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Abstract

For the integration of systems across enterprise bound-
aries, the application of Web service technology and the
Service-oriented Architecture (SOA) paradigm have become
state of the art. Here, the management of the quality
delivered by third party services is crucial. In order to
achieve high service quality, requirements therefore need to
be initially specified using Service Level Agreements (SLAs),
which are later on monitored during runtime. In case of
SLA violations, appropriate countermeasures have to be
executed.

The paper presents an integrated approach for SLA mon-
itoring and enforcement using distributed autonomous mon-
itoring units. Additionally, the paper presents strategies to
distribute those units in an existing service-oriented infras-
tructure based on mixed integer programming techniques.
Furthermore, appropriate framework support is given by the
AMAS.KOM framework enabling distributed SLA monitoring
and enforcement based on the developed distribution strate-
gies. As a foundation for our approach, the WS-Re2Policy
language is presented, which allows the specification of
both requirements with respect to service quality and the
necessary countermeasures at the same time.

Keywords: Monitoring; SLA enforcement; Location strate-
gies; Service-oriented Architectures.

1. Introduction

In recent years, solution as well as implementation means
for all sorts of complex communications systems, e.g.,
in telecommunications or business automation scenarios,
are addressed by propagating Web service technology and
the Service-oriented Architecture paradigm. Especially in
business automation scenarios, Web services and SOAs are
used for the realization of cross-organisational collaborations
between enterprises by integrating the business processes
and IT systems of the business partners. Here, the Business
Process Execution Language (BPEL) allows the composition
of services of different business partners to business pro-
cesses as well as the execution across enterprise boundaries.

Nevertheless, a collaboration of business processes com-
posed of several individual services over the boundaries
of an enterprise bears several challenges enterprises have
to cope with. In order to build dependable and trusted
business relationships QoS and security aspects need to be
addressed within the integration of third party services into
an enterprise’s business processes and IT system. Due to
SOA’s loose coupling, which permits the selection of third
party services at runtime, flexible and permanently changing
business relationships have to be considered in particular.
Therefore, the participating parties need to define both
business requirements and responsibilities of the partners by
negotiating contracts and Service Level Agreements (SLA)
respectively. From a technological point of view, normally
defined XML-based policy documents are used for the
definition of SLAs and other requirements.

However, recent approaches for the definition of such
policies are insufficient as they do only address the actual
requirements. But with regard to SLA enforcement, monitor-
ing of the requirements during runtime is crucial. Therefore,
also adequate countermeasures need to be defined within
the policy documents in order to restore compliance with
the policies in case of deviations from the specified values.
Especially in distributed scenarios it is further helpful to
provide several independent monitoring units with the in-
formation about requirements and countermeasures in order
to enforce policies at different locations in an infrastructure.

In order to overcome both issues, we developed the Web
service requirements and reactions policy language (WS-
Re2Policy) presented in this article, which specifies require-
ments and reactions in a single policy file. Therefore, it
can be deployed to different monitoring units for distributed
SLA monitoring and enforcement. Additionally, we present a
framework named Automated Monitoring and Alignment of
Services (AMAS.KOM), which supports the implementation
of WS-Re2Policy in the areas of Web services and SOAs.
This article is an extension to our work [1] presented at the
ICSNC 2008 conference as well as to our research presented
in [2] and [3]. It enhances our previous work with respect
to the underlying agent-based monitoring framework as well
as to the distribution mechanisms, which are used in our
approach to place monitoring units in an infrastructure.
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The remaining part of this article is structured as follows.
In the next section, the overarching scenario of distributed
SLA monitoring and enforcement is discussed in more de-
tail. Subsequently, the WS-Re2Policy language is discussed
in depth and explained by the use of an example. Afterwards,
the AMAS.KOM framework is presented, which allows the
use of WS-Re2Policy for Web service-based SOAs. The
following section presents our work towards the optimal
distribution of monitoring units in a distributed service-based
infrastructure. Here, a distribution strategy is developed and
evaluated by the use of simulation. Before the article closes
with a conclusion and outlook, the related work to our
research is presented.

2. Scenario and approach

In cross-organisational collaborations on the basis of an
integration of business processes and IT systems, the ”clas-
sical” scenario consists of a single enterprise and different
business partners, in which the enterprise wants to use
different third party services provided by the partners in a 1
to n client-server style [4].

Here, a centralised monitoring and deviation handling ap-
proach is performed and carried out by the service requester
(SR) itself (cf. Figure 1a). Thus, all other components, i.e.,
the monitoring units (MU) and decision making components,
are located at the service requesters’, even if monitoring
data is sometimes collected by distributed probes. However,
in large-scale SOA scenarios a centralised approach is not
applicable, due to a vast amount of service requesters
and providers (e.g., m to n) which bears scalability and
complexity issues. But also unclear responsibilities between
participating partners or a lack of privacy lead to legal and
governance issues. Furthermore, the collection and availabil-
ity of monitoring data required for decisions is hindered due
to the existence of different spheres of control representing
domains which belong only to single partners. Consequently,
there exists no sufficient quality and amount of monitoring
data, so that adequate decision making and timely handling
of SLA violations cannot be performed.

For reasons already stated, we propose a distributed
approach to SLA monitoring and enforcement, which over-
comes the information deficit and improves the speed of
information provisioning. Our approach is based on the
application of decentralised monitoring and alignment agents
(MAAs) which obtain both monitoring requirements and
the specification of countermeasures. The MAAs are placed
within the infrastructure at various places (cf. Figure 1b).
Here, a hybrid approach, i.e., a mixture of centralised and
decentralised interaction styles, is taken, instead of a fully
decentralised approach (i.e., Peer-to-Peer).

A WS-Re2Policy compliant policy file enables the moni-
toring and alignment agents to manage single services as
well as service compositions in a semi-autonomous way

SR1

SR2

SP1

SP2

SP3

MU1

MU2

SR1

SR2

SP1

SP2

SP3

MU1

MU2

(a)

SR1

SR2

SP1

SP2

SP3

MAA1

MU2

SR1

SR2

SP1

SP2

SP3

MAA1

MU2

(b)

Figure 1. Monitoring styles (cf. [2])

according to the specified rules. Within a policy file agreed
countermeasures in case of SLA violations are defined
representing boundaries of the MAA’s behaviour. Given that
policies can be split into sub-policies, the corresponding
subdivision of the MAA’s behaviour forms the basis for new
MAAs. Policies and MAAs can also be recombined in order
to reduce the amount of MAAs up to a single instance. Using
specialised communication mechanisms, MAAs can interact
with each other, so that tasks can also be delegated between
MAAs. Here, the communication protocols of the selected
agent platform are facilitated (e.g., the Agent Communica-
tion Language). An example of cooperating agents based on
our AMAS.KOM framework can be found in [5].

3. Web service requirements and reactions pol-
icy language

This section addresses various aspects of the WS-
Re2Policy language in its most recent version. Starting from
a theoretical point of view, a basic example is then used to
discuss and explain the core elements of the language. For
a discussion of a preliminary version of the WS-Re2Policy
language we refer to [3].

3.1. Theoretical foundation of the WS-Re2Policy
language

The well-founded Event-Condition-Action (ECA) rules
paradigm, first discussed in the area of active databases (e.g.,
[6]), represents the basis of the WS-Re2Policy language. The
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Figure 2. Core elements of the language

name ECA already states the main concepts of the ECA
rules:

ON Event
IF Condition
DO Actions

Those concepts are directly used by the WS-Re2Policy
language. Its elements can be mapped to those ECA concepts
as follows:

• Event: current measure of a monitoring subject, e.g.,
the response time of a service composition.