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ABSTRACT

Smart meters are increasingly penetrating the market, re-
sulting in enormous data volumes to be communicated. In
many cases, embedded devices collect the metering data and
transmit them wirelessly to achieve cheap and facile deploy-
ment. Bandwidth is yet scarce and transmission occupies
the spectrum. Smart meter data should hence be compressed
prior to transmission. Here, solutions for personal computers
are not applicable, as they are too resource-demanding. In this
paper, we propose four lossless compression algorithms for
smart meters. We analyze processing time and compression
gains and compare the results with five off-the-shelf compres-
sion algorithms. We show that excellent compression gains
can be achieved when investing a moderate amount of mem-
ory. A discussion of the suitability of the algorithms for dif-
ferent kinds of metering data is presented.

1. INTRODUCTION

A massive cost pressure is entailed by the expansion of the
grid in order to cope with occurring peak loads. Not managing
to keep up with the customers’ electricity demand bears the
threat of overloading the distribution network, which can even
result in blackouts. This risk can be reduced by offering flex-
ible, time-dependent electricity tariffs, which take the current
load situation into account. Customers receive monetary ben-
efits by shifting delayable tasks to time periods during which
the grid is well below its capacity limits. Running dish wash-
ers or washing machines at times with low energy prices also
contributes to the stability of the grid. Likewise, smart meter-
ing helps customers to reduce their bill by identifying heavy
electricity consumers, since they allow tracing consumption
at fine granularity. This in turn reduces the overall load on the
grid when energy-aware customers replace energy-inefficient
appliances by state-of-the-art models.

However, smart metering only pays off if smart meters
are inexpensive devices. As their installation location within

a building’s distribution board typically lacks access to com-
munication networks, a dedicated communication infrastruc-
ture is required to communicate electricity readings to the
utility. One approach is to equip smart meters with GSM
or UMTS modules, which has two considerable drawbacks.
Firstly, this imposes non-negligible hardware plus data trans-
mission cost. Secondly, smart meters are frequently installed
in cellars or rooms with poor GSM and UMTS connectivity.
A second approach—and the one followed in this paper—is to
use wireless sensor network technology, where meters form a
mesh network and transport meter data to a data concentrator.
This approach is generally inexpensive and facilitates wire-
less communication by using low-frequency radio devices.
Yet, bandwidth constraints and legal requirements of channel
utilization must be considered. Meeting these issues restricts
the size of the network, while larger networks promise lower
costs, since less data concentrators are needed.

For both approaches, reducing the network load decreases
costs. The transmission of data deltas or the application of
lossy compression is yet not an option due to legal require-
ments in many countries, such as Germany. Lossless data
compression is thus needed to maintain high temporal data
resolution and to not diminish the opportunities of smart me-
tering. Although powerful compression algorithms exist for
personal computers, they have too large memory footprints
and computation demands for resource-constrained smart me-
ter hardware. Exploiting data patterns for compression is
tempting but comes at additional development cost. In any
case, the result is likely to be a highly integrated solution, only
applicable for one particular smart meter application protocol.

In this paper, we present lossless compression algorithms
that are tailored to the needs of smart metering hardware but
do not make assumptions about the characteristics of the col-
lected data. They are hence compatible to a wide range of
smart meter data formats. We evaluate these algorithms us-
ing two different sets of real smart meter data and compare
the compression results to those achievable with off-the-shelf
compression algorithms. To prove the practical merit of the
presented algorithms, we analyze and compare their memory
footprint and execution time on sensor node hardware.
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2. RELATED WORK

The increasing distribution of smart metering devices [1]
leads to the availability of power consumption traces at an
unprecedented temporal resolution. One predominantly envi-
sioned application domain is the adaptation to smart markets
with highly flexible tariffs [2], since this domain strongly
relies on the availability of consumption data collected in
a near real-time manner. Recent research results however
present further opportunities that rely on information about a
household’s power consumption behavior, e.g., the detection
of household activities [3] or the support of ambient assisted
living [4]. Although work on capturing and analyzing the
power consumption of buildings and appliances has already
been presented in the late 1980s ([5, 6]), the optimization of
the actual communication of sensor data between the meter
and a processing node has not been analyzed in detail to date.
We dedicatedly address this shortcoming by presenting ap-
proaches to compress smart meter data prior to transmission.

