
Björn Richerzhagen, Dominik Stingl, Julius Rückert, Ralf Steinmetz. Simonstrator: Simulation and Prototyping Platform for Distributed
Mobile Applications. In Proc. EAI International Conference on Simulation Tools and Techniques (SIMUTOOLS), ACM, 2015. ISBN:

978-1-63190-079-2

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly
and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not
withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms
and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Simonstrator: Simulation and Prototyping Platform for
Distributed Mobile Applications

Björn Richerzhagen*, Dominik Stingl*, Julius Rückert†, and Ralf Steinmetz*

* Multimedia Communications Lab (KOM), E-Mail: firstname.lastname@kom.tu-darmstadt.de
† Peer-to-Peer Systems Engineering Lab (PS), E-Mail: rueckert@ps.tu-darmstadt.de

Technische Universität Darmstadt, Germany

ABSTRACT
The increasing market penetration of mobile devices, such
as smartphones and tablets, poses additional challenges on
the design of distributed systems. Due to the heterogeneous
environment consisting of both, mobile and fixed devices, a
multitude of effects on different scales need to be considered.
Microscopic effects, such as an individual user’s interaction
with the device, as well as macroscopic effects, such as scal-
ability with the number of users have an impact on the sys-
tem’s performance. The combined evaluation of micro- and
macroscopic effects requires both, simulations and prototyp-
ical deployments. Furthermore, insights obtained through
prototypes during user studies can lead to refined protocols
and algorithms, thereby contributing to the overall design
process. To enable parallel assessment of micro- and macro-
scopic effects, we propose the Simonstrator platform, con-
sisting of a lightweight framework for the development and
instrumentation of distributed systems as well as runtime en-
vironments for (i) the interaction with common simulators,
(ii) the deployment on testbeds, and (iii) Android devices.
The platform is specifically targeted towards distributed sys-
tems for heterogeneous scenarios, considering mobile and
fixed networks. We show sample simulations and prototyp-
ical deployments of two exemplary use cases: a live video
streaming system and a middleware for augmented reality
games, highlighting different evaluation goals and environ-
ments supported by the proposed Simonstrator platform.

1. INTRODUCTION
With the ubiquity of smartphones and tablets, an increas-
ing number of distributed applications are running on mobile
devices. On the one hand, this platform offers new oppor-
tunities due to the availability of sensor information and
the tight coupling to the device user. On the other hand,
the mobile environment poses additional challenges on the
design of distributed systems. These challenges include a
highly dynamic environment caused by user movement, un-
stable connectivity, as well as different usage patterns than
known from fixed devices.

To design distributed applications that cope with these chal-
lenges, one has to evaluate the impact of the dynamic en-
vironment on the systems’ performance. This has to be
done on different scales, ranging from an individual user’s
interaction patterns with the device and other users to ef-
fects observed on a global scale, e.g., the scalability of the
overall system. Depending on the scope of the evaluation,
a multitude of simulators or emulators exist that address
some of the effects by providing suitable models. However,
it is well known that simulations can not capture the full
range of effects caused by the environment [15]. Therefore,
prototypical deployments and testbed evaluations need to
augment the simulative study of a system [7]. Early proto-
typical insights can then be fed back into simulation models
and algorithms to study effects at larger scale.

To this end, there have been proposals to enable simulation
models to be deployed as prototypes [3, 5] or to integrate
simulators into testbed deployments [8], thereby increasing
the scale of the scenario. However, existing systems mostly
neglect the peculiarities arising on mobile devices such as
smartphones and tablets. This includes access to sensors
and other device-specific features, which constitutes an im-
portant building block of today’s distributed applications.
Furthermore, the resulting system is often limited to one
specific simulator. This, in turn, limits the range of effects
that can be studied using validated models.

In this work, we present the Simonstrator framework that
does not depend on a specific simulator or evaluation plat-
form. Instead, systems designed using the proposed frame-
work can be executed in any environment that provides the
core functionality as required by the framework’s program-
ming interfaces. We provide and discuss the respective run-
time environments comprising the Simonstrator platform,
enabling systems built using our framework to run on (i)
the network simulator OMNeT++ [17], (ii) the overlay sim-
ulator PeerfactSim.KOM [16], (iii) commodity PCs, and (iv)
Android mobile devices. New runtime environments can be
added easily by bridging the core functionality provided by
the framework to the respective environment. Therefore,
in contrast to existing solutions, applications implemented
within our framework can be evaluated with a broad range
of existing simulators and their models, as well as being de-
ployed prototypical. Furthermore, applications can utilize
the runtime’s peculiarities, such as access to sensors on an
Android device, through our component-based framework.

We study the applicability of the Simonstrator platform for
two exemplary use cases: a distributed live video streaming
system and augmented reality gaming. Insights from early
prototypes of the augmented reality game are used to define
important properties of the middleware design. Based on the
players’ movement and interaction patterns during a field
study, the applicability of local ad hoc event dissemination
is assessed. Subsequently, simulations enable fast assessment
of a number of protocols suitable for the scenario. Due to the
Simonstrator platform, these protocols can then be utilized
in the prototype without any changes to the code. The
insights gained from early prototypes stress the importance
of combined prototypical and simulative evaluation.

The remainder of this paper is structured as follows. Sec-
tion 2 details the Simonstrator platform, consisting of the
Simonstrator framework and runtime environments. Two
exemplary use cases for our platform are discussed in Sec-
tion 3, highlighting its usage on mobile devices and simula-
tors for two sample scenarios with distinct evaluation goals.
Section 4 contains relevant related work. Section 5 concludes
the paper and illustrates possible directions for future work.

2. PLATFORM ARCHITECTURE
The Simonstrator platform consists of two main building
blocks, as illustrated in Figure 1. The Simonstrator frame-
work represents the central building block of the platform
(cf. Section 2.1), providing the base abstractions to be used
by the distributed system. The framework is complemented
by a set of runtime environments (cf. Section 2.2) that en-
able the deployment of applications in different environ-
ments. With our Simonstrator platform we follow the con-
cept introduced by Galuba et al. with ProtoPeer [5] by
providing time and network related functions through our
framework. However, in contrast to ProtoPeer, the Simon-
strator framework also includes access to sensors commonly
used by today’s distributed applications (e.g., location) as
well as other communication methods (e.g., Bluetooth). Fur-
thermore, it enables loose coupling of components, thereby
allowing platform components to utilize protocol and appli-
cation components and vice-versa.

