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Abstract In a Fork-Join (FJ) queueing system an upstream fork station splits
incoming jobs into N tasks to be further processed by N parallel servers, each
with its own queue; the response time of one job is determined, at a down-
stream join station, by the maximum of the corresponding tasks’ response
times. This queueing system is useful to the modelling of multi-service sys-
tems subject to synchronization constraints, such as MapReduce clusters or
multipath routing. Despite their apparent simplicity, FJ systems are hard to
analyze.

This paper provides the first computable stochastic bounds on the waiting
and response time distributions in FJ systems under full (bijective) and partial
(injective) mapping of tasks to servers. We consider four practical scenarios by
combining 1a) renewal and 1b) non-renewal arrivals, and 2a) non-blocking and
2b) blocking servers. In the case of non-blocking servers we prove that delays
scale as O(logN), a law which is known for first moments under renewal
input only. In the case of blocking servers, we prove that the same factor of
logN dictates the stability region of the system. Simulation results indicate
that our bounds are tight, especially at high utilizations, in all four scenarios.
A remarkable insight gained from our results is that, at moderate to high
utilizations, multipath routing “makes sense” from a queueing perspective for
two paths only, i.e., response times drop the most when N = 2; the technical
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explanation is that the resequencing (delay) price starts to quickly dominate
the tempting gain due to multipath transmissions.

Keywords Fork-Join queue · Performance evaluation · Parallel systems ·
MapReduce · Multipath

1 Introduction

The performance analysis of Fork-Join (FJ) systems received new momentum
with the recent wide-scale deployment of large-scale data processing that was
enabled through emerging frameworks such as MapReduce [13]. The main idea
behind these big data analysis frameworks is an elegant divide and conquer
strategy with various degrees of freedom in the implementation. The open-
source implementation of MapReduce, known as Hadoop [42], is deployed in
numerous production clusters, e.g., Facebook and Yahoo [24].

The basic operation of MapReduce is depicted in Figure 1. In the map
phase, a job is split into multiple tasks that are mapped to different workers
(servers). Once a specific subset of these tasks finish their executions, the
corresponding reduce phase starts by processing the combined output from
all the corresponding tasks. In other words, the reduce phase is subject to a
fundamental synchronization constraint on the finishing times of all involved
tasks.

A natural way to model one reduce phase operation is by a basic FJ queue-
ing system with N servers. Jobs, i.e., the input unit of work in MapReduce
systems, arrive according to some point process. Each job is split into N (map)
tasks (or splits, in the MapReduce terminology), which are simultaneously sent
to the N servers. At each server, each task requires a random service time,
capturing the variable task execution times on different servers in the map
phase. A job leaves the FJ system when all of its tasks are served; this con-
straint corresponds to the specification that the reduce phase starts no sooner
than when all of its map tasks complete their executions.

Concerning the execution of tasks belonging to different jobs on the same
server, there are two operational modes. In the non-blocking mode, the servers
are workconserving in the sense that tasks immediately start their executions
once the previous tasks finish theirs. In the blocking mode, the mapped tasks
of a job simultaneously start their executions, i.e., servers can be idle when
their corresponding queues are not empty. The non-blocking execution mode
prevails in MapReduce due to its conceivable efficiency, whereas the blocking
execution mode is employed when the jobtracker (the node coordinating
and scheduling jobs) waits for all machines to be ready to synchronize the
configuration files before mapping a new job; in Hadoop, this can be enforced
through the coordination service zookeeper [42].

In this paper we analyze the performance of the FJ queueing model in
four practical scenarios by considering two broad arrival classes (driven by
either renewal or non-renewal processes) and the two operational modes de-
scribed above. The key contribution, to the best of our knowledge, are the
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first non-asymptotic and computable stochastic bounds on the waiting and
response time distributions in the most relevant scenario, i.e., non-renewal
(Markov modulated) job arrivals and the non-blocking operational mode. Un-
der all scenarios, the bounds are numerically tight especially at high utiliza-
tions. This inherent tightness is due to a suitable martingale representation of
the underlying queueing system, an approach which was conceived in [27] for
the analysis of GI/GI/1 queues, and which was recently extended to address
multi-class queues with non-renewal arrivals [12,34]. The simplicity of the ob-
tained stochastic bounds enables the derivation of scaling laws, e.g., delays in
FJ systems scale as O(logN) in the number of parallel servers N , for both
renewal and non-renewal arrivals, in the non-blocking mode; more severe delay
degradations hold in the blocking mode, and, moreover, the stability region
depends on the same fundamental factor of logN .

In addition to the direct applicability to the dimensioning of MapReduce
clusters, there are other relevant types of parallel and distributed systems such
as production or supply networks. In particular, by slightly modifying the
basic FJ system corresponding to MapReduce, the resulting model suits the
analysis of window-based transmission protocols over multipath routing. By
making several simplifying assumptions such as ignoring the details of specific
protocols (e.g., multipath TCP), we can provide a fundamental understanding
of multipath routing from a queueing perspective. Concretely, we demonstrate
that sending a flow of packets over two paths, instead of one, does generally
reduce the steady-state response times. The surprising result is that by sending
the flow over more than two paths, the steady-state response times start to
increase. The technical explanation for such a rather counterintuitive result
is that the logN resequencing price at the destination quickly dominates the
tempting gain in the queueing waiting time due to multipath transmissions.

The rest of the paper is structured as follows. We first discuss related
work on FJ systems and related applications. Then we analyze full mapping,
i.e., a mapping of jobs to N servers in Sections 3 and 4. We analyze both
non-blocking and blocking FJ systems with renewal input in Section 3, and
with non-renewal input in Section 4. The analysis of partial mapping, i.e., a
mapping of jobs to H ≤ N servers follows in Section 5. In Section 6 we apply
the obtained results on the steady-state response time distributions to the
analysis of multipath routing from a queueing perspective. Brief conclusions
are presented in Section 7.

2 Related Work

We first review analytical results on FJ systems, and then results related to
the two application case studies considered in this paper, i.e., MapReduce and
multipath routing.

The significance of the Fork-Join queueing model stems from its natural
ability to capture the behavior of many parallel service systems. The perfor-
mance of FJ queueing systems has been subject of multiple studies such as
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Fig. 1 Schematic illustration of the basic operation of MapReduce.

[5,31,40,25,28,6,8]. In particular, [5] notes that an exact performance eval-
uation of general FJ systems is remarkably hard due to the synchronization
constraints on the input and output streams. More precisely, a major difficulty
lies in finding an exact closed form expression for the joint steady-state work-
load distribution for the FJ queueing system. However, a number of results
exist given certain constraints on the FJ system. The authors of [15] provide
the stationary joint workload distribution for a two-server FJ system under
Poisson arrivals and independent exponential service times. For the general
case of more than two parallel servers there exists a number of works that pro-
vide approximations [31,40,28,29] and bounds [5,6] for certain performance
metrics of the FJ system. Given renewal arrivals, [6] significantly improves the
lower bounds from [5] in the case of heterogeneous phase-type servers using
a matrix-geometric algorithmic method. The authors of [28] provide an ap-
proximation of the sojourn time distribution in a renewal driven FJ system
consisting of multiple G/M/1 nodes. They show that the approximation er-
ror diminishes at extremal utilizations. Refined approximations for the mean
sojourn time in two-server FJ systems that take the first two moments of
the service time distribution are given in [25]; numerical evidence is further
provided on the quality of the approximation for different service time distri-
butions. In a recent work, the authors of [30] establish Gaussian limits for the
joint distributions of the service and waiting for synchronization times under
general arrivals characterized by a limiting Brownian motion.