While various data compression solutions for personal
computers, such as LZ77 [7] or LZW [8], have been pre-
sented several decades ago, the field of data compression on
embedded sensing systems has only recently been addressed
in detail. The cardinal difference between these two worlds,
however, is their objective; on personal computers, the sole
target is a reduction of the file size. In contrast, embedded
systems commonly target the minimization of their energy
balance, i.e., they need to carefully weigh up computation
and communication against each other ([9, 10]). Many smart
metering devices, such as smart water meters, are likely to be
battery-powered, since no other power supply may be avail-
able. Compression algorithms hence need to be sufficiently
lightweight to operate even on small, resource-constrained
devices. Existing algorithms have been adapted to embed-
ded systems, e.g., the SBZIP algorithm [11], a derivative of
BZIP2. Likewise, Sadler and Martonosi [12] have proposed
RT-LZW, a special adaptation of the LZW algorithm. Solu-
tions specifically tailored to embedded systems include the
extraction of linearized trends in the data [13] and the use
of Kalman filters for packet predictions [14]. To the best
of our knowledge, the applicability of data compression on
power consumption readings has only been analyzed for two
application-agnostic compression algorithms in [15].

Existing projects that collect power traces and make them
available for research purposes include the REDD dataset [16]
and the tracebase project1. Here, readings are collected in
intervals of approximately one second, resulting in around
86 400 readings per day. Under the assumption that each read-
ing requires at least 16 bits to be represented, this equals daily
traffic of between 70 and 175 kB. This figure clearly moti-
vates the application of data compression in order to reduce
the utilization of the communication channel and to remove
redundancies in the input data prior to their transmission.

1
http://www.tracebase.org

3. COMPRESSION ALGORITHMS

For the compression of smart meter data, we have derived four
lossless data compression approaches. They have been partic-
ularly designed with regard to their applicability on embed-
ded systems, i.e., a small footprint both in terms of program
memory and RAM as well as low processing time. Besides
presenting their design in more detail, we introduce the exist-
ing compression algorithms that we have used as a reference.

3.1. Adaptive Trimmed Huffman Coding

The Adaptive Trimmed Huffman (ATH) method is described
in [17] and was specifically developed for its application in
energy-constrained wireless sensor networks. It is an adap-
tive entropy coding scheme, i.e., it adapts to the symbol dis-
tribution during runtime. A restriction of the maximum Huff-
man code tree size is imposed in order to reduce the algo-
rithm’s memory demand. Hence, an additional prefix bit sig-
nals whether the following sequence refers to a symbol stored
in the tree, or if it is an unencoded symbol.

3.2. Adaptive Markov Chain Huffman Coding

The Markov Chain Huffman (MCH) coding method is based
on determining the transition probabilities of successive sym-
bols. For each symbol in the input sequence, MCH estab-
lishes a Huffman tree [18] for all possible successor symbols.
It is thus well suited for sequences in which strong interde-
pendencies between symbols exist. For application in smart
metering, we have slightly extended this concept of MCH
coding, in which the underlying data must be known in ad-
vance. We term this resulting scheme, which bears the possi-
bility to adapt to the input sequence, adaptive Markov Chain
Huffman (AMCH) coding. In order to enable the Huffman
trees to incorporate unknown elements during runtime (e.g.,
unexpected power readings), we have implemented an escape
symbol analog to dynamic Huffman coding [19] in each tree.
By transmitting this escape symbol, yet unknown successor
symbols can be transmitted unencoded and integrated into the
dynamic Huffman tree during runtime.

3.3. tiny Lempel Ziv Markov Chain Algorithm

The Lempel Ziv Markov Chain Algorithm (LZMA) relies on
the combination of a dictionary-based compression mecha-
nism with a range coding step. Each symbol in the output
sequence is prefixed by a flag that determines whether it rep-
resents a reference to the dictionary or the output of the range
coder. In contrast to LZMA, the tiny Lempel Ziv Markov
Chain Algorithm (tLZMA) uses a constrained history win-
dow of 128 bytes for the dictionary coding step and entirely
omits the range coding step. Furthermore, references to the
dictionary are encoded by an optimal prefix code in order to
optimize the algorithm’s performance.



3.4. Lempel Ziv Markov Chain Huffman Coding

The Lempel Ziv-Markov Chain-Huffman (LZMH) method is
a combination of the tLZMA and ATH methods. Symbols that
cannot be resolved in tLZMA’s dictionary are not transferred
unencoded, but rather looked up in an adaptive Huffman tree.
This Huffman tree is constructed analog to the ATH scheme,
but it also includes counters for entries that are not present in
the tree, such that the prefix bit could be omitted.

3.5. Reference Compression Algorithms

To compare the performance with existing desktop com-
puter compression algorithms, we have regarded the ZLIB
(1.2.6), BZIP2 (1.0.6), LZMA (9.20), LZW, and the LZSS
algorithms [20]. We integrated them into our reference im-
plementation by means of publicly available libraries in the
C or C++ programming languages, or developed custom
implementations of the LZW and LZSS algorithm, respec-
tively. No specific adaptations to the resource constraints
of the underlying hardware platforms were made during the
implementation stage.

4. EVALUATION METHODOLOGY

We analyzed the presented compression algorithms using the
datasets, methods, and metrics explained in the following.