The provided runtime environments enable code execution
on Android devices, on common network simulators, and on
a wide range of Java-based platforms. The architecture is
realized with the Java programming language due to its high
outreach on fixed and mobile (Android) platforms. In the
following, the building blocks of the Simonstrator platform
are discussed in detail.

2.1 The Simonstrator Framework
The Simonstrator framework can be divided into two con-
ceptional layers, as indicated in Figure 1. The foundation for
applications and systems built around the framework is the
central scheduling abstraction. Here, representations for ab-
solute and relative time are provided, enabling derived con-
cepts such as events and operations. Furthermore, this layer
includes instrumentation-related interfaces (c.f. Sec. 2.1.2)
to capture relevant data from the conducted experiments for
debugging or a subsequent evaluation. The application itself
is composed out of different components utilizing these core
abstractions. Components provide platform- or application-
specific functionality. By combining multiple components

Application

Host

S
en

so
r

N
et

w
or

k

Framework

Scheduling

Instrumentation

Component

...

OMNeT++/INET

PeerfactSim.KOM

Java Standalone

Android

is a / uses

App. Comp. X

App. Comp. Y

...

S
er

vi
ce

O
ve

rla
y

R
u

n
ti

m
e

E
n

vi
ro

n
m

en
t

(b
ri

d
g

es
)

User / Workload

interacts with

Analyzers, Metrics, Log

Time, Events, Operations

Figure 1: Overview of the Simonstrator platform consisting
of the core framework and a set of runtime environments.

within a host, complex distributed applications are realized
(c.f. Sec. 2.1.3). Please note that real-world code examples
as well as additional documentation of the framework are
provided in our public project repositories1 and are omitted
in this paper for brevity.

2.1.1 Time, Events, and Operations
To enable repeatable and deterministic executions of sim-
ulations, access to time as well as functionality related to
threading and scheduling needs to be encapsulated. The
framework allows the retrieval of the current time as well as
relative time calculations required for delayed execution of
tasks. Instead of creating and maintaining own threads for
concurrent, delayed, or periodic execution of specific tasks,
events and operations are created and scheduled through the
framework. Using the aforementioned abstraction of time,
an event is scheduled as shown in Listing 1. Once the event
is due for execution, the provided event handler is notified.
Depending on the runtime environment, deterministic exe-
cution order of events is guaranteed (cf. Sec. 2.2).

Listing 1: Event scheduling and timing abstractions.

EventHandler handler = new EventHandler () {
public void eventOccurred(Object content ,

int type) {
// [do something]

}
}

Event.scheduleWithDelay (10* Time.SECOND ,
handler , null , 0);

While events are a reasonable abstraction for one-shot ac-
tions, most distributed systems rely on operations that rep-
resent an abstraction for an action → reaction type of in-
teraction. Consider a simple request and reply case, where
the sender of a message waits (i) for a reply to process it
or (ii) reacts to a timeout beforehand. To maintain the
state of the request (i.e., the timeout as well as the informa-
tion contained in the request), isolation within a dedicated
thread is desired. The concept of operations helps to realize

1https://dev.kom.e-technik.tu-darmstadt.de/gitlab/
maki/simonstrator-api. Parts of the platform are not
available publicly; please contact the authors for full access.

these types of scenarios by providing an intuitive, thread-
like programming interface on top of events. In contrast to
the abstraction achieved through single events, this enables
a separation of concerns while simultaneously guaranteeing
determinism and avoiding common concurrency issues. Last
but not least, generators for random numbers are provided
through the framework to enable deterministic seeding of
experiments in simulation scenarios.

2.1.2 Instrumentation
Instrumentation constitutes an inevitable step during both,
prototypical and simulative evaluation to output data for
debugging and analysis. The Simonstrator framework pro-
vides access to platform-independent logging, using a sim-
ple wrapper that mimics Apache’s popular Log4j framework.
While logging is helpful during development and debugging,
it is not suitable for full evaluation of a system. For this rea-
son the Simonstrator framework offers two different concepts
to ease the evaluation of an examined system: push-based
analyzers and pull-based metrics.

Analyzers are directly triggered by the evaluated system
and are application specific. Consider a distributed video
streaming system: to assess its performance, one has to cap-
ture stalling events, where the user playback is interrupted
due to empty buffers. A PlaybackAnalyzer interface would
include methods such as onStall and onResume that are
called by the streaming system as soon as such events oc-
cur. The actual implementation of the analyzer is up to the
runtime environment, enabling a broad range of use cases
due to the respective runtime capabilities. In simulations,
analyzers often rely on global knowledge to compute per-
formance figures based on the whole system’s state. The
simulator version of the analyzer could, for example, con-
sider the current overlay topology using global knowledge
to examine the root cause of the empty buffer. During pro-
totypical deployments, where global knowledge cannot be
used, analyzers can annotate events with platform-specific
data. In the streaming example, this could be information
about the video provided by the media player, indicating
short-lived increases in the bitrate due to a scene change in
the video.

Listing 2: Retrieval and usage of custom analyzers.

PlaybackAnalyzer a = Monitor.getAnalyzer(
PlaybackAnalyzer.class);

a.onResume ([...]); //Analyzer -specific method

By relying on platform-specific implementations of analyz-
ers, each implementation can utilize the knowledge and tools
of the respective platform at best. This enables evaluations
with different scopes and goals to be conducted within the
platform of choice through a single, unified instrumentation
interface. The Simonstrator framework creates transparent
proxies in case (i) the runtime provides multiple analyzers
implementing the same interface, or (ii) the runtime provides
no implementation of the analyzer. This enables simple an-
alyzer retrieval and usage as shown in Listing 2.

