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Abstract—Connected vehicles can nowadays be equipped with
multiple network interfaces to access the Internet via a number
of networks. Given a network availability map and a vehicle’s
route, a joint time-network selection plan could attempt to
schedule delay-tolerant data transmission efficiently. Since the
networks presence and available capacities change rapidly and
in an unforeseen manner (because of changing conditions due
the uncertainty in car movement, data transmission needs and
network characteristics), the efficiency of such a planning may be
severely compromised. Consequently, mechanisms that determine
the deviation from the foreseen conditions are derived in this
paper1, which modify the transmission plan depending on the
type of deviation observed. Simulation results show that the
proposed mechanisms help maintain the benefits of a joint time-
network planning under changing conditions.

I. INTRODUCTION

Nowadays, mobile nodes typically integrate different wire-
less network interfaces. To improve connectivity performance,
they may use these network interfaces in parallel to distribute
their data traffic. Moreover, the connected vehicle use case
provides an additional optimization potential, especially con-
sidering automated vehicles: Routes are usually known and,
thus, movement can be predicted accurately. As a result, a
vehicle can predict future network availability and character-
istics using the so-called connectivity maps [6]. Furthermore,
according to Sandvine [8], a major part of a mobile node’s data
traffic is delay-tolerant or heavy-tailed. Assuming networks
and data traffic to be roughly known for a certain time horizon,
we show in prior work [7] that a transmission planning
can provide significant benefits. The transmission planning
approach combines network selection [2] with a selection of
the transmission time [3]. Accordingly, the approach plans
ahead data transmission over multiple networks. However,
the therein-presented approach assumes perfect prediction of
vehicle movement, network characteristics and data to trans-
mit. Such accurate prediction might not always be available.
Accordingly, we present two contributions in this paper:

1) An investigation of the effects of erroneous prediction
on the performance of transmission plan execution

2) A transmission plan adaptation that can mitigate a neg-
ative impact of erroneous prediction

1This work has been funded in part by the German Research Foundation
(DFG) within the Collaborative Research Center (CRC) 1053 - MAKI

In Section II, we briefly outline our previous work on
data transmission planning assuming static conditions and
perfect knowledge of the environment and compare it to
an Opportunistic Network Selection (ONS) (no planning or
prediction). Furthermore, we introduce our prediction error
models and show that the performance of the joint time-
network selection approach degrades severely in the presence
of prediction errors, due to its inability to react to changing
conditions. In contrast, the opportunistic approach (although
underperforming with respect to the transmission plan ap-
proach under static conditions and perfect knowledge) appears
to deliver a constant performance in the presence of prediction
errors. This provides the motivation for our proposed trans-
mission plan adaptation mechanism, presented in Section III.
The benefit of each planned transmission is re-evaluated and
the plan is modified by invoking a constrained ONS taking
into account the type and magnitude of condition changes
(i.e., car movement, data flows or network characteristics);
mechanisms detecting relevant condition changes are also
introduced. In Section IV, we discuss the performance of our
novel adaptation approach under various changing conditions,
followed by a related work discussion in Section V. It turns
out, that our approach can largely sustain the gain foreseen
from long-term planning, under small to moderate changes in
the environment.

II. DATA TRANSMISSION PLANNING

The predictable movement of multi-homed mobile clients
enables a transmission planning over networks and time. In our
prior work [7], we demonstrate significant benefits of such a
planning in comparison to state-of-the-art approaches. In this
section, we summarize the approach, the evaluation metrics
and results of this work. This constitutes the base for the
adaptation approach proposed and evaluated in this paper.

A. Evaluation Metrics and Model of Forces

To assess the efficiency of our joint time and network selec-
tion approaches, we developed a performance rating function,
that captures application QoS requirement satisfaction and
monetary cost. We bisect the performance rating function into
two components that are in effect in a mutually exclusive
manner depending on whether data is allocated or not. We
call the first component the attracting forces cattr. It captures
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Fig. 1. Normalized Rating Score (NRS) of the transmission planners for
different planning time horizon lengths

cost associated with data that is not allocated to a network,
referred to as p∗, punishing the violation of a minimum
throughput requirement. The second component, referred to
as the repelling forces crep, captures cost associated with data
that is allocated to a network, punishing the violation of the
QoS requirements of the data flows (deadline, latency, jitter,
preferred start time, etc.) or monetary transmission cost. The
rating function in Equation (1) adds the two mutually exclusive
components for a given transmission plan p.