4.1. Evaluation Data

In order to cater for a fair comparison and ensure the viability
of the compared algorithms in realistic settings, evaluations
need to make use of input data that has been collected by mon-
itoring real households and appliances. For that purpose, we
used two data sources for our evaluation.

To evaluate the performance of the compression algo-
rithms in a real smart metering scenario, we obtained 3 500
ASCII-coded (EN-62056-21) datasets from a real smart me-
ter installation. Dataset sizes range from 76 to 3 100 bytes
and resemble different smart meter reading types. We refer to
this dataset as smart meter dataset in the remainder.

The second source of data was a deployment of Plugwise
Circles2, each of which has been periodically polled to re-
turn the measured average power consumption. These traces
help customers to identify individual contributors to the over-
all demand. The devices were sampled approximately once
per second, leading to 86 400 readings per data set on average.
Due to delays on the wireless link, however, some of the out-
put files contained less values. The data has been converted
to a binary format, in which all readings were concatenated.
In total, we have gathered 95 datasets of different household
appliances, to which we refer to as the binary encoded daily
device reports in the following.

2More details about the Plugwise system are available online at http:
//www.plugwise.com

Algorithm ROM (Byte) RAM (Byte)
static stack/heap

LZSS 544 129 19
LZW 550 12 416 16
ZLIB 27 960 2 690 ca. > 1 000
BZ2 28 332 1 564 ca. > 100 000
LZMA 34 442 110 ca. > 6 000 000

ATH 592 170 15
AMCH 1 680 1 820 21
tLZMA 992 133 27
LZMH 1 428 378 29

Table 1. Memory consumption of the compression algorithm
implementations

4.2. Methodology and Metrics

We implemented ATH, AMCH, tLZMA, and LZMH in the C
programming language and used existing implementations of
the reference algorithms. Our implementations were tailored
to the capabilities of low-power, low-resource devices. In par-
ticular, we did not use dynamic memory allocation, for it is
rarely available on the class of expected target devices. Note
that the reference algorithms make use of dynamic memory
allocation.

For each data source, we compressed all datasets individu-
ally and measured the compression rate on a desktop PC. The
compression rate is defined as the fraction of total size reduc-
tion and inpupt dataset size—i.e., a 10% compression rate is
equivalent to decreasing the dataset size by 10% through com-
pression. We use boxplots to depict the spreading of compres-
sion rates, where the box represents the upper and lower quar-
tile and the line in the middle the median. The whiskers of the
box indicate the minimum and maximum compression rates.
We have also measured the real-world processing time for the
smart meter data on an ATmega 1281 microprocessor with
8 kB RAM running at 8 MHz. This experiment could only be
run for ATH, LZSS, tLZMA, and LZMH due to memory con-
straints (cf. Table 1). Each dataset was compressed multiple
times until a per-dataset standard deviation below 1ms (the
resolution of our measurement clock) was achieved.

5. EVALUATION RESULTS

This section assesses the compression algorithms with partic-
ular respect to their applicability on embedded devices. We
analyze their memory footprint, evaluate the achievable com-
pression rates for real smart metering datasets and device re-
ports, and discuss the compression time overhead in context
of the achieved bandwidth savings.

5.1. Memory Consumption

The memory footprints of the compression algorithms for an
ATmega 1281 are depicted in Table 1. The presented figures
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Fig. 1. Compression rates for (a) ASCII encoded smart meter datasets and (b) binary encoded daily device reports

only refer to memory demands for compression execution.
Additional memory is required for storing smart meter data,
and, of course, for application and network stack code.

The figures show that out-of-the-box solutions, with ex-
ception of LZSS, barely fit the capabilities of embedded de-
vices, which in many cases offer only 64-128 kB ROM and 8-
16 kB RAM. In contrast, the approaches presented in this pa-
per comply with available resources, where particularly ATH
and tLZMA are extremely lightweight.

5.2. Compression Rate

Our analysis shows that smart meter data is well compress-
ible, particularly since all readings comprise a large fraction
of digits, i.e., few symbols occur with high frequency and the
data has low entropy. However, the variety of reading types
and dataset sizes impacts compression performance. Fig-
ure 1a depicts the distribution of compression rates. Standard
algorithms achieve average compression rates of 50-75% but
exhibit large variation. This can be explained by the methods
not being able to exploit the structure of datasets with sizes
less than 100 bytes. One can observe this also with the more
elaborate algorithms AMCH, tLZMA, and LZMA. The latter
is close to the high compression rates of the heavy-weight
generic compression algorithms. Note that a median com-
pression rate of more than 70% drastically reduces bandwidth
utilization by approximately the same percentage. The very
simple ATH algorithm yields the lowest while least deviating
compression rates. While ATH is outperforming its competi-
tors in case of very small datasets, it does not profit from
increased dataset sizes. This is evident from Fig. 2, where the
index of the analyzed smart meter data set is indicated on the
x-axis (the datasets were sorted by size). The figure shows
that using references and wordbooks pays off as soon as smart
meter readings exceed a size of 100-200 bytes. Moreover, the
one-bit prefix of ATH codes diminishes its compression rates
for data sets with few, frequent symbols. However, ATH is

capable of cutting all data down to almost half of their size.
Compared to its function logic and code size, which has been
specifically tailored to embedded devices, this represents a
remarkable result.