In contrast to the application-specific analyzers, metrics are
passive probes that provide access to system state. They im-
plement a common interface as shown on the upper left-hand
side in Figure 2, enabling retrieval of the current value as

Figure 2: Concept of push- and pull-based instrumentation.
Pull-based instrumentation uses the unified metric interface,
whereas push-based instrumentation relies on application-
specific analyzers.

well as a boolean indicating whether the probe’s value can be
considered valid. In the aforementioned example of a video
streaming system, the current size of the playout buffer in
terms of video chunks can be exported as a metric. The com-
mon interface, which is implemented by relevant metrics of
a developed application (e.g., Metric <A> and Metric),
enables a set of automated processing and analyzing steps
depending on the runtime environment. Utilizing a simula-
tor’s visualization capabilities to show an application’s met-
rics can be easily achieved by bridging the metrics to the
respective visualization tools of the simulator. During the
development and debugging phases the concept of metrics
provides vital insights into the system’s current state. While
metrics usually export numerical (or binary) states, they can
be used to provide access to any kind of object, including
application specific state containers. However, in this case,
processing steps for the respective types need to be provided
by the application developer, as the default set of process-
ing steps are only defined for numerical values. Metrics and
analyzers can be combined: this way, metrics can be pro-
cessed upon specific actions triggered by an analyzer rather
than solely based on periodic polling. This closely follows
the concept of annotated data, but is more powerful when
it comes to more complex analyzing steps involving the cor-
relation of multiple probes. Following the design principles
of the Simonstrator platform, one can bridge analyzers and
metrics to the respective runtime’s built-in functionality, for
example metric visualization in simulators or logging capa-
bilities on Android. This is further discussed in Section 2.2.

2.1.3 Hosts and Components
An individual device is modeled as a host within the Si-
monstrator framework. The host acts as container for any
number of components. The composition of those compo-
nents determines the host’s functionality within the dis-
tributed system, comprising (i) the own developed compo-
nents, (ii) already existing components from third parties,
as well as (iii) components from the chosen runtime envi-
ronment. Composition can be done during initialization or
runtime, as components can request other registered com-
ponents via the host.

One potential composition of a full streaming system is shown
in Figure 3. In the example, an application developer defines
the Streaming component interface and provides the respec-

tive implementation called System X, which is based on the
defined interface. System X utilizes a generic publish/sub-
scribe component as defined in the framework, with one im-
plementation of the component being provided by the cur-
rent runtime environment (System Y). Listing 3 shows the
corresponding registration and binding calls to enable uti-
lization of the publish/subscribe system within the stream-
ing component. Both components utilize runtime environ-
ment components providing transport and network layer
functionality. The specific realization of the pub/sub com-
ponent furthermore utilizes a location sensor. Depending
on the runtime environment, the location sensor component
accesses real hardware (e.g., GPS on Android) or uses a
movement model or data from a trace file.

Listing 3: Registration and retrieval of components.

// Pub/Sub registration (during initialization)
PubSub systemY = new SystemY ();
host.registerComponent(systemY);

// Retrieval (in streaming component)
try {

PubSub ps = host.getComponent(PubSub.class);
} catch (ComponentNotAvailableException e) {

// [exception handling]
}

This enables natural development of complex distributed ap-
plications by composing and utilizing functionality of differ-
ent components. Additionally, the approach enables isolated
evaluation of single components by using stubs for other
components. In the example shown in Figure 3, System Y

can be replaced with any other component implementing
the Pub/Sub interface. Such a component can be provided
by the application developer or by the respective runtime
environment. This enables transparent integration of third
party libraries and platform-specific services such as Google
Cloud Messaging on Android, as well as integration of global
knowledge-based stubs in simulators. While this concept is
already well-known in software engineering, it is largely ne-
glected when it comes to the development and evaluation of
scientific prototypes.

Host

Transport MessageBased

Message

Network

MsgBasedUDP

MsgBasedTCP

NetInterface Wi Fi

Sensor Location

Service Pub/Sub System Y

Streaming System X

User / Workload

uses

extends / implements

Figure 3: Host for a video streaming system resulting from
the composition of platform and application components.

Following the concept of components and in contrast to [5],
we do not provide a single dedicated networking abstrac-
tion. Instead, networking functionality is also realized via

components. By providing a number of interfaces of differ-
ent granularity within the framework, an application can, for
example, first query for a MessageBasedTCP transport and
relax the requirement to any kind of MessageBased trans-
port in case of failure. This way, other network interfaces
or transport protocols can be added easily to the framework
and can then be utilized in the application code. Listing 4
illustrates binding and later usage of transport protocols.
As first step, a network component is selected based on its
name (or IP address), enabling support for multiple paral-
lel network stacks. This is especially important to support
applications for mobile devices, where multiple network in-
terfaces are utilized (e.g., Bluetooth or Wi-Fi Direct for local
communication and the cellular link for connections to a re-
mote server). Protocol instances are created and listen for
incoming messages on a given IP (and, thus, network inter-
face) and port, invoking a message listener on each received
message. Once the protocol is bound, it can be utilized as
defined by the corresponding component interface. In the
lower half of Listing 4, this is shown for the example of a
MessageBased protocol. The component interface enables
sending of messages in a send-and-forget manner by simply
invoking send with the respective target address and a mes-
sage object. For request-reply scenarios, it additionally pro-
vides the convenience functions sendAndWait and sendReply

that mask the complexity of callback and timeout manage-
ment for this common communication pattern.

Listing 4: Binding and usage of transport components.

// Initialization (binding)
net = host.getNetworkComponent (). getByName(

NetInterfaceName.WIFI);
MessageBased trans;
try {

trans = host.getTransportComponent (). getProtocol(
UDP.class , net.getLocalInetAddress (), PORT);

trans.setMessageListener(listener);
} catch (ProtocolNotAvailableException e) {

// [exception handling]
}

// Usage (send and forget)
trans.send(Message msg , NetID rcvNet , int rcvPort);
// Usage (request -reply scenario support)
trans.sendAndWait(Message msg , NetID rcvNet ,

int rcvPort , ReplyCallback cb, long timeout);

All message-based transport interfaces operate on objects
implementing the Message interface provided by the Simon-
strator framework. The interface enforces the implementa-
tion of getSize, returning an estimation of the message size
provided by the application developer. This method is used
within simulation environments if actual payload is not re-
quired for the simulation model, thus avoiding serialization
overhead and increasing scalability. In environments that
need to consider real payloads, either for transmission or for
calculation of the effective message size, the message object
is serialized. This is further discussed in Section 3.1 for the
use case of a live video streaming system. The Simonstra-
tor framework relies on the Kryo library2 for serialization.
Using Kryo, an application developer may provide custom
serializers using Java annotations. However, default han-
dling within Kryo ensures out of the box serialization of
classes with significant performance increases and reduced
overhead when compared to the default Java serialization.