The closest related work to ours is [5], which provides computable lower
and upper bounds on the expected response time in FJ systems under renewal
assumptions with Poisson arrivals and exponential service times; the under-
lying idea is to artificially construct a more tractable system, yet subject to
stochastic ordering relative to the original one. Our corresponding first order
upper bound recovers the O(logN) asymptotic behavior of the one from [5],
and also reported in [31] in the context of an approximation; numerically, our
bound is slightly worse than the one from [5] due to our main focus on com-
puting bounds on the whole distribution (first order bounds are secondarily
obtained by integration). Moreover, we show that the O(logN) scaling law
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also holds in the case of Markov modulated arrivals. In a parallel work [26]
to ours, the authors adopt a network calculus approach to derive stochastic
bounds in a non-blocking FJ system, under a strong assumption on the input;
for related constructions of such arrival models see [20].

The work in [21,22] studies FJ systems where jobs leave the system when
a subset H ≤ N of its tasks are finished. This system is similar to the par-
tial mapping FJ system that we study in Section 5, however, with subtle yet
fundamental differences. The FJ system presented in [21,22] is based on the
assumption that when H tasks finish execution, the finished job purges the
unfinished N − H tasks out their corresponding queues. The authors of [21,
22] provide upper bounds for the mean response times in such systems under
Poisson arrivals and general service distributions. In Section 5, we consider in-
stead injective task mapping, i.e., jobs are only forked onto a subset of servers
H ≤ N . For this type of FJ systems we provide bounds on the steady state
waiting and response time distributions under round-robin and random task
placement.

Concerning concrete applications of FJ systems, in particular MapReduce,
there are several empirical and analytical studies analyzing its performance.
For instance, [44,3] aim to improve the system performance via empirically
adjusting its numerous and highly complex parameters. The targeted perfor-
mance metric in these studies is the job response time, which is in fact an
integral part of the business model of MapReduce based query systems such
as [32] and time priced computing clouds such as Amazon’s EC2 [1]. For an
overview on works that optimize the performance of MapReduce systems see
the survey article [33]. Using a similar idea as in [5], the authors of [37] derive
asymptotic results on the response time distribution in the case of renewal
arrivals; such results are further used to understand the impact of different
scheduling models in the reduce phase of MapReduce. Using the model from
[37] the work in [38] provides approximations for the number of jobs in a tan-
dem system consisting of a map queue and a reduce queue in the heavy traffic
regime. The work in [41] derives approximations of the mean response time in
MapReduce systems using a mean value analysis technique and a closed FJ
queueing system model from [39].

Concerning multipath routing, the works [4,19] provided ground for mul-
tiple studies on different formulations of the underlying resequencing delay
problem, e.g., [18,43]. Factorization methods were used in [4] to analyze the
disordering delay and the delay of resequencing algorithms, while the authors
of [19] conduct a queueing theoretic analysis of an M/G/∞ queue receiving a
stream of numbered customers. In [18,43] the multipath routing model com-
prises Bernoulli thinning of Poisson arrivals over N parallel queueing stations
followed by a resequencing buffer. The work in [18] provides asymptotics on
the conditional probability of the resequencing delay conditioned on the end-
to-end delay for different service time distributions. For N = 2 and exponential
interarrival and service times, [43] derives a large deviations result on the re-
sequencing queue size. Our work differs from these works in that we consider
a model of the basic operation of window-based transmission protocols over
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multipath routing, motivated by the emerging application of multipath TCP
[35]. We point out, however, that we do not model the specific operation of
any particular multipath transmission protocol. Instead, we analyze a generic
multipath transmission protocol under simplifying assumptions, in order to
provide a theoretical understanding of the overall response times comprised of
both queueing and resequencing delays.

Relative to the existing literature, our key theoretical contribution is to
provide computable and non-asymptotic bounds on the distributions of the
steady-state waiting and response times under both renewal and non-renewal
input in non-blocking FJ systems. These bounds can be found in Theorem 1,
Theorem 3 and Theorem 5 - Theorem 7. The consideration of non-renewal
input is particularly relevant, given recent observations that job arrivals are
subject to temporal correlations in production clusters. For instance, [11,23]
report that job, respectively, flow arrival traces in clusters running MapRe-
duce exhibit various degrees of burstiness. We augment the scope of the main
contributions in this work by considering blocking FJ systems that essentially
correspond to GI/G/1 queueing systems. Here, we recover and extend promi-
nent results, e.g., from [2,16] in Theorem 2 and Theorem 4, respectively. Note
that non-blocking FJ systems behave fundamentally different from blocking
FJ systems, thus requiring adapted mathematical tools for the analysis.

3 FJ Systems with Renewal Input

We consider a FJ queueing system as depicted in Figure 2. Jobs arrive at the
input queue of the FJ system according to some point process with interarrival
times ti between the i and i + 1 jobs. Each job i is split into N tasks that
are mapped through a bijection to N servers. A task of job i that is serviced
by some server n requires a random service time xn,i. A job leaves the sys-
tem when all of its tasks finish their executions, i.e., there is an underlying
synchronization constraint on the output of the system. We assume that the
families {ti} and {xn,i} are independent.

In the sequel we differentiate between two cases, i.e., a) non-blocking and
b) blocking servers. The first case corresponds to workconserving servers, i.e.,
a server starts servicing a task of the next job (if available) immediately upon
finishing the current task. In the latter case, a server that finishes servicing
a task is blocked until the corresponding job leaves the system, i.e., until the
last task of the current job completes its execution. This can be regarded as
an additional synchronization constraint on the input of the system, i.e., all
tasks of a job start receiving service simultaneously. We will next analyze a)
and b) for renewal arrivals.

3.1 Non-Blocking Systems

Consider an arrival flow of jobs with renewal interarrival times ti, and assume
that the waiting time of the first job is w1 = 0. Given N parallel servers, the
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Fig. 2 A schematic Fork-Join queueing system with N parallel servers. An arriving job is
split into N tasks, one for each server. A job leaves the FJ system when all of its tasks are
served. An arriving job is considered waiting until the service of the last of its tasks starts,
i.e., when the previous job departs the system.

waiting time wj of the jth job is defined as

wj = max

{
0, max

1≤k≤j−1

{
max
n∈[1,N ]

{
k∑
i=1

xn,j−i −
k∑
i=1

tj−i

}}}
, (1)

for all j ≥ 2, where xn,j is the service time required by the task of job j
that is mapped to server n. We count a job as waiting until its last task
starts receiving service. Similarly, the response times of jobs, i.e., the times
until the last corresponding tasks have finished their executions, are defined
as r1 = maxn xn,1 for the first job, and for j ≥ 2 as

rj = max
0≤k≤j−1

{
max
n∈[1,N ]

{
k∑
i=0

xn,j−i −
k∑
i=1

tj−i

}}
, (2)

where by convention
∑0
i=1 ti = 0; for brevity, we will denote maxn := maxn∈[1,N ].