For large datasets with only small deltas between individ-
ual readings, compression performance is further increased.
The results for the binary encoded daily device reports are
shown in Fig. 1b. Again, ATH produces comparably low
compression rates with a maximum of 63%, which is as low
as the worst rate produced by its opponents excluding AMCH.
The latter achieves fair results, yet suffers from significant
outliers with less than 20% compression rate. All other algo-
rithms offer a comparable performance, where LZSS exhibits
the largest deviation, because it does not encode frequent ref-
erences with less bits, as, e.g., LZMH.
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5.3. Processing Time

Compression time is a significant criterion for the selection
of a compression algorithm. On the one hand, an active mi-
croprocessor consumes more energy, which is undesired if
it is battery-powered. One the other hand, long compres-
sion runtime may prevent the microprocessor from concur-
rently performing other tasks—such as packet forwarding.
Large datasets should hence be compressible within few mil-
liseconds. This can be circumvented by preemptive tasking,
which yet increases implementation effort and the chance of
side-effects and runtime errors due to race conditions. An-
other option would be a stateful implementation approach,
in which control over the microprocessor is returned to the
scheduler periodically during compression. However, this re-
quires more implementation effort and may lead to a larger
memory footprint, because state variables must be persistent.

The distribution of per-byte processing times of the smart
meter datasets is shown in Fig. 3. ATH has a median com-
pression time of 52 ms per kilobyte of input data, so that com-
pressing medium size datasets is unlikely to infer with other
tasks. Moreover, energy expenditure for compression is eas-
ily compensated by the savings due to shorter radio usage.
With a median of 193 ms per kilobyte of input data, tLZMA
is the slowest of the tested algorithms.

Since there is a notable deviation of processing speed, we
took a closer look at the dependency of processing time and
dataset size. Figure 4 reveals that compression speed of ATH
is not affected by dataset size. The remaining algorithms, in
contrast, compress certain datasets considerably quicker or
slower than others. These are the same datasets that allow for
particularly high or low compression rates (cf. Fig. 2), where
a high compression rate implies quicker processing time. This
is caused by less complex algorithm execution due to quicker
wordbook and code-word lookups.

5.4. Algorithm Selection Guidelines

Having analyzed both computational and resource demand
of the compression algorithms, visible discrepancies between
the analyzed algorithms could be determined. While existing
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compression libraries optimized for unconstrained operation
achieve high compression gains, their memory consumption
clearly disqualifies them for application in smart meters.
Moreover, they achieve poor compression rates for small
datasets. Two of the four proposed compression mechanisms,
namely tLZMA and LZMH achieve compression gains com-
parable to these libraries, but come at significantly lower
memory demand. The LZMH method offers the best com-
pression rate while still fulfilling the constrained hardware
resource requirements of embedded devices. The tLZMA
algorithm provides similar compression rates, but consumes
more time to compress data. It should thus only be used
if LZMH consumptions are too heavy on memory and the
system is not operated on a battery-powered supply. When
both fast execution and a very small memory resource foot-
print are desired, LZSS gives fair compression results while
being faster than LZMH. In case the compression time is the
most critical factor, ATH is the best choice to compress smart
meter data due to its significantly faster compression speed.

6. CONCLUSION

Smart metering brings advantages for both utilities and cus-
tomers by supplying fine-grained meter readings. To reduce
bandwidth, energy consumption, and transmission cost while
complying with legal requirements, lossless data compression
is required. We have presented four compression algorithms
for smart meter data that easily fit the tight resource con-
straints of cheap, low-power embedded meter devices.

We have evaluated their compression gains and process-
ing time in comparison to five standard compression libraries



for desktop computers. Our findings prove that a tradeoff be-
tween compression gains, processing time, and resource de-
mands must be found. The best performing algorithm in com-
pressing both DIN EN-62056-21 meter data as well as indi-
vidual device traces from a Plugwise device was the LZMH
algorithm. Its resource requirements make it an ideal exten-
sion to any smart metering device, resulting in average com-
pression rates between 75% and 95% at comparably modest
execution times. If extremely low execution time is manda-
tory, the ATH algorithm is the optimal choice, still achieving
40-60% compression rate at a fourfold processing speed-up.
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