c(p) = crep(p) + cattr(p∗) (1)

Minimizing this cost function leads to the following effects:
Networks attract data for allocation in general through cattr,
creating attracting forces for each data flow according to
its priority. In addition, the repelling forces push data away
from networks and time slots that cannot satisfy the data
flow’s QoS requirements. This results in data allocation to the
best matching networks at matching points in time over the
complete planning time horizon. For the detailed model of the
cost function, refer to [7].

As the absolute value of the cost in Equation (1) strongly
depends on the scenario, a Normalized Rating Score (NRS) is
introduced to allow for a meaningful comparison of multiple
scenarios. NRS describes a transmission plan’s used share of
the absolute optimization potential of the given scenario. A
value of 0.8 means that a transmission plan uses 80% of the
scenario’s optimization potential. To define the optimization
potential, we employ an upper and a lower bound. As a lower
cost bound, we use the cost of an optimal transmission plan.
As an upper cost bound, we use the average cost of random
transmission plans. We assume this as a reasonable lower
bound because no transmission plan, which was created with
intent, should perform worse than random.

B. Transmission Planners

Transmission planners steer data allocation to networks and
time to optimize the data transmission characteristics. We
analyze three transmission planners from [7] in this paper.
All of them use the same ratings for network selection and
data flow prioritization. However, they differ in the way they
handle the time dimension.

The first is a Network Selection (NS) derived from state-of-
the-art approaches. It allocates data to the currently available
networks ignoring the time dimension. It prioritizes data flows
and decides for each one, which currently available networks
are best suited for its transmission. Finally, it allocates data
according to these priorities.

As a second approach, we present an Opportunistic Net-
work Selection (ONS). It extends Network Selection con-
sidering an opportunistic component, which decides whether
to transmit data (as the NS would dictate) or not. This
decision is based on an estimated benefit for data allocation,
defined as the difference between the repelling (in case data is
transmitted) and the attracting (in case data is not transmitted)
forces. Whenever the benefit exceeds some threshold clim,
the approach allocates data to the network. This is shown
in Equation (2), showing the cost difference for a specific
data allocation of data flow f at time slot t to network n.
Rejecting non-beneficial transmission at the current point in
time amounts to waiting for a better opportunity to transmit.
This leads to a statistical time selection.

cattr(p∗f,t,n)− crep(pf,t,n) > clim (2)

As a third approach, we present the Joint Transmission
Planning (JTP), as introduced in [7]. Instead of consider-
ing currently available networks only, JTP selects the best
transmission opportunities within the complete planning time
horizon. It plans data allocation ahead to a time, in which
the transmission is expected to be most beneficial. Hence, it
represents a joint time-network selection, which handles the
time dimension explicitly. However, the approach requires a
prediction of network availability and characteristics, of client
movement and of the data to transmit. Figure 2 visualizes
the characteristic behaviors. It shows the benefit over time
for allocating data as a black thin curve. Allocating data with
higher benefit leads to a lower cost function value, representing
a better transmission. In addition, the figure contains lines for
the cost-benefit thresholds clim of ONS. ONS sets clim = 0
by default (magenta dotted line), thus allocating data at the
earliest point in time offering a transmission benefit. In the
example, this corresponds to the first benefit ’hill’. In contrast,
JTP allocates data during the highest benefit (green); in the
example the second ’hill’. Figure 1 presents the Normalized
Rating Score results of the transmission planners for different
planning time horizon lengths. JTP uses up to 91.5% of the
scenario optimization potential, significantly outperforming
the two state-of-the-art approaches, NS and ONS, which use
only up to 65.2% and 82.3%, respectively.

The results for the JTP approach in Figure 1 are derived
assuming perfect knowledge of the environment, i.e. network
resources and demand characteristics. As this can hardly be
the case in real environments, predictions about the state of the
environment in the future will not be perfect. In this paper, we
first introduce prediction error models and analyze the impact
of errors on the performance of the planners. Then, we propose
a transmission plan adaptation approach that takes into account
prediction errors, which is the main contribution of this paper.