2Available under the BSD license at https://github.com/
EsotericSoftware/kryo

Apart from interfaces for applications- and communication-
related components, the Simonstrator framework contains
interfaces for platform specific features such as access to sen-
sors. Here, we largely mimic the API design of the Android
platform, enabling developers to utilize a large fraction of
the platform’s features within their components via already
familiar interfaces. One can easily connect sensors to traces
or generators, such as the BonnMotion movement genera-
tor [2]. At the same time, real devices’ location data can
be used in prototypical deployments by redirecting calls to
the respective Android API. This is further discussed in Sec-
tion 2.2.3.

2.2 Runtime Environments
Instead of relying on one concrete simulator, systems devel-
oped on top of the Simonstrator framework can be deployed
on a number of runtime environments that are part of the
Simonstrator platform. A runtime environment can be a
network simulator, an emulator, a testbed, or even a sin-
gle mobile device. This enables evaluations of a common
system from different perspectives and with different evalu-
ation goals, relying on state of the art tools and platforms.
In the following, we briefly discuss the runtime environments
currently supported by the framework and provide pointers
to the integration of additional runtimes. Case studies and
sample evaluations showing the capabilities of the platform
are discussed in Section 3.

2.2.1 Simulation Runtime
Event-based network or overlay simulators are a natural fit
to our framework, as our abstraction of time and events
follows the concept of event-based simulation. Whereas in-
tegration is straight forward for the Java-based Peerfact-
Sim.KOM, an additional binding is required to communi-
cate with the C++-based OMNeT framework, relying on
a modified version of JSimpleModule3. Currently, the run-
time environment for PeerfactSim.KOM features full access
to all network and transport components (message-based)
as well as integration with the movement models. Further-
more, the instrumentation capabilities of the Simonstrator
framework are connected to the visualization and evalua-
tion toolchain of PeerfactSim.KOM. The simulator already
includes the notion of a host that manages several functional
layers. The respective runtime extends the host to support
dynamic binding and initialization of components. Custom
components can be configured using PeerfactSim.KOM con-
figuration files, as component creation is done in a factory
pattern based on Java reflections.

As detailed in the previous section, the framework relies on a
loose coupling of components. Therefore, when integrating
the framework within a simulation environment, one does
not need to provide implementations for all component in-
terfaces. Instead, only those components that are relevant
in the scope of the current simulation scenario need to be
bridged to their respective simulation models. The models
themselves as well as the scenario parameters are config-
ured via the respective simulator. Consequently, the overall
Simonstrator platform, comprising the framework with the
currently utilized environment, does neither introduce nor

3Available at http://www.omnetpp.org/pmwiki/index.
php?n=Main.JSimpleModule

require another configuration language. The only compo-
nents that need to be provided by every runtime environ-
ment are the scheduling component responsible for handling
time, events, and operations, as well as the host acting as
a container for all components. The concept of simulation
runtime environments enables the utilization of a wide range
of models and platforms currently available to researchers
through common interfaces.

2.2.2 Standalone Runtime
As a foundation for testbed deployments and emulations, we
provide the Standalone environment for the Simonstrator
platform. Within this environment, the application runs as
a simple Java program. By connecting the scheduling com-
ponent to the operating system’s clock, real-time operation
of the system is achieved. The Standalone environment pro-
vides implementations for network components to support
sending and receiving messages via TCP and UDP. In their
default implementation, the network components rely on
the KryoNet4 library for network communication. A single-
threaded deterministic scheduler is used, where all events
(including incoming messages) pass through one queue be-
fore being executed. As container for all components, the
Standalone runtime additionally provides an implementa-
tion of the host interface defined by the framework.

S
ch

ed
ul

er

app

Tde-ser

mreply arrived deserialization

sendAndWait(m1, cbm1, dm1,timeout)

Tser

net I/O m1

idle

Event.schedule(cbm1, dm1,timeout)

cbm1,reply cbm1,time

reply handling

Event.schedule(cbm1,reply)

time

Figure 4: Decoupling of net I/O within the Standalone run-
time in the send-and-wait scenario.

The runtime provides the scheduling component by rely-
ing on Java’s ScheduledExecutorService, thereby ensuring
that events are processed one after the other. As in event-
based simulations, code has to be non-blocking. This prop-
erty is achieved by utilizing callbacks and worker threads
whenever blocking functions (such as net I/O) are called in
the runtime environment. For net I/O, this is already taken
care of by the KryoNet library. In order to avoid concur-
rent execution of application code, incoming messages are
added as new immediate events into the scheduling queue.
As soon as the event is executed by the scheduler, the re-
spective event handler (usually a message handler in the
application code) is notified and can process the message.

Figure 4 illustrates the behavior of the scheduler for the
request-reply scenario outlined in Section 2.1.3. The appli-
cation code invokes sendAndWait on the transport compo-
nent, passing a message m1 to send, a callback cbm1 as well
as a timeout. The runtime implementation of the transport
component stores the callback object cbm1 and spawns a

4Available under the BSD license at https://github.com/
EsotericSoftware/kryonet

new thread Tser. The sendAndWait method returns imme-
diately afterwards, thereby ending the execution of the event
in the scheduler and allowing the next event to be processed.
The thread Tser takes care of scheduling the timeout event
cbm1,time as well as serializing the message and passing it on
to KryoNet. In the example, a reply mreply arrives before
the timeout fires, resulting in a new thread Tde-ser that takes
care of deserialization. The message object is then enqueued
for further processing by scheduling an immediate event. In
our example, the scheduler is currently idle, leading to the
immediate execution of the corresponding event. As part of
the callback handling provided by the MessageBased trans-
port component, the corresponding timeout event cbm1,time

is disabled and will not be processed further.

2.2.3 Android Runtime
Extending the Standalone environment, the Android en-
vironment adds an application stub and bridges Android-
specific interfaces, such as access to sensors. It serves as
the basis for the development of user interfaces and instru-
mented applications. As the Android runtime relies on the
Standalone runtime, both environments are fully compatible
w.r.t. message serialization and net I/O. This enables het-
erogeneous deployments with both, mobile Android clients
and fixed computers running on a testbed such as Planet-
Lab5 or G-Lab/ToMaTo6.