We assume that the task service times xn,j are independent and identically
distributed (iid). The stability condition for the FJ queueing system is given
as E [x1,1] < E [t1]. By stationarity and reversibility of the iid processes xn,j
and tj , there exists a distribution of the steady-state waiting time w and
steady-state response time r, respectively, which have the representations

w =D max
k≥0

{
max
n

{
k∑
i=1

xn,i −
k∑
i=1

ti

}}
(3)

and

r =D max
k≥0

{
max
n

{
k∑
i=0

xn,i −
k∑
i=1

ti

}}
, (4)

respectively. Here, =D denotes equality in distribution. Note that the only
difference in (3) and (4) is that for the latter the sum over the xn,i starts at
i = 0 rather than at i = 1.
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The following theorem provides stochastic upper bounds on w and r. The
corresponding proof will rely on submartingale constructions and the Optional
Sampling Theorem (see Lemma 1 in the Appendix).

Theorem 1 (Renewals, Non-Blocking) Given a FJ system with N paral-
lel non-blocking servers that is fed by renewal job arrivals with interarrivals tj.
If the task service times xn,j are iid, then the steady-state waiting and response
times w and r are bounded by

P [w ≥ σ] ≤ Ne−θnbσ (5)

P [r ≥ σ] ≤ NE
[
eθnbx1,1

]
e−θnbσ , (6)

where θnb (with the subscript ‘nb’ standing for non-blocking) is the (positive)
solution of

E
[
eθx1,1

]
E
[
e−θt1

]
= 1 . (7)

We remark that the stability condition E [x1,1] < E [t1] guarantees the
existence of a positive solution in (7) (see also [34]).

Proof Consider the waiting time w. We first prove that for each n ∈ [1, N ] the
process

zn(k) = eθnb
∑k
i=1(xn,i−ti)

is a martingale with respect to the filtration

Fk := σ {xn,m, tm |m ≤ k, n ∈ [1, N ]} .

The independence assumption of xn,j and tj implies that

E [zn(k) | Fk−1] = E
[
eθnb

∑k
i=1(xn,i−ti)

∣∣∣Fk−1

]
= E

[
eθnb(xn,k−tk)

]
eθnb

∑k−1
i=1 (xn,i−ti)

= eθnb
∑k−1
i=1 (xn,i−ti)

= zn(k − 1) , (8)

under the condition on θnb from the theorem. Moreover, zn(k) is obviously
integrable by the condition on θnb from the theorem, completing thus the
proof for the martingale property.

Next we prove that the process

z(k) = max
n

zn(k) (9)

is a submartingale w.r.t. Fk. Given the martingale property of each of the zn
and the monotonicity of the conditional expectation we can write for j ∈ [1, N ]:

E
[
max
n

zn(k)
∣∣∣Fk−1

]
≥ E [zj(k) | Fk−1] = zj(k − 1) ,
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where the inequality stems from maxn zn(k) ≥ zj(k) for j ∈ [1, N ] a.s., whereas
the subsequent equality stems from the martingale property (8) for zn(k) for
all n ∈ [1, N ]. Hence, we can write

E [z(k) | Fk−1] ≥ max
n

zn(k − 1) = z(k − 1) , (10)

which proves the submartingale property.
To derive a bound on the steady-state waiting time distribution, let σ > 0

and define the stopping time

K := inf

{
k ≥ 0

∣∣∣∣∣max
n

k∑
i=1

(xn,i − ti) ≥ σ

}
, (11)

which is also the first point in time k where z(k) ≥ eθnbσ. Note that with the
representation of w from (3):

{K <∞} = {w ≥ σ} .

Now, using the Optional Sampling Theorem (see Lemma 1 from the Appendix)
for submartingales with k ≥ 1:

N =
∑

n∈[1,N ]

E
[
eθnb

∑k
i=1(xn,i−ti)

]
≥ E

[
max
n

eθnb
∑k
i=1(xn,i−ti)

]
(12)

= E [z(k)] ≥ E [z(K ∧ k)] ≥ E [z(K)1K<k]

≥ eθnbσP [K < k] ,

where we used the condition on θnb from the theorem in the first line, the union
bound in the second line, and the submartingale property in the third line. In
the last line we used the definition of the stopping time K; note that we use
the notation K ∧ n := min{K,n}. The proof completes by letting k →∞.

For the response time r, define the processes

z̃n(k) = eθnb(
∑k
i=0 xn,i−

∑k
i=1 ti) ,

which differs from the zn only in the range of the sum of the service times
xn,i. Then we proceed as for the derivation of the bound on the waiting time
w. The only difference in the derivation is that inequality (12) translates to

NE
[
eθnbx1,1

]
≥ E

[
max
n

eθnb(
∑k
i=0 xn,i−

∑k
i=1 ti)

]
.

Fixing the right hand sides in (5) and (6) to ε, we find that the corre-
sponding quantiles on the waiting and response times grow with the number
of parallel servers N as O(logN), a law which was already demonstrated in
the special case of Poisson arrival and exponential service times, and for first
moments, in [31], and more generally in [5]. This scaling result is essential for
dimensioning FJ systems such as MapReduce computing clusters, as it explains
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the impact of a MapReduce server pool size N on the job waiting/response
times.

We note that the bound in Theorem 1 can be computed for different ar-
rival and service time distributions as long as the MGF (moment generating
function) and Laplace transform from (7) are computable. Given a scenario
where the job interarrival process and the task size distributions in a MapRe-
duce cluster are not known a priori, estimates of the corresponding MGF
and Laplace transforms can be obtained using recorded traces, e.g., using the
method from [17].

Next we illustrate two immediate applications of Theorem 1.

Example 1: Exponentially distributed interarrival and service times

Consider that the interarrival times ti and service times xn,i are exponentially
distributed with parameters λ and µ, respectively; note that when N = 1
the system corresponds to the M/M/1 queue. The corresponding stability
condition becomes µ > λ. Using Theorem 1, the bounds on the steady-state
waiting and response time distributions are

P [w ≥ σ] ≤ Ne−(µ−λ)σ (13)

and

P [r ≥ σ] ≤ N

ρ
e−(µ−λ)σ , (14)

where the exponential decay rate µ − λ follows by solving µ
µ−θ

λ
λ+θ = 1, i.e.,

the instantiation of (7). Here, we use ρ to denote the utilization λ/µ.
Next we briefly compare our results to the existing bound on the mean

response time from [5], given as

E [r] ≤ 1

µ− λ

N∑
n=1

1

n
. (15)

By integrating the tail of (14) we obtain the following upper bound on the
mean response time

E [r] ≤ log(N/ρ) + 1

µ− λ
.

Compared to (15), our bound exhibits the same logN scaling law but is numer-
ically slightly looser; asymptotically in N , the ratio between the two bounds
converges to one. A key technical reason for obtaining a looser bound is that
we mainly focus on deriving bounds on distributions; through integration, the
numerical discrepancies accumulate.

For the numerical illustration of the tightness of the bounds on the waiting
time distributions from (13) we refer to Figure 3.(a); the numerical parameters
and simulation details are included in the caption.
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(a) Non-Blocking
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(b) Blocking

Fig. 3 Bounds on the waiting time distributions vs. simulations (renewal input): (a) the
non-blocking case (13) and (b) the blocking case (22). The system parameters are N = 20,
µ = 1, and three utilization levels ρ = {0.9, 0.75, 0.5} (from top to bottom). Simulations
include 100 runs, each accounting for 107 slots.

Example 2: Exponentially distributed interarrival times and constant service
times

We now consider the case of iid exponentially distributed interarrival times ti
with parameter λ, and deterministic service times xn,i = 1/µ, for all i ≥ 0
and n ∈ [1, N ]; note that when N = 1 the system corresponds to the M/D/1
queue.