III. ADAPTATION OF TRANSMISSION PLANS

Transmission plans are applicable whenever prediction is
correct. Nevertheless, what does happen if the prediction used
for transmission plan creation is erroneous? In this section,
we analyze prediction error types of the connected vehicle
use case and design a novel adaptation approach with the goal
of robustness against this kind of uncertainty.

A. Prediction Errors

In a connected vehicle environment, transmission plans are
derived based on some predictions on the vehicle movement,
the encountered network characteristics and the data to be
transmitted. As such predictions may not be correct, it is
important that resulting prediction errors are calculated and
some adjustments in the transmission plan are made. The
Symmetrical Mean Absolute Percentage Error (SMAPE) [4] is
employed to measure those prediction errors. The movement
prediction error mainly affects the availability of networks.
For example, a vehicle, which moves faster than expected,
may reach a small range network earlier and may spend less
time in its covered area. We measure the error in the number
of time slot drifts over the planning horizon. The network
characteristics prediction error affects the throughput, latency
and jitter of the networks over time. Finally, the data flow
prediction error arises from canceling or pausing running data
transmissions or from unexpected new data transmissions.
Next, we present our adaptation approach handling these three
types of errors.

B. Adaptation Approach

The idea of our adaptation approach is to use a constrained
ONS whose decision threshold is determined according to
environmental changes so that the data transmission plan that
is actually implemented is still beneficial. First, we design a
transmission plan execution algorithm, which constraints ONS
to implement the initial transmission plan, when no environ-
mental changes occur. Second, to allow ONS to adapt the
plan as a reaction to environmental changes, we present three
adaptation mechanisms that dynamically relax the constraints
and modify parameters of the first algorithm.

Execution Algorithm: To follow the transmission plan, this
algorithm suppresses each data transmission of ONS, which
does not comply with the plan. Therefore, the mechanism
increases the benefit threshold clim of ONS to the flow’s
maximum benefit value cmax(f, t), defined as the supremum
of its attracting force according to Equation (3). When, in
contrast, data is allocated in the initial plan, it sets the threshold
to the flow’s minimum benefit value cmin(f, t), defined as
the infimum of its repelling forces, which is based on the
highest requirement violations from the currently available
networks N0 according to Equation (4). To decide which
of the two threshold values ONS should use, the execution
algorithm compares the amount of released data prel(f, t0)
from Equation (5) to the actually allocated data salloc(f, t0) of
flow f from Equation (6) at the current time slot t0 according
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Fig. 2. Schematic of basic concept

to Equation (7). While the released data prel(f, t0, n) does not
change over time within in the considered time slot, the value
of the actually allocated data salloc is refreshed continuously,
stopping the allocation as soon as the amount of the data
planned for the current time slot is reached.

cmax(f, t) = sup
t∈T

cattr(p∗f,t,n) (3)

cmin(f, t) = inf
n∈N0

crep(pf,t,n) (4)

prel(f, t0, n) = pf,t0,n (5)

salloc(f, t0, n) = sf,t0,n (6)

clim =

{
cmin(f), salloc(f, t0, n) < prel(f, t0, n)

cmax(f), else
(7)

1) Extended Data Release Mechanism: Our first adapta-
tion mechanism addresses changes in the network charac-
teristics. This corresponds, firstly, to changed transmission
characteristics like latency and jitter and, secondly a differing
throughput. Changes in network characteristics may affect the
flow-network matching and preference. Strong performance
degradation of networks might lead to the case in which
transmission is not beneficial at all. To let the constrained
ONS decide whether to transmit or not, we set the minimum
threshold cmin to the ONS’s default value 0 according to
Equation (8). This restricts each data allocation to the cases for
which ONS still considers a sufficient benefit. In addition, we
relax constraints to employ ONS for re-evaluation of the flow-
network matching and a re-selection using the actual network
characteristics. Therefore, the adaptation stops distinguishing
networks for releasing data, constraining all networks in the
current time slot equally due to considering the sum of
allocated data over all networks as shown in Equations (9)
and (10).