The Android runtime serves two purposes, depending on the
scope of the intended evaluation. For technical evaluations,
a fully fledged Android application is usually not required.
In such scenarios, the runtime supports researchers and de-
velopers by providing basic information about instrumented
components through metrics. For user studies, an easy ac-
cessible user interface is required, best developed using stan-
dard Android development tools. By connecting interactions
with the user interface to the respective calls of the com-
ponents’ APIs, and by utilizing analyzers to pass relevant
component state to the user interface, a clear separation of
the user interface and the functional components is achieved.
In addition to the simplification of the application develop-
ment, it also ensures that up-to-date component implemen-
tations can directly be used within prototypes. Furthermore,
applications developed with the framework can also run on
the default Android emulator. This provides easy ways to
control specific parts of the Android application, such as
injecting location data though our sensor interfaces.

Using the instrumentation features of the Simonstrator frame-
work, one can easily record sensor data or user interaction
patterns obtained during a field study. Such data can then
be fed back to simulation models for larger-scale evalua-
tions. Possible applications include the recording of indi-
vidual users’ movement traces (c.f. Section 3) as well as
gathering statistics about the utilized network connection
(e.g., signal strength) to later correlate that data with user
behavior patterns.

2.2.4 Other Runtime Environments
Besides adding other network or overlay simulators by bridg-
ing the respective components to the simulator’s models, one

5https://www.planet-lab.org/
6http://master.tomato-lab.org

can easily extend the Standalone runtime to utilize genera-
tors for specific data. One example is the BonnMotion [2]
movement generator, which can be used to generate node
mobility traces. Instead of relying on real GPS data, one
can feed trace values generated by BonnMotion into the
application by providing the respective implementation of
the location sensor component. This is especially valuable
during prototypical deployments relying on automated se-
quences of sensor data (in this case movement) to trigger
specific application behavior. By relying on the location sen-
sor abstraction provided by the framework, the underlying
implementation is completely transparent to the application
or other components utilizing the sensor.

3. EVALUATION
Within this section, exemplary use cases of the proposed Si-
monstrator platform are discussed. We especially want to
highlight the benefits of the component-based approach for
the development and evaluation of complex distributed sys-
tems on heterogeneous platforms. Therefore, two use cases
are analyzed in the following: (i) a distributed live video
streaming system, and (ii) a publish/subscribe middleware
for augmented reality games. For each use case, the utiliza-
tion and configuration of respective components from the Si-
monstrator platform are discussed together with the lessons
learned. As the Simonstrator platform utilizes existing sim-
ulators and their models through the concept of runtime en-
vironments, we do not intend to compare the performance
of different simulation models.

3.1 Live Video Streaming
Video streaming is a prominent application on today’s mo-
bile devices. To deal with an increasing user demand and
simultaneously compensate for sudden increases in viewer
numbers, CDN providers such as Akamai build large overlay-
based distribution structures. They span both hundred thou-
sands of managed servers [14] as well as actively contributing
clients at the edge of the network, i.e. applying peer-to-peer
(p2p) technology for an efficient distribution of content [21].
As an example for the latter case, consumers of a video
stream can contribute some of their upload bandwidth to
support the overall delivery process as well as reduce the
load on the content provider and the CDN infrastructure.
While there have been countless proposals for distributed
streaming systems in fixed networks, efficiently supporting
typical live streaming use cases remains a challenging prob-
lem. Furthermore, the incorporation of mobile devices in
p2p systems poses an additional challenge.

If a mobile device is connected via a cellular link (i.e. 3G/4G),
the upload bandwidth is not only limited but also expensive
in terms of energy consumption on the device. Therefore,
uploading video data via the cellular link is usually not a
viable option in typical mobile environments. However, in
group scenarios, the video data can be shared with other
nearby devices, e.g. using Wi-Fi Direct. If done in an intel-
ligent manner, the overall bandwidth and energy consump-
tion of a group of devices can be reduced. However, tablets
tend to be used a lot at home, typically connected to the
home network using Wi-Fi and often being connected to a
charger. Suddenly, even mobile devices can become fully-
fledged peers in a distributed system, contributing cheap
upload bandwidth and strengthening the overall streaming

system. A more severe challenge for distributed streaming
approaches is the ability of a system to cope with sudden
increases in the overall number of viewers, so called flash
crowds. In this context, scalability of the overall system,
i.e. the ability of the streaming system to quickly leverage
upload bandwidth of new peers to address the fierce com-
petition for available resources is critical and an important
focus of research in this area.

These different challenges open a wide area of different eval-
uation scenarios that are to be considered when designing
and studying new streaming systems. One recently proposed
live streaming system that aims at supporting heterogeneous
clients and to handle flash crowd events is Transit [20, 13].
It was evaluated using the Simonstrator framework and, this
way, successfully evaluated using large-scale simulations and
has shown to work also as prototype running on mobile de-
vices for small-scale demonstrations. Currently, mid-scale
testbed evaluations are in preparation to complete the pic-
ture.

Figure 5 illustrates one host within the Transit overlay
and its usage of framework components when transmitting
video blocks. These components are then mapped to the re-
spective runtime environment, here shown for the simulator
PeerfactSim.KOM as well as the prototypical deployment on
Android and on testbed PCs. Note, how real video data as
well as packet serialization is only used in the prototypical
deployments. Within simulations, the Message interface is
used to obtain the size of a message in bytes without actu-
ally creating the corresponding payload (cf. Sec. 2.1.3). This
example illustrates the choice of relevant effects within the
considered scenario: the actual video payload is assumed to
have no influence on the macroscopic system behavior dur-
ing a flash crowd and therefore is omitted when studying
streaming performance and structural properties in large-
scale scenarios.

Figure 6 shows exemplary simulation results for synthetic
flash crowd scenarios. The number of active peers as well as
the arrival rate during two flash crowds with a peak of 2,500
concurrent peers and different intensities of arrival rates is
shown in Figure 6a. In Figure 6b the performance of two
configurations under the FC2-workload is shown in terms
of video stalling events, i.e., interruptions in playback. The
topology optimizations in the configuration TopT lead to
a significant decrease of such interruptions during the flash
crowd by lowering the average delivery tree depth (c.f. Fig-
ure 6c) and, thus, reducing the impact of peer arrivals and
departures. The objective of these studies was to investi-
gate the scaling characteristics of an improved version of the
Transit system in extreme scenarios and evaluate different
system variants and configurations. For this purpose, simu-
lative evaluations were chosen (i.e. a macroscopic view) as
only feasible approach to investigate a large number of dif-
ferent configurations with well-defined and controlled large-
scale streaming scenarios.

