levis, “Data Discovery and Dissemination with
DIP,” in Proceedings of the 7th International Conference on
Information Processing in Sensor Networks, 2008.

[19] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler,
“From MANET to IETF ROLL Standardization: A Paradigm
Shift in WSN Routing Protocols,” IEEE Communication
Surveys and Tutorials, vol. 13, no. 4, 2011.

[20] T. Winter (Ed.), P. Thubert (Ed.), and the RPL Author Team,
“RPL: IPv6 Routing Protocol for Low power and Lossy
Networks,” Online: http://tools.ietf.org/html/draft-dt-roll-rpl,
2011.

[21] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source
Routing Protocol (DSR) for Mobile Ad Hoc Networks for
IPv4,” RFC 4728, 2007.

[22] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,
“Routing Without Routes: The Backpressure Collection Pro-
tocol,” in Proceedings of the 9th International Conference on
Information Processing in Sensor Networks, 2010.

[23] T. Schoellhammer, B. Greenstein, and D. Estrin, “Hyper:
A Routing Protocol to Support Mobile Users of Sensor
Networks,” UCLA, CENS Technical Report, 2006.

[24] X. Li, J. Wu, and J. Xu, “Hint-based Routing in WSNs Using
Scope Decay Bloom Filters,” in Proceedings of the Interna-
tional Workshop on Networking, Architecture and Storages,
2006.

[25] T. Osano, Y. Uchida, and N. Ishikawa, “Routing Protocol
using Bloom Filters for Mobile Ad Hoc Networks,” in Pro-
ceedings of the 4th International Conference on Mobile Ad-
hoc and Sensor Systems, 2008.

[26] P. Hebden and A. R. Pearce, “Data-centric Routing using
Bloom Filters in Wireless Sensor Networks,” in Proceedings
of the 4th International Conference on Intelligent Sensing and
Information Processing, 2006.

[27] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Mathematics, vol. 1, no. 4,
2005.