To address unbiased throughput fluctuations, we relax the
execution algorithm’s limit for the amount of released data.
Instead of focusing on the amount of data planned for
transmission for each time slot separately, we redefine the
released data prel(f) according to Equation (9) to cover all
data allocated in the initial plan until the current point in
time t0 plus the flow’s data, which has not been allocated
in the initial plan at all p∗f . This helps the approach to
cope with unbiased fluctuating network throughput and allows
the constrained ONS to fill unexpected additional network
resources opportunistically with initially non-allocated data
p∗f . As visualized with an example in Figure 2 using a gray



dashed line at the right, it releases data for allocation according
to the plan. In the case of no prediction errors, this results in
setting the cost-benefit threshold clim according to the red
dashed line, which lets this adaptation mechanism Ada(JTP)-
rel (red) stay close to the initial plan.

cmin(f, t) = 0 (8)

prel(f, t0, n) = p∗f +

t0∑
t=0

∑
n∈N

pf,t,n (9)

salloc(f, t0, n) =

t0∑
t=0

∑
n∈N

sf,t,n (10)

2) Location reference mechanism: To cope with movement
prediction errors, we present our corresponding adaptation
mechanism, which refers to the initial plan by vehicle loca-
tion instead of time. When a vehicle moves e.g. faster than
predicted, it reaches and leaves short range networks earlier
than expected. Compared to the prediction, location-dependent
network characteristics move to another point in time. As a
result, network availability is modified from the initial time-
line, impacting on the network selection of the transmission
plan. However, for delay-tolerant data transfers, the impact of
network selection according to the plan dominates the impact
of allocating data at the planned transmission time. To address
this issue, we employ the following mechanism: For delay-
tolerant data flows, consider the spatial dimension of the
transmission plan, i.e. the vehicle’s location, and ignore the
temporal one. Referring to the spatial dimension is equivalent
to a temporal offset εmove(t0) of the transmission plan. The
location reference mechanism shifts data transmission in time
by this temporal offset in order to preserve the initial network
selection. However, for non-delay-tolerant data flows, e.g.
interactive ones, this temporal transmission offset may lead to
a requirement violation. Hence, we limit the temporal offset
εmove(t0) to the maximum delay tolerance of the data flow,
which our model from prior work [7] encodes in a throughput
requirement window parameter ∆t̂min

f , c.f. Equation (11).
Accordingly, we employ the time-limited spatial reference
tloc(f, t0) according to equation 12 to refer to the initial plan.
This limited spatial reference preserves the initial network
selection of the transmission plan for delay-tolerant data flows
but accounts temporal requirements for non-delay-tolerant
flows.

toffsetf = min(∆t̂min
f , ‖εmove(t0)‖) (11)

tloc(f, t0) =

{
t0 + toffsetf , εmove(t0) > 0

t0 − toffsetf , else
(12)

Referring to the corresponding vehicle location in the
transmission plan to release data for allocation causes one
problem: whenever the car stops, no additional data is released.
There is no progress in the vehicle’s location and, thus, the
transmission pauses. This effect impairs transmission similarly
when the car moves slower than expected. To address this
issue, our mechanism modifies the condition for the clim
threshold selection of Equation (7) to that from Equation

(13). Whenever data is allocated within the initial plan in the
reference time slot, release data for transmission. Hence, this
mechanism together with the extension in triggering conditions
handles movement prediction errors up to a certain degree.

salloc(f, t0, n) < prel(f, tloc(f, t0), n)

or

(∑
n∈N

pf,tloc(f,t0),n

)
> 0

(13)

3) Flow Prediction Error Handling: Finally, our third
mechanism treats flow prediction errors. Flow prediction
errors refer to additional data to be transmitted, time shifts
in data transmission and canceled data transmission. For new
data, there exists no reference in the existing transmission plan.
Hence, we let the mechanism release new data completely
for opportunistic transmission, handling it equivalently to the
non-allocated data p∗f . This way, the opportunistic algorithm
automatically prioritizes active data flows correctly integrating
the new ones into the ongoing transmission. However, predic-
tion errors concerning planned transmissions have to be treated
explicitly. This covers especially planned non-delay-tolerant
data flows, whose transmission time differs from the predicted
one. Hence, we consider the SMAPE flow prediction error
εflow(f, t) over the time span of the past throughput window
∆t̂min

f of the flow. However, for delay-tolerant flows, a pure
opportunistic transmission might lead to a worse network
selection. Hence, instead of setting clim to 0, we reduce cmax

with rising error according to Equation (14) and (15). Thus,
when flow prediction errors occur, our approach does not
suppress data allocation but restrict it to opportunities in
which an error-dependent benefit threshold is reached. We
illustrate the threshold adaptation α(f, t0) from Equation (14)
in Figure 2 as a thick black line. In the example, this results
in partial earlier data allocation for Ada(JTP) (black).