Relying on the Simonstrator framework and, thus the same
core implementation, currently, mid-scale testbed experi-
ments (i.e. with up to several hundred headless clients)
are in preparation to complement the simulation results de-
scribed above. The objective is still to study the scalabil-

Transit

Streaming

Video Block

Headless Client (Sim.)

Chunk Bitmap

Android Client

Unsorted Buffer
byte[]

Media Player

Sorted Buffer
byte[]

Video Block

data: byte[]

size: int

getData()

Video Model

Packet
Scheduler

send(Block#)

Message
Handler

getBlock(#)

Transport (Standalone)Transport (Simulator)

Message(Video Block)

Calculate transmission delay

getSize()

schedule arrival

Serialization

net I/O (Kryo)

getData()

Figure 5: Handling of video data within Transit. On An-
droid, real video payload is transmitted and passed to the
media player, whereas simulations rely on getSize provided
by the Message interface to increase scalability.

ity behavior of the system but under less resource-restricted
conditions, now also considering more practical factors, such
as variable-sized video chunks. For these testbed experi-
ments, a recently extended version of the German-wide G-
Lab testbed is used. The same version of the streaming soft-
ware could be also run on PlanetLab or similar testbeds with
no changes. For these experiments, the streaming system is
run on Linux-based, headless testbed machines. While the
data transmission of video packets is done in a full manner,
the video playback at the clients is simulated. A virtual
video player probes the buffer of the local streaming client
for the availability of the video data and triggers stalling
events on unavailable data. This allows to assess the stream-
ing system performance across all clients in the same way
as for the simulation studies, relying on a common analyzer
interface as introduced in Section 2.1.2.

A step further was taken by bundling the streaming soft-
ware in an Android project, where, again thanks to the Si-
monstrator framework, it is used as library with no need to
change the actual implementation. Here, the virtual video
player was replaced by a real video player library as part of
an Android application. This app is used for demonstration
purposes [12] and was successfully shown at different occa-
sions to demonstrate the adaptive behavior of the streaming
system. For the demonstration, the focus is on small-scale
scenarios and the user-centric view on the system. Here,
the graphical user interface and the interactive behavior of
the system plays a more important role than other aspects
studied in the simulation or headless testbed evaluations.

3.2 Augmented Reality Gaming
Following the success of Google’s augmented reality (AR)
game Ingress, location-aware games and applications are be-

60 120 180
time [min]

0

500

1000

1500

2000

2500
Pe

er
s

Pr
es

en
t

FC1
FC2

60 120 180
time [min]

0

100

200

300

400

500

600

700

800

Pe
er

 A
rri

va
l R

at
e

[1
/m

in
]

FC1
FC2

(a) Simulated flash crowd scenarios of different strengths.

Transit TopT0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
al

ls
 c

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0
Stalls count

0.0

0.2

0.4

0.6

0.8

1.0

P
[X
≤
x

]

Transit
TopT

(b) Performance comparison
based on video stalling events.

60 120 180
time [min]

0

2

4

6

8

10

12

14

16

18

Tr
ee

 D
ep

th
 A

vg

Transit
TopT

(c) Influence on topol-
ogy characteristics.

Figure 6: Typical scenario and results for streaming simula-
tions comparing different streaming system variants for the
FC2 workload (adapted from [13]).

coming increasingly popular. One important property, espe-
cially of AR games, is the spatial relevance of information:
interactions with the game mostly affect other players that
are in physical proximity. Today, these communication char-
acteristics are not reflected by the underlying communica-
tion system. Instead, data is sent to a centralized infrastruc-
ture (e.g., cloud data centers), although it is of local rele-
vance. This leads to increased latencies, effectively prohibit-
ing highly interactive applications. In previous work [11], we
propose and evaluate a system for locality-aware messaging
that utilizes local communication between nearby devices to
augment communication via the central server.

In contrast to the video streaming example, the AR sce-
nario is targeted solely towards mobile devices, relying on
sensor data for location updates as well as on local com-
munication, using Wi-Fi and Bluetooth. Furthermore, user
movement and behavior is of primary interest as it directly
determines the workload and, thus, the performance of the
system. To collect realistic user traces that can then be
used for larger scale simulations, an actual game is imple-
mented using the Simonstrator Android runtime [10]. The
game communicates with a central server (running within
the standalone environment) using our communication mid-
dleware. The middleware is instrumented to log all events
that are triggered by user interaction with the game. These
measurements are stored locally on each device for later pro-
cessing. Evaluating data gathered during these field studies
serves two main purposes: (i) improving the workload model
in our simulations to enable assessment of different local
communication strategies and (ii) later evaluate the strate-
gies under realistic conditions, especially w.r.t. the wireless
communication medium.

To study user behavior and the potential savings obtained
through local communication, we conducted a field study
with 40 players playing the game in a public park and its di-

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

P
e
rc

e
n
ta

g
e
 o

f
S
a
v
e
d
 D

a
ta

Direct Communication Range [m]

(a) Transmission ranges.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f
S
a
v
e
d
 D

a
ta

Max. Number of Hops

3 m range
5 m range

10 m range
20 m range

(b) Multi-hop distribution.

Figure 7: Potential for direct local communication assuming
different communication ranges as well as multi-hop distri-
bution as obtained from the field study.

rect surroundings. The players were divided into two groups
that each tried to win the session by conquering locations,
similar to portals in Google’s Ingress. The locations were
preselected based on map data and included public sights
and monuments spread all over the park. In order to con-
quer a location, a player spawns units that follow his real-life
movements and attack towers built by players of the enemy
group. Thus, the chance of winning increases if more players
agree on a common target to attack. However, groups can
split up to speed up the process by conquering multiple (po-
tentially weaker) targets in parallel. Two findings affecting
the design of the communication middleware are shown in
Figure 7. Based on the movement data and the recorded
communication events of two sessions of one hour each, (a)
shows the percentage of events that could be distributed lo-
cally over one hop, given a specific communication range.
In (b), the corresponding results for multi-hop communi-
cation are shown for selected communication ranges, indi-
cating that for the observed user behavior the efficiency of
multi-hop communication saturates at roughly three hops,
independent of the communication range. Even with single-
hop communication and a range of 3 m, 10 % of the overall
data can be distributed locally, motivating low-power local
transmission of events via Bluetooth.