The condition on the asymptotic decay rate θnb from Theorem 1 becomes

λ

λ+ θnb
= e−

θnb
µ ,

which can be numerically solved; upper bounds on the waiting and response
time distributions follow then immediately from Theorem 1.

3.2 Blocking Systems

Here, we consider a blocking FJ queueing system, i.e., the start of each job
is synchronized amongst all servers. We maintain the iid assumptions on the
interarrival times ti and service times xn,i. The waiting time and response
time for the jth job can then be written as

wj = max

{
0, max

1≤k≤j−1

{
k∑
i=1

max
n

xn,j−i −
k∑
i=1

tj−i

}}

rj = max
0≤k≤j−1

{
k∑
i=0

max
n

xn,j−i −
k∑
i=1

tj−i

}
.
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Note that the only difference to (1) and (2) is that the maximum over the
number of servers now occurs inside the sum. Note that this blocking system
corresponds to a GI/GI/1 queue which is analyzed, for example, in [2].

It is evident that the blocking system is more conservative than the non-
blocking system in the sense that the waiting time distribution of the non-
blocking system is dominated by the waiting time distribution of the blocking
system. Moreover, the stability region for the blocking system, given by E [t1] >
E [maxn xn,1], is included in the stability region of the corresponding non-
blocking system (i.e., E [t1] > E [x1,1]).

Analogously to (3), the steady-state waiting and response times w and r
have now the representations

w =D max
k≥0

{
k∑
i=1

max
n

xn,i −
k∑
i=1

ti

}
(16)

r =D max
k≥0

{
k∑
i=0

max
n

xn,i −
k∑
i=1

ti

}
. (17)

The following theorem provides upper bounds on w and r.

Theorem 2 (Renewals, Blocking) Given a FJ queueing system with N
parallel blocking servers that is fed by renewal job arrivals with interarrivals
tj and iid task service times xn,j. The distributions of the steady-state waiting
and response times are bounded by

P [w ≥ σ] ≤ e−θbσ (18)

P [r ≥ σ] ≤ E
[
eθb maxn x1,1

]
e−θbσ ,

where θb (with the subscript ‘b’ standing for blocking) is the (positive) solution
of

E
[
eθmaxn xn,1

]
E
[
e−θt1

]
= 1 . (19)

Before giving the proof we note that, in general, (19) can be numerically
solved. Moreover, for small values of N , θb can be analytically solved.

Proof Consider the waiting time w. We proceed similarly as in the proof of
Theorem 1. Letting Fk as above, we first prove that the process

y(k) = eθb
∑k
i=1(maxn xn,i−ti)

is a martingale w.r.t. Fk using a technique from [27]. We write

E [y(k) | Fk−1] = E
[
eθb

∑k
i=1(maxn xn,i−ti)

∣∣∣Fk−1

]
= eθb

∑k−1
i=1 (maxn xn,i−ti)E

[
eθb(maxn xn,k−tk)

]
= eθb

∑k−1
i=1 (maxn xn,i−ti)

= y(k − 1) ,
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where we used the independence and renewal assumptions for xn,i and ti in
the second line, and finally the condition on θb from (19).

In the next step we apply the Optional Sampling Theorem (45) to derive
the bound from the theorem. We first define the stopping time K by

K := inf

{
k ≥ 0

∣∣∣∣∣
k∑
i=1

(
max
n

xn,i − ti
)
≥ σ

}
. (20)

Recall that P [K <∞] = P [w ≥ σ]. We can next write for every k ∈ N

1 = E [y(0)]

= E [y(K ∧ k)]

≥ E [y(K ∧ k)1K<k]

= E
[
eθb

∑K
i=1(maxn xn,i−ti)1K<k

]
≥ eθbσP [K < k] .

Taking k → ∞ completes the proof. The proof for the response time r is
analogous.

Example 3: Exponentially distributed interarrival and service times

Consider interarrival and service times ti and xn,i that are exponentially dis-
tributed with parameters λ and µ, respectively. In [36] it was shown that

max
n

Ln =D

N∑
n=1

Ln
n

for iid exponentially distributed random variables Ln, so that the stability
condition E [t1] > E [maxn xn,1] becomes

1

λ
>

1

µ

N∑
n=1

1

n
. (21)

By applying Theorem 2, the bounds on the steady-state waiting and re-
sponse time distributions are

P [w ≥ σ] ≤ e−θbσ (22)

and
P [r ≥ σ] ≤ µ

µ− θb
e−θbσ ,

where θb can be numerically solved from the condition

N∏
n=1

nµ

nµ− θb
λ

λ+ θb
= 1 .



14 Amr Rizk et al.

For quick numerical illustrations we refer back to Figure 3.(b).
The interesting observation is that the stability condition from (21) de-

pends on the number of servers N . In particular, as the right hand side grows
in logN , the system becomes unstable (i.e., waiting times are infinite) for suf-
ficiently large N . This shows that the optional blocking mode from Hadoop
should be judiciously enabled.

Example 4: Exponentially distributed interarrival and constant service times

If the service times are deterministic, i.e., xn,i = 1/µ for all i ≥ 0 and n ∈
[1, N ], the representations of w and r from (16) and (17) match their non-
blocking counterparts from (3) and (4) and hence the corresponding stability
regions and stochastic bounds are equal to those from Example 2.

4 FJ Systems with Non-renewal Input

In this section we consider the more realistic case of FJ queueing systems
with non-renewal job arrivals. This model is particularly relevant given the
empirical evidence that clusters running MapReduce exhibit various degrees of
burstiness in the input [11,23]. Moreover, numerous studies have demonstrated
the burstiness of Internet traces, which can be regarded in particular as the
input to multipath routing.

1 2

p

q
L1 L2

Fig. 4 Markov modulating chain ck for the job interarrival times.

We model the interarrival times ti using a Markov modulated process.
Concretely, consider a two-state modulating Markov chain ck, as depicted in
Figure 4, with a transition matrix T given by

T =

(
1− p p
q 1− q

)
, (23)

for some values 0 < p, q < 1. In state i ∈ {1, 2} the interarrival times are given
by iid random variables Li with distribution Li. Without loss of generality we
assume that L1 is stochastically smaller than L2, i.e.,

P [L1 ≥ t] ≤ P [L2 ≥ t] ,
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for any t ≥ 0. Additionally, we assume that the Markov chain ck satisfies the
burstiness condition

p < 1− q , (24)

i.e., the probability of jumping to a different state is less than the probability
of staying in the same state.

Subsequent derivations will exploit the following exponential transform of
the transition matrix T defined as

Tθ :=

(
(1− p)E

[
e−θL1

]
p E

[
e−θL2

]
q E

[
e−θL1

]
(1− q)E

[
e−θL2

]) ,

for some θ > 0. Let Λ(θ) denote the maximal positive eigenvalue of Tθ, and
the vector h = (h(1), h(2)) denote a corresponding eigenvector. By the Perron-
Frobenius Theorem, Λ(θ) is equal to the spectral radius of Tθ such that h can
be chosen with strictly positive components.

As in the case of renewal arrivals, we will next analyze both non-blocking
and blocking FJ systems.

4.1 Non-Blocking Systems

We first analyze a non-blocking FJ system fed with arrivals that are modulated
by a stationary Markov chain as in Figure 4. We assume that the task service
times xn,j are iid and that the families {ti} and {xn,i} are independent. Note
that both the definition of wj from (1) and the representation of the steady-
state waiting time w in (3) remain valid, due to stationarity and reversibility;
the same holds for the response times.

The next theorem provides upper bounds on the steady-state waiting and
response time distributions in the non-blocking scenario with Markov modu-
lated interarrivals.

Theorem 3 (Non-Renewals, Non-Blocking) Given a FJ queueing sys-
tem with N parallel non-blocking servers, Markov modulated job interarrivals
tj according to the Markov chain depicted in Figure 4 with transition matrix
(23), and iid task service times xn,j. The steady-state waiting and response
time distributions are bounded by

P [w ≥ σ] ≤ Ne−θnbσ (25)

P [r ≥ σ] ≤ NE
[
eθnbx1,1

]
e−θnbσ , (26)

where θnb is the (positive) solution of

E
[
eθx1,1

]
Λ(θ) = 1 .

(Recall that Λ(θ) was defined as a spectral radius.)

We remark that the existence of a positive solution θnb is guaranteed by
the Perron-Frobenius Theorem, see, e.g., [34].
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Proof Consider the filtration

Fk := σ {xn,m, tm, cm |m ≤ k, n ∈ [1, N ]} ,

that includes information about the state ck of the Markov chain. Now, we
construct the process z(k) as

z(k) = h(ck)eθnb(maxn
∑k
i=1 xn,i−

∑k
i=1 ti)

=
(
eθnb(maxn

∑k
i=1 xn,i−kD)

)(
h(ck)eθnb(kD−

∑k
i=1 ti)

)
(27)

with the deterministic parameter

D := θ−1
nb log

(
E
[
eθnbx1,1

])
.

Note the similarity of z(k) to (9) except for the additional function h. Roughly,
the function h captures the correlation structure of the non-renewal interarrival
time process.

Next we show that both terms of (27) are submartingales. In the first step
we note that by the definition of D:

E
[
eθnb(

∑k
i=1 xn,i−kD)

∣∣∣Fk−1

]
= eθnb(

∑k−1
i=1 xn,i−(k−1)D) ,

hence, following the line of argument in (10) the left factor of (27), which
accounts for the additional maxn, is a submartingale. The second step is similar
to the derivations in [10,14]. First, note that

E
[
h(ck)eθnb(D−tk)

∣∣∣Fk−1

]
= eθnbDTθnbh(ck−1)

= eθnbDΛ(θnb)h(ck−1)

= h(ck−1) , (28)

where the last line is due to the definitions of D and θnb. Now, multiplying

both sides of (28) by eθnb((k−1)D−
∑k−1
i=1 ti) proves the martingale and hence

the submartingale property of the right factor in (27). As the process z(k) is a
product of two independent submartingales, it is a submartingale itself w.r.t.
Fk.

Next, we derive a bound on the steady-state waiting time distribution using
the Optional Stopping Theorem. Here, we use the stopping time K defined in
(11). Recall that P [K <∞] = P [w ≥ σ]. On the one hand we can write for
every k ∈ N

E [z(k)] ≥ E [z(K ∧ k)]

≥ E [z(K ∧ k)1K<k]

= E
[
max
n

h(cK)eθnb(
∑K
i=1 xn,i−

∑K
i=1 ti)1K<k

]
≥ eθnbσE [h(cK)1K<k]

= eθnbσE [h(cK) |K < k]P [K < k] . (29)
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Fig. 5 The O(logN) scaling of waiting time percentiles wε for Markov modulated input
(the non-blocking case (25)). The system parameters are µ = 1, λ2 = 0.9, ρ = 0.75 (in both
(a) and (b)) p = 0.1, q = 0.4 (in (a)), three violation probabilities ε (in (a)), ε = 10−4 and
only two burstiness parameters p + q (in (b)) (for visual convenience). Simulations include
100 runs, each accounting for 107 slots.

On the other hand we can upper bound the term

E [z(k)] = E
[
max
n

eθnb(
∑k
i=1 xn,i−kD)

]
E
[
h(ck)eθnb(kD−

∑k
i=1 ti)

]
≤ NE [h(c1)] .

Letting k →∞ in (29) leads to

P [K <∞] ≤ E [h(c1)]

E [h(cK) |K <∞]
Ne−θnbσ . (30)

In Lemma 2 it is shown that the distribution of the random variable (cK |
K < k) is stochastically smaller than the stationary distribution of the Markov
chain. Given the burstiness condition in (24) and that the function h is mono-
tonically decreasing [9], we can further upper bound the prefactor in (30) as

E [h(c1)]

E [h(cK) |K <∞]
≤ 1 ,

which completes the proof. The proof for the response time r is analogous.

Remark: Note that, if the burstiness condition (24) is not fulfilled then we
can still upper bound the prefactor in (30) using the trivial upper bound

E [h(c1)]

E [h(cK) |K <∞]
≤ E [h(c1)]

mink h(ck)
.

Figure 5 displays the bounds on the waiting time percentiles wε, for various
violation probabilities ε, in the FJ system with non-renewal input. The bounds
closely match the corresponding simulation results, shown as box-plots, while
also exhibiting the O(logN) scaling behavior (which can be also derived from
both (25) and (26), as in Section 3).
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4.2 Blocking Systems

Now we turn to the blocking variant of the FJ system that is fed by the same
non-renewal arrivals as in the previous section. In the following, we consider
exponential distributions Lm for m ∈ {1, 2}. The main result is:

Theorem 4 (Non-Renewals, Blocking) Given a FJ system with N block-
ing servers, Markov modulated job interarrivals tj, and iid task service times
xn,j. The steady-state waiting and response time distributions are bounded by

P [w ≥ σ] ≤ e−θbσ (31)

P [r ≥ σ] ≤ E
[
eθb maxn x1,1

]
e−θbσ ,

where θb is the (positive) solution of

E
[
eθmaxn xn,1

]
Λ(θ) = 1 .

We remark that the positive solution for θb is guaranteed under the stronger
stability condition E [t1] > E [maxn xn,1] and the Perron-Frobenius Theorem.

Proof Let D := θ−1
b log E

[
eθb maxn xn,1

]
and define the process y by:

y(k) = h(ck)eθb(
∑k
i=1 maxn xn,i−

∑k
i=1 ti)

= (eθb(
∑k
i=1 maxn xn,i−kD))(h(ck)eθb(kD−

∑k
i=1 ti)) .

Similarly to the proofs of Theorem 2 and Theorem 3 one can show that both
the first and second factor of y are martingales, and hence y is a martingale.
We use the stopping time K in (20) and write

E [h(c1)] = E [y(0)]

≥ E [y(K ∧ k)]

≥ E [y(K ∧ k)1K<k]

= E
[
eθb(

∑K
i=1 maxn xn,i−

∑K
i=1 ti)h(cK)1K<k

]
≥ eθbσE [h(cK) |K <∞]P [K < k] .

Taking k →∞ we obtain the bound

P [K <∞] ≤ E [h(c1)]

E [h(cK) |K <∞]
e−θbσ ≤ e−θbσ ,

where we used Lemma 2 for the last inequality. The proof for r is analogous.

A close comparison of the waiting time bound in the non-renewal case (31)
to the corresponding bound in the renewal case (18) reveals that the decay
factors θb depend on similar conditions, whereby the MGF of the interarrival
times in (18) is replaced by the spectral radius of the modulating Markov
chain in (31). Moreover, given the ergodicity of the underlying Markov chain,
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Fig. 6 Bounds on the waiting time distributions vs. simulations (non-renewal input): (a)
the non-blocking case (25) and (b) the blocking case (31). The parameters are N = 20, µ =
1, p = 0.1, q = 0.4, λ1 ∈ {0.4, 0.72, 0.72} and λ2 ∈ {0.9, 0.9, 1.62} leading to utilizations
ρ ∈ {0.5, 0.75, 0.9}. Simulations include 100 runs, each accounting for 107 slots.

the blocking system with non-renewal input is subject to the same degrading
stability region (in logN) as in the renewal case (recall (21)).