α(f, t0) = 1−
t0∑

t=t0−∆t̂min
f

εflow(f, t)

∆t̂min
f

(14)

cmax(f, t0) = sup
t∈T

cattr(p∗f,t,n) · α(f, t0) (15)

Conclusively, our transmission plan adaptation approach com-
bines the advantages of Opportunistic Network Selection and
Joint Transmission Planning. Thus, it allows for opportunistic
transmission when high prediction errors render parts of an
initial plan infeasible but can exploit the superior transmission
patterns in terms of time and network selection from long-term
planning. We evaluate the effects of the execution and the three
adaptation mechanisms within the next section.

IV. EVALUATION

To analyze the performance of the transmission plan adap-
tation mechanism (Ada), we assess its performance under
controlled variation of the prediction errors with the above
presented Normalized Rating Score (NRS) and compare it
to that of the Opportunistic Network Selection (ONS) and
the pure plan Execution (Exec). As additional performance
reference, we show the results of Joint Transmission Planning
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Fig. 3. Planners’ NRS over SMAPE: movement, network, data flow, combined and execution duration in seconds per instance

(JTP) with perfect prediction. JTP uses this perfect prediction
for all modified scenarios, independent from the defined error
on the x-axis. It defines an upper bound for reference. We
apply the different approaches to scenarios with 100 time
slots, covering 2 cellular networks and 6 WiFi networks,
which are available within the scenario’s planning horizon.
The number of data flows is initially 8 and varies due to
flow prediction errors. We apply the different approaches to 50
randomized scenarios per run. For execution of each instance,
we use a single core of a server machine with Intel Xeon E5-
2643 v3 @ 3.4GHz and 512 GB RAM. To show the typical
performance and its distribution, we give the Q25%, Q50%

(median) and Q75% quantiles. We vary the prediction errors
(SMAPE) separately for movement, network characteristics,
data traffic and finally for a combined one between 0.0 and
0.5. We let the adaptation approach follow the plan of JTP
and abbreviate the different mechanisms with (1) Ada(JTP)-
rel: ONS with the data release mechanism (2) Ada(JTP)-rel-
loc: with additional location reference mechanism and (3)
Ada(JTP): the final approach covering all three mechanisms.

The results are presented in Figure 3, showing the graphs
for each of the error types and the combined case. First of
all, we notice that the pure execution of the plan Exec(JTP)
suffers substantially from robustness. It sinks far below the
performance of ONS even for small prediction errors.

In contrast, the performance of our adaptation approach
stays approximately between those of JTP and ONS, starting
at the JTP’s and converging towards the ONS’s performance
for rising errors. Increasing the network prediction error (a)

shows that our basic data release mechanism is able to handle
this error type well. Even at an error of 0.5, the adaptation
sustains a gain from long-term planning of about 4.5% NRS
over ONS which corresponds to 36.23% of the performance
margin between JTP and ONS. However, the basic data release
Ada(JTP)-rel algorithm’s performance decreases fast with ris-
ing movement prediction error (b). Adding the spatial refer-
ence algorithm Ada(JTP)-rel-loc, which we designed to cope
with this error type, resolves this issue. The performance loss
from movement prediction error is even less significant than
for the network prediction error. It still reaches a performance
surplus of 6.24% NRS over ONS, which represents 57.62%
of the margin. Thus, our mechanisms are able to cope well
with network and movement prediction errors. Accordingly,
conserving decisions for network selection and delaying data
purposefully with the data release mechanism provide effective
means to keep a significant share of the planning performance
gain. However, data flow prediction errors (c) impose a tough
challenge. According to our third mechanism, unplanned data
is transmitted opportunistically. Furthermore, the adaptation
transmits data for which the desired transmission times change
partially opportunistic with an error dependent threshold. Since
we cannot treat new nor canceled data transmissions, the effect
of this error handling is rather small. However, while the
above-mentioned mechanisms drop at the level of ONS, the
third mechanism is able to keep a performance benefit of
1.41% NRS, corresponding to 11.07% of the margin between
ONS and JTP. Finally, we combine the prediction errors in
graph (d). A value of 0.2 represents a prediction error of 0.2



for each error type at the same time. The performance loss
from the three error types nearly seems to sum up and lead
to a convergence to the performance of ONS at a combined
error of 0.3 for the final adaptation approach Ada(JTP).