The observed effects and characteristics (cf. Figure 7a and 7b)
motivated us to investigate the influence of direct communi-
cation for the transmission of events to nearby players. As
published in [11], we examined the impact of different local
communication protocols, which rely on Wi-Fi ad hoc, on
our communication middleware by means of simulation. In
a prospective step, we plan to analyze the obtained move-
ment data from the field study to improve the utilized mo-
bility model for a more accurate reflection of user behavior
in the AR game.

Adding it up, the example shows the benefits of combined
simulative and prototypical evaluation, especially when there
are many environmental factors potentially influencing a sys-
tem’s behavior and performance. To ease such combined
evaluations of mobile applications, the Simonstrator plat-
form provides abstractions for device-specific features, such
as access to sensors or multiple communication interfaces.
This way, the Android prototype is kept up to date with the
respective simulation model without additional implemen-
tation efforts.

4. RELATED WORK
Related to the Simonstrator platform comparable simula-
tion platforms have been developed that enable combined
simulative and prototypical evaluations. In the following, we
start with an overview on platforms that target specific types
of networks, comprising delay tolerant networks (DTNs),
p2p networks, and wireless sensor networks (WSNs). Sub-
sequently, we present related work on solutions that combine
virtual or emulated machines with simulators and complete
this section with a review of common network simulators.

ONE [8] is a simulator for DTNs, focusing on node move-
ment and the resulting contact characteristics to enable eval-
uation of DTN protocols. The ONE simulator exports the
DTN27 interface, enabling the integration of real-world ap-
plications into the simulation environment. Additionally,
the simulator can communicate with DTN2 bundle routers,
thereby enabling utilization of its connectivity models in
testbed deployments. Our concept of runtime environments
further extends the potential deployment options when com-
pared to the ONE simulator. Furthermore, the presented
Simonstrator framework with its component-based composi-
tion of experiments is not limited to one specific application
scenario (DTNs). Instead, our framework enables a broader
scope of evaluations with a common research prototype.

ProtoPeer [5] is closely related to our proposed framework,
as Galuba et al. introduce a lightweight programming inter-
face for developed applications on top of a simulator or a
prototype. The proposed interface is limited to scheduling
and network-related functionality and enforces a strict hori-
zontal split between application and platform. The concept
of Peerlets allows the composition of applications out of sev-
eral functional building blocks, similar to our proposed com-
ponents. However, Peerlets in ProtoPeer are limited to the
application layer and cannot be provided by the platform it-
self. This limits the usage of platform-specific features, such
as utilizing location data provided through the Android API.
Therefore, the ProtoPeer approach is sufficient for fixed p2p
networks that exclusively rely on the interconnection of and
communication between fixed hosts, as illustrated with the
Chord example by the authors. In contrast, it does not en-
able design and evaluation of today’s mobile applications,
as the abstraction in ProtoPeer is limited to only time and
network-related features.

WSN research also focuses on both, simulative and proto-
typical evaluation of small-scale and large-scale behavior.
Therefore, a number of WSN testbeds have emerged, that
enable protocol assessment within a defined setup and at
specific scale. For early insights as well as scenarios where
not suitable testbed is available, researchers rely on sim-
ulation tools that often come bundled together with the
sensor nodes’ operating system. One prominent example is
TOSSIM [9], providing a complete simulation environment
for applications built on the TinyOS operating system. Ap-
plications and protocols written for TinyOS can be deployed
on real hardware or being simulated within TOSSIM with-
out changes to the application code itself. The compile pro-
cess ensures that instead of being executed on real hardware,
calls are directed to the respective simulation models. COO-

7http://www.dtnrg.org/wiki/Code

JA/MSPSim [4] goes one step further by enabling simulation
and emulation of WSNs with heterogeneous operating sys-
tems. The authors argue that testing of interoperability is a
key requirement when developing applications and protocols
for heterogeneous sensor networks. This claim can also be
applied to today’s applications, running on a broad range of
heterogeneous devices, ranging from mobile to fixed devices.
By enabling component-based composition and evaluation
of a system on different runtime environments, the Simon-
strator platform helps to consider heterogeneity within the
experiment setup.

Werthmann et al. [19] propose VMSimInt, utilizing virtual
machines (VMs) integrated into a simulation framework. By
controlling the VM’s time and clock speed, as well as ac-
cess to network socket operations, they enable time-scaled
experiments while providing full access to the operating sys-
tem’s features. The focus of VMSimInt is on transport and
network layer protocols, where the VM-based abstraction
benefits from the realistic behavior of the network stack im-
plemented in the operating system. Regarding the repro-
ducibility of experiments, the authors do not control the
random number generator of the host system. They argue
that their approach still enables deterministic evaluation of
TCP mechanisms, as protocol behavior is only affected by
the system’s clock in this case. However, VMSimInt adds
a considerable amount of overhead. Consequently, it can
not be used to evaluate larger distributed systems such as
the streaming system discussed in Section 3. Furthermore,
it does not provide an abstraction for heterogeneous plat-
forms, as the studied application has to be programmed for
the respective OS. Still, one could integrate applications de-
veloped with the Simonstrator framework into VMSimInt to
study network-layer effects by using the Standalone runtime
environment inside a virtual machine.

SliceTime [18] constitutes an emulation platform that com-
bines event-based simulations with virtual machines to ex-
amine macroscopic as well as microscopic effects on the eval-
uated communication protocol. The platform consists of
three components, comprising a synchronizer, a simulator,
and one (or multiple) virtual machines. The synchronizer
is used to coordinate and synchronize the execution of the
considered communication protocol that is executed on the
simulator and the virtual machines. Dependent on the speed
of the simulation, the synchronizer either throttles the sim-
ulator if simulations run faster than real time or stops the
virtual machines otherwise. SliceTime relies on the network
simulator ns-3 [6], which facilitates to reuse the code from
simulations for the deployment on the virtual machines. As
is the case with VMSimInt, SliceTime does not provide an
abstraction for heterogeneous platforms, especially consid-
ering mobile devices.

By providing the respective runtime environments for the
Simonstrator framework, one can integrate other simula-
tion engines and utilize existing models during evaluation.
In this work, we discussed the integration of the Peerfact-
Sim.KOM overlay simulator and the OMNeT++/INET net-
work simulator. As only the core framework functionality
(e.g., scheduling and the host implementation) has to be
provided by the runtime implementation, other simulators
can be integrated easily.

5. CONCLUSIONS
Distributed mobile applications and the underlying com-
munication systems are subject to a high number of en-
vironmental factors influencing their performance. To as-
sess the impact of these factors at different scales, differ-
ent types of simulation as well as prototypical deployments
are necessary. In this paper, we proposed the Simonstrator
platform, consisting of the component-based Simonstrator
framework as well as runtime environments for existing sim-
ulators, testbeds, and the Android mobile platform. The
Simonstrator platform especially supports design and eval-
uation of applications for heterogeneous mobile devices by
enabling access to device-specific features such as sensors
or multiple network interfaces (e.g., Bluetooth and Wi-Fi
Direct). The component-based design in conjunction with
different runtimes and powerful instrumentation capabilities
enables evaluations of complex distributed applications un-
der a wide variety of evaluation scopes. Systems developed
with the proposed framework can run on any of the provided
runtime environments without modifications to their code.

We demonstrate the capabilities of our platform by dis-
cussing live video streaming and mobile augmented reality
gaming as two exemplary use cases. Both use cases high-
light the benefits of combined evaluations at different scales.
Early user studies based on prototypes motivate design de-
cisions for further research, while fast feedback of simulation
models into the prototype helps in understanding the sys-
tem’s behavior under realistic settings.

The Simonstrator platform is being used in a number of
projects and benefits from their contributions. Currently,
the Android runtime and the framework is being extended
to support additional Android-specific features such as Near
Field Communication (NFC). Furthermore, deeper integra-
tion with automated deployment tools such as Plush [1]
is being examined, allowing easier setup of testbed experi-
ments and collection of evaluation results. Finally, the OM-
NeT runtime environment is being finished for release, which
includes integrating OMNeT’s visualization framework.

6. ACKNOWLEDGMENTS
This work has been funded by the German Research Foun-
dation (DFG) as part of projects B01/C02/C03 within the
Collaborative Research Centre (CRC) 1053 – MAKI. Ralf
Steinmetz has been partially supported by a Chair of Excel-
lence from University Carlos III, Madrid, Spain.

7. REFERENCES
[1] J. R. Albrecht, R. Braud, D. Dao, N. Topilski,

C. Tuttle, A. C. Snoeren, and A. Vahdat. Remote
control: Distributed application configuration,
management, and visualization with plush. In Proc.
LISA, 2007.

[2] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and
M. Schwamborn. Bonnmotion: a mobility scenario
generation and analysis tool. In Proc. SIMUTools,
2010.

[3] I. Baumgart, B. Heep, and S. Krause. Oversim: A
scalable and flexible overlay framework for simulation
and real network applications. In Proc. IEEE P2P,
2009.

[4] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes,
A. Dunkels, T. Voigt, R. Sauter, and P. J. Marrón.
Cooja/mspsim: interoperability testing for wireless
sensor networks. In Proc. SIMUTools, 2009.

[5] W. Galuba, K. Aberer, Z. Despotovic, and
W. Kellerer. Protopeer: A p2p toolkit bridging the
gap between simulation and live deployement. In Proc.
SIMUTools, 2009.

[6] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 project goals. In Proc. WNS2, 2006.

[7] R. Jain. The art of computer systems performance
analysis. John Wiley & Sons, 2008.

[8] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE
Simulator for DTN Protocol Evaluation. In Proc.
SIMUTools, 2009.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
Accurate and scalable simulation of entire tinyos
applications. In Proc. ACM SenSys, 2003.

[10] B. Richerzhagen, M. Schiller, M. Lehn, D. Lapiner,
and R. Steinmetz. Transition-enabled event
dissemination for pervasive mobile multiplayer games.
In Proc. WoWMoM. IEEE, 2015.

[11] B. Richerzhagen, D. Stingl, R. Hans, C. Gross, and
R. Steinmetz. Bypassing the cloud: Peer-assisted
event dissemination for augmented reality games. In
Proc. IEEE P2P, 2014.

[12] B. Richerzhagen, S. Wilk, J. Rückert, D. Stohr, and
W. Effelsberg. Transitions in live video streaming
services. In Proc. ACM VideoNEXT, 2014.

[13] J. Rückert, B. Richerzhagen, E. Lidanski,
R. Steinmetz, and D. Hausheer. Topt: Supporting
flash crowd events in hybrid overlay-based live
streaming. In Proc. IFIP Networking, 2015.

[14] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and
M. Jain. Overlay Networks: An Akamai Perspective.
In Advanced Content Delivery, Streaming, and Cloud
Services. John Wiley & Sons, 2014.

[15] A. Stetsko, T. Smolka, V. Matyas, and F. Jurnečka.
On the credibility of wireless sensor network
simulations: evaluation of intrusion detection system.
In Proc. SIMUTools, 2012.

[16] D. Stingl, C. Gross, J. Rückert, L. Nobach,
A. Kovacevic, and R. Steinmetz. PeerfactSim.KOM: A
simulation framework for peer-to-peer systems. In
Proc. HPCS, 2011.

[17] A. Varga et al. The omnet++ discrete event
simulation system. In Proc. ESM, 2001.

[18] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and
K. Wehrle. Slicetime: A platform for scalable and
accurate network emulation. In Proc. NSDI, 2011.

[19] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz,
and D. Wagner. Vmsimint: a network simulation tool
supporting integration of arbitrary kernels and
applications. In Proc. SIMUTools, 2014.

[20] M. Wichtlhuber, B. Richerzhagen, J. Rückert, and
D. Hausheer. Transit: Supporting transitions in
peer-to-peer live video streaming. In Proc. IFIP
Networking, 2014.

[21] M. Zhao, A. Chen, Y. Lin, and A. Haeberlen.
Peer-Assisted Content Distribution in Akamai
NetSession. In ACM IMC, 2013.