For quick numerical illustrations of the tightness of the bounds on the
waiting time distributions in both the non-blocking and blocking cases we
refer to Figure 6.

So far we have contributed stochastic bounds on the steady-state waiting
and response time distributions in FJ systems fed with either renewal and
non-renewal job arrivals. The key technical insight was that the stochastic
bounds in the non-blocking model grow as O(logN) in the number of parallel
servers N under non-renewal arrivals, which extends a known result for renewal
arrivals [31,5]. The same fundamental factor of logN was shown to drive the
stability region in the blocking model. A concrete application follows next.

5 Partial Mapping

In this section we consider FJ queueing systems where jobs are mapped to a
subset of H ≤ N servers. This model captures a crucial aspect of the opera-
tion of parallel systems, i.e., the amount of resources provided to some job is
not necessarily the entire amount of resources available. This corresponds, for
example, to batch systems, where servers are grouped into resource pools and
incoming jobs are assigned to one such pool. In general, partial mapping pro-
vides a basis for service differentiation and isolation within parallel systems. In
the following we regard two contrasting types of partial mapping, i.e., a rigid
round-robin mapping and a random partial mapping of jobs to H ≤ N servers.
The subsequent analysis of the fan-out ratio H/N on the system performance
provides a reference for dimensioning such server pools. In the following, we
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restrict the exposition to the more interesting case of non-blocking servers
since most of the derivations rely on results from Sections 3 and 4.

5.1 Round-robin Partial Mapping, Dyadic System

We consider a dyadic FJ system where the number of servers is given as
N = 2W (with W ≥ 1) and a job is split into H = 2V tasks (with 1 ≤ V ≤W ).
The assignment of tasks to servers follows a round-robin scheme such that the
first job is assigned to servers 1, . . . ,H, the second to the servers H+1, . . . , 2H,
etc.

In the following, we consider job arrivals as renewal processes similar to
Sect. 3. For the analysis it is sufficient to look only at an equivalent “FJ
subsystem” that consists of only H servers and adjust the job interarrival
times t̄k to that system accordingly:

t̄k :=

2(W−V )∑
i=1

t(k−1)2(W−V )+i .

Note that for the extremal case V = W we recover the scenario from Sect. 3,
i.e., t̄k = tk.

The Laplace transform of the job interarrival times t̄k to one subsystem is
obtained directly from the Laplace transform of the original job interarrival
times tk and the number of subsystems:

E
[
e−θt̄1

]
= E

[
e−θt1

]2W−V

= E
[
e−θt1

]N
H .

The steady-state waiting time distribution now has the following represen-
tation:

w =D max
k≥0

{
max

1≤n≤H

{
k∑
i=1

xn,i −
k∑
i=1

t̄i

}}
(32)

and the response time:

r =D max
k≥0

{
max

1≤n≤H

{
k∑
i=0

xn,i −
k∑
i=1

t̄i

}}
. (33)

The next theorem provides upper bounds on the steady-state waiting and
response time distributions in the non-blocking scenario with partial round-
robin mapping and renewal interarrivals.

Theorem 5 (round-robin mapping, Renewals, Non-Blocking) Given
a FJ queueing system with N = 2W non-blocking servers and partial round-
robin mapping of jobs to H = 2V servers with 1 ≤ V ≤W . The system is fed
by renewal job arrivals with interarrivals tj. If the input job size is normalized
such that the MGF of the task service time is given as E

[
eθxn,i/H

]
, with the
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service times xn,i being iid, then the steady-state waiting and response times
w and r are bounded by

P [w ≥ σ] ≤ He−θσ ,
P [r ≥ σ] ≤ HE

[
eθx1,1

]
e−θσ ,

where θ is the solution of

E
[
eθx1,1/H

]
E
[
e−θt1

]N
H = 1 . (34)

Proof The proof goes along the same arguments of the proof of Theorem 1,
however, with modified MGF and Laplace transform for the task service times
xn,i and the job interarrival times ti, respectively.

The rationale behind the normalization of the input job size such that the
MGF of the task service time is given as E

[
eθxn,i/H

]
is to compare different

fan-out factors H such that the mean task service time is E [x] /H.

Example: Exponentially distributed interarrival and service times

In the case of exponentially distributed interarrival times with parameter λ
the job interarrival times at one subsystem have an Erlang EN

H
distribution.

We assume the tasks are exponentially distributed with a mean 1/Hµ. The
condition (34) from Theorem 5 becomes(

Hµ

Hµ− θ

)(
λ

λ+ θ

)N
H

= 1 . (35)

In Figure 7 we show simulation box-plots as well as corresponding bounds
on the waiting time percentile wε from Theorem 5 for an increasing number
of fan-out servers H. Observe the diminishing gain in terms of waiting time
reduction with increasing the server fan-out.

5.2 Random Partial Mapping

Here, we consider a system that randomly maps a job to H out of N available
servers based on a uniform distribution over the set {A ⊆ {1, . . . , N}||A| = H}
of server combinations with cardinality H. We bound the job waiting and
response time in this system using the following abstraction which considers
the probability of assigning a task to a specific server. Note that the probability
for a task dedicated to a certain server is given by pd = H/N . Now, if we focus
on only one server of this FJ system, the task service times at that server can
be represented by the compound distribution

x̄n,i =

{
xn,i with probability pd

0 with probability 1− pd ,
(36)
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Fig. 7 Round-robin partial mapping: Bound on the waiting time percentile wε for renewal
arrivals and increasing number of servers (fan-out) H. The system parameters are µ = 1, λ =
0.75, ε = 10−3 and the overall number of servers is N = 28.

since a job that is not assigned to this server can be considered to have a
service time equal to 0. Hence, one server of this FJ system with random
partial mapping can be modelled as if it is part of a FJ system with full
mapping as in Sect. 3, but with the modified service times x̄n,i. Note that the
MGF of x̄n,i can be computed as:

E
[
eθx̄n,i

]
= (1− pd) + pdE

[
eθxn,i

]
.

The representations for the waiting and response time, respectively, become

w =D max
k≥0

{
max

1≤n≤H

{
k∑
i=1

x̄n,i −
k∑
i=1

ti

}}
, (37)

and

r =D max
k≥0

{
max

1≤n≤H

{
xn,0 +

k∑
i=1

x̄n,i −
k∑
i=1

ti

}}
. (38)

Note the asymmetry for the response time in (38). For i ≥ 1 we consider
the modified service times x̄n,i as the corresponding server is only selected
with probability pd. In turn, for i = 0, we need to consider the unmodified
service time x0,i as we only look at those servers which have been selected for
mapping.

The following theorems provide upper bounds on the steady-state waiting
and response time distributions in the non-blocking scenarios with partial ran-
dom mapping for renewal and Markov-modulated interarrivals, respectively.

Theorem 6 (Random Mapping, Renewals, Non-Blocking) Given a FJ
queueing system with N servers and random partial mapping of jobs to H ≤ N
servers based on a uniform distribution over the set {A ⊆ {1, . . . , N}||A| = H}
of server combinations with cardinality H. The system is fed with renewal job
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(b) Impact of the fan-out ratio H/N

Fig. 8 Bounds on the waiting time distributions vs. simulation box-plots for renewal input
with random server mapping. The parameters are N = 16, µ = 1. (a) Here, we fix the fan-
out ratio to H = 12 and change the job arrival rate λ ∈ {0.5, 0.75, 0.9} while in (b) we fix
the arrival rate to λ = 0.75 and vary the fan-out ratio H/N ∈ {0.25, 0.5, 0.75}. Simulations
include 100 runs, each accounting for 106 slots.

arrivals. If the task service times xn,j are iid, then the steady-state waiting
and response times w and r are bounded by

P [w ≥ σ] ≤ He−θσ ,
P [r ≥ σ] ≤ HE

[
eθx1,1

]
e−θσ ,

where θ is the solution of(
(1− pd) + pdE

[
eθxn,i

])
E
[
e−θt1

]
= 1 . (39)

Proof The proof goes along similar steps as for Theorem 5, however, using the
process

zn(k) = eθ
∑k
i=1(x̄n,i−ti)

which is a martingale for each n ≤ N under the criterion (39) on θ.

Figure 8 shows a numerical illustration of the tightness of the bounds on
the waiting time distribution from Theorem 6. The illustrated results are for
the example of exponentially distributed interarrival and service times with
parameters λ and µ, respectively.

By combining the above consideration of the compound service time distri-
bution with the results from Section 4, one can extend the analysis of random
partial mapping to the case of non-renewal input.

Theorem 7 (Random Mapping, Non-Renewals, Non-Blocking) Given
a FJ queueing system with N parallel non-blocking servers, Markov modulated
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job interarrivals tj as in Section 4, and task service times x̄n,i that are de-
scribed by Eq. (36). Jobs are randomly mapped to servers according to a uni-
form distribution over the set of server combinations with cardinality H. The
steady-state waiting and response time distributions are bounded by

P [w ≥ σ] ≤ He−θσ ,
P [r ≥ σ] ≤ HE

[
eθx1,1

]
e−θσ ,

where θ is the solution of(
(1− pd) + pdE

[
eθx1,1

])
Λ(θ) = 1 .

(Recall that Λ(θ) was defined as a spectral radius of Tθ in Section 4).

Proof The proof follows analogously to the proof of Theorem 3 with the dif-
ference that xn,i is replaced by x̄n,i and N by H, respectively.

Remark: Random number of servers H: One variation of the system
that is considered in Sect. 5.2 is a random mapping of arriving jobs to a random
number of servers 1 ≤ H ≤ N based on a uniform distribution over the power
set {2A \ ∅} with A = {1, . . . , N}. In this case the steady state waiting and
response times are bounded by

P [w ≥ σ] ≤ Ne−θσ ,
P [r ≥ σ] ≤ NE

[
eθx1,1

]
e−θσ ,

where θ is the solution of (39) with pd = 2N−1/(2N − 1).

6 Application to Window-based Protocols over Multipath Routing

In this section we slightly adapt and use the non-blocking FJ queueing system
from Section 3.1 to analyze the performance of a generic window-based trans-
mission protocol over multipath routing. While this problem has attracted
much interest lately with the emergence of multipath TCP [35], it is subject
to a major difficulty due to the likely overtaking of packets on different paths.
Consequently, packets have to additionally wait for a resequencing delay, which
directly corresponds to the synchronization constraint in FJ systems. We note
that the employed FJ non-blocking model is subject to a convenient simplifi-
cation, i.e., each path is modelled by a single server/queue only.

As depicted in Figure 9, we consider an arrival flow containing l batches
of N packets, with l ∈ N, at the fork node A. In practice, a packet as denoted
here may represent an entire train of consecutive datagrams. The incoming
packets are sent over multiple paths to the destination node B, where they
need to be eventually reordered. We assume that the batch size corresponds to
the transmission window size of the protocol, such that one packet traverses
a single path only. For example, the first path transmits the packets {1, N +
1, 2N+1, . . . }, i.e., packets are distributed in a round-robin fashion over the N
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paths. We also assume that packets on each path are delivered in a (locally-)
FIFO order, i.e., there is no overtaking on the same path.

In analogy to Section 3.1, we consider a batch waiting until its last packet
starts being transmitted. When the transmission of the last packet of batch
j begins, the previous batch has already been received, i.e., all packets of the
batch j − 1 are in order at node B.

We are interested in the response times of the batches, which are upper
bounded by the largest response time of the packets therein. The arrival time
of a batch is defined as the latest arrival time of the packets therein, i.e.,
when the batch is entirely received. Formally, the response time of batch j ∈
{lN + 1 | l ∈ N} can be given by slightly modifying (2), i.e.,

rj = max
0≤k≤j−1

{
max
n

{
k∑
i=0

xn,j−i −
k∑
i=1

tn,j−i

}}
.

The corresponding steady-state response time has the modified representation

r =D max
k≥0

{
max
n

{
k∑
i=0

xn,i −
k∑
i=1

tn,i

}}
.

The modifications account for the fact that the packets of each batch are asyn-
chronously transmitted on the corresponding paths (instead, in the basic FJ
systems, the tasks of each job are simultaneously mapped). In terms of nota-
tions, the tn,i’s now denote the interarrival times of the packets transmitted
over the same path n, whereas xn,i’s are iid and denote the transmission time
of packet i over path n; as an example, when the arrival flow at node A is
Poisson, tn,i has an Erlang EN distribution for all n and i.

We next analyze the performance of the considered multipath routing for
both renewal and non-renewal input.

Renewal Arrivals

Consider first the scenario with renewal interarrival times. Similarly to Sec-
tion 3.1 we bound the distribution of the steady-state response time r using
a submartingale in the time domain j ∈ {lN + 1|l ∈ N}. Following the same
steps as in Theorem 1, the process

zn(k) = eθ(
∑k
i=0 xn,i−

∑k
i=1 tn,i)

is a martingale under the condition

E
[
eθx1,1

]
E
[
e−θt1,1

]
= 1 ,

where we used the filtration

Fk := σ{xn,m, tn,m|m ≤ k, n ∈ [1, N ]} .
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Fig. 9 A schematic description of the window-based transmission over multipath routing;
each path is modelled as a single server/queue.

Note that E
[
e−θt1,1

]
denotes the Laplace transform of the interarrival times

of packets transmitted over each path. The proof that maxn zn(k) is a sub-
martingale follows a similar argument as in (10). Hence, we can bound the
distribution of the steady-state response time as

P [r ≥ σ] ≤ NE
[
eθx1,1

]
e−θσ , (40)

with the condition on θ from above.

Non-Renewal Arrivals

Next, consider a scenario with non-renewal interarrival times ti of the packets
arriving at the fork node A in Figure 9, as described in Section 4. On every
path n ∈ [1, N ] the interarrivals are given by a sub-chain (cn,k)k that is driven
by the N -step transition matrix TN = (αi,j)i,j for T given in (23). Similarly
as in the proof of Theorem 3, we will use an exponential transform (TN )θ of
the transition matrix that describes each path n, i.e.,

(TN )θ :=

(
α1,1β1 α1,2β2

α2,1β1 α2,2β2

)
,

with αi,j defined above and β1, β2 being the elements of a vector β of condi-
tional Laplace transforms of N consecutive interarrival times ti. The vector β
is given by

β :=

(
β1

β2

)
=


E
[
e−θ

∑N
i=1 ti

∣∣∣ c1 = 1
]

E
[
e−θ

∑N
i=1 ti

∣∣∣ c1 = 2
]
 ,
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and can be computed given the transition matrix T from (23) via an exponen-
tial row transform [10] (Example 7.2.7) denoted by

T̃θ :=

(1− p)E
[
e−θL1

]
pE
[
e−θL1

]
qE
[
e−θL2

]
(1− q)E

[
e−θL2

]
 ,

yielding β = (T̃θ)
N

(
1
1

)
.