Unlike the pure execution or the partial adaptation models,
our final adaptation model never falls significantly below
the performance of ONS. This confirms the validity of our
designed mechanisms for following a transmission plan and
allowing opportunistic allocation. Furthermore, for small and
medium prediction errors, our adaptation mechanism is able
to preserve a major share of the performance surplus that Joint
Transmission Planning promises.

The last graph (e) in Figure 3 shows the execution time
per instance over the planning horizon length. We expect a
performance-optimized version of our approaches to reach
similar execution times on automotive target hardware. Except
JTP, all approaches are online methods, which plan trans-
mission only for the next time slot. Hence, we normalize
them by the number of time slots. After a first initialization
overhead, their average execution time per time slot sinks
below half a millisecond on the long run. In contrast, JTP
always plans the complete time horizon. Hence, its execution
time rises linearly with the number of time slots. This gives
motivation for the following interaction concept between JTP
and our adaptation Ada(JTP): After a long-term planning of
JTP, the plan is implemented using Ada(JTP). As soon as
certain prediction error levels are reached, e.g. through user
interaction, unexpected movement or network characteristics,
planning through JTP should be triggered in the background
to update the transmission plan using fresh prediction values.
After initialization of the new instance of Ada(JTP), it takes
over the data allocation from the previous instance. Thus,
heavy prediction errors can be treated within about a second,
while reaction on small and moderate unexpected events
happens within less than a millisecond through our novel
transmission plan adaptation.

V. RELATED WORK

The topic of transmission planning covering joint network
and time selection is barely investigated so far. Existing work
in time selection reduces network selection to the WiFi-
preferred principle and application QoS satisfaction to holding
a deadline [5], [1]. In contrast, network selection approaches
with detailed application QoS models do not consider the
time dimension [2], [10]. Due to these simplifications, these
approaches can apply a continuous re-planning. An adaptation
of plans is not required and a handling of prediction errors gets
obsolete. Nevertheless, we can learn from Bui et al. [1] that it
is beneficial to separate long-term and short-term mechanisms
in transmission planning. However, they apply this concept
to prediction only but not to planning itself. Furthermore, it
is in the nature of online network selection to apply light-
weight algorithms for fast reaction to environmental changes
[9]. We apply this principle also for our adaptation. The
fact, which distinguishes our adaptation concept from existing

work, is that we use information extracted from a long-
term plan in order to control the transmission. Therefore,
we develop mechanisms that recognize whether following the
plan is feasible, infeasible or requires modifications, which are
applied automatically.

VI. CONCLUSION

In this article, we investigate the impacts of environmental
changes on transmission plan execution and design a plan
adaptation to mitigate them. From our prior work, we know
that transmission planning can create substantial benefits over
state-of-the-art transmission approaches. However, in this pa-
per, we identified that a direct execution of these plans is inef-
fective due its inability to react to environmental changes. To
this end, we designed a novel transmission plan adaptation that
uses an opportunistic online transmission algorithm, ensuring
that the approach implements the plan whenever possible and
adapting parts of the plan if new or alternative opportunities
appear to be better in the actual environment. The performance
of the adaptation shows a substantial gain of up to 10% over
state-of-the-art approaches for small and medium prediction
errors. With rising prediction errors, it converges towards the
performance of the opportunistic approach and, unlike direct
execution, does never fall significantly below its performance.
Conclusively, the adaptation approach exploits the additional
optimization potential from transmission planning using pre-
diction without the risk of performing worse than state-of-the-
art approaches. Thus, using the presented approach, connected
vehicles can benefit from predictive transmission planning in
order to improve their perceived Internet access performance.
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