Denote Λ(θ) and h = (h(1), h(2)) as the maximal positive eigenvalue of the
matrix (TN )θ and the corresponding right eigenvector, respectively. Mimicking
the proof of Theorem 3, one can show for every path n that the process

zn(k) = h(cn,k)eθ(
∑k
i=0 xn,i−

∑k
i=1 tn,i)

is a martingale under the condition on (positive) θ

E
[
eθx1,1

]
Λ(θ) = 1 . (41)

Given the martingale representation of the processes zn(k) for every path
n, the process

z(k) = max
n

zn(k)

is a submartingale following the line of argument in (10). We can now use
(30) and the remark at the end of Section 4.1 to bound the distribution of the
steady-state response time r as

P [r ≥ σ] ≤ E [h(c1,1)]

h(2)
NE

[
eθx1,1

]
e−θσ , (42)

where we also used that h is monotonically decreasing and θ as defined in (41).

As a direct application of the obtained stochastic bounds (i.e., (40) and
(42)), consider the problem of optimizing the number of parallel paths N sub-
ject to the batch delay (accounting for both queueing and resequencing delays).
More concretely, we are interested in the number of paths N minimizing the
overall average batch delay. Note that the path utilization changes with N as

ρ =
λ

Nµ
,

since each path only receives 1
N of the input. In other words, the packets on

each path are delivered much faster with increasing N , but they are subject
to the additional resequencing delay (which increases as logN as shown in
Section 3.1).

To visualize the impact of increasing N on the average batch response
times we use the ratio

R̃N :=
E [rN ]

E [r1]
,
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Fig. 10 Multipath routing reduces the average batch response time when R̃N < 1; smaller
R̃N corresponds to larger reductions. Baseline parameter µ = 1 and non-renewal pa-
rameters: p = 0.1, q = 0.4, λ1 = {0.39, 0.7, 0.88}, λ2 = 0.95, yielding the utilizations
ρ = {0.5, 0.75, 0.9} (from top to bottom).

where, with abuse of notation, E [rN ] denotes a bound on the average batch
response time for some N , and E [r1] denotes the corresponding baseline bound
for N = 1; both bounds are obtained by integrating either (40) or (42) for the
renewal and the non-renewal case, respectively.

In the renewal case, with exponentially distributed interarrival times with
parameter λ, and homogenous paths/servers where the service times are ex-
ponentially distributed with parameter µ, we obtain

R̃N =

(
log(Nµ/(µ− θ)) + 1

log(1/ρ) + 1

)(
µ− λ
θ

)
, (43)

where θ is the solution of

µ

µ− θ

(
λ

λ+ θ

)N
= 1 .

In the non-renewal case we obtain the same expression for R̃N as in (43)

except for the additional prefactor E[h(c1(1))]
h(2) prior to N ; moreover, θ is the

implicit solution from (41).
Figure 10 illustrates R̃N as a function of N for several utilization levels ρ

for both renewal (a) and non-renewal (b) input; recall that the utilization on
each path is ρ

N . In both cases, the fundamental observation is that at small uti-
lizations (i.e., roughly when ρ ≤ 0.5), multipath routing increases the response
times. In turn, at higher utilizations, response times benefit from multipath
routing but only for 2 paths. While this result may appear as counterintuitive,
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the technical explanation (in (a)) is that the waiting time in the underlying
EN/M/1 queue quickly converges to 1

µ , whereas the resequencing delay grows
as logN ; in other words, the gain in the queueing delay due to multipath
routing is quickly dominated by the resequencing delay price.

7 Conclusions

In this paper we have provided the first computable and non-asymptotic
bounds on the waiting and response time distributions in Fork-Join queue-
ing systems under full and partial server mapping. We have analyzed four
practical scenarios comprising of either workconserving or non-workconserving
servers, which are fed by either renewal or non-renewal arrivals. In the case of
workconserving servers, we have shown that delays scale as O(logN) in the
number of parallel servers N , extending a related scaling result from renewal
to non-renewal input. In turn, in the case of non-workconserving servers, we
have shown that the same fundamental factor of logN determines the system’s
stability region. Given their inherent tightness, our results can be directly ap-
plied to the dimensioning of Fork-Join systems such as MapReduce clusters
and multipath routing. A highlight of our study is that multipath routing is
reasonable from a queueing perspective for two routing paths only.
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Appendix

We assume throughout the paper that all probabilistic objects are defined on a common
filtered probability space

(
Ω,A, (Fn)n ,P

)
. All processes (Xn)n are assumed to be adapted,

i.e., for each n ≥ 0, the random variable Xn is Fn-measurable.

Definition 1 (Martingale) An integrable process (Xn)n is a martingale if and only if for
each n ≥ 1

E [Xn | Fn−1] = Xn−1 . (44)

Further, X is said to be a sub-(super-)martingale if in (44) we have ≥ (≤) instead of equality.

The key property of (sub, super)-martingales that we use in this paper is described by the
following lemma:

Lemma 1 (Optional Sampling Theorem) Let (Xn)n be a martingale, and K a bounded
stopping time, i.e., K ≤ n a.s. for some n ≥ 0 and {K = k} ∈ Fk for all k ≤ n. Then

E [X0] = E [XK ] = E [Xn] . (45)

If X is a sub-(super)-martingale, the equality sign in (45) is replaced by ≤ (≥).

Proof See, e.g., [7].

Note that for any (possibly unbounded) stopping time K, the stopping time K ∧ n is
always bounded. We use Lemma 1 with the stopping timesK∧n in the proofs of Theorems 1 –
4.

Lemma 2 Let ck be the Markov chain from Figure 4 and K be the stopping time from
(11). Then the distribution of (cK | K <∞) is stochastically smaller than the steady-state
distribution of ck, i.e.,

P [cK = 2 | K <∞] ≤ P [c1 = 2] ,

or, equivalently,
E [h(cK) |K <∞] ≥ E [h(ck)] ,

for all monotonically decreasing functions h on {1, 2}.

Proof Using Bayes’ rule and the stationarity of the process ck, it holds:

P [cK = 2 | K <∞] =

∞∑
k=1

P [ck = 2 | K = k]P [K = k]

=

∞∑
k=1

P [K = k | ck = 2]P [ck = 2]

= P [c1 = 2]

∞∑
k=1

P [K = k | ck = 2] .
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Since L1 is stochastically smaller than L2, we have for any k ≥ 1

P[K = k | ck = 2]

= P

[
tk≤max

n

k∑
i=1

xn,i−
k−1∑
i=1

ti−σ,max
n

k−1∑
i=1

(xn,i−ti) < σ

∣∣∣∣ck =2

]

≤ P

[
tk≤max

n

k∑
i=1

xn,i−
k−1∑
i=1

ti−σ,max
n

k−1∑
i=1

(xn,i−ti) < σ

]
= P [K = k] .

Hence
∑∞

k=1 P [K = k | ck = 2] ≤ 1, which completes the proof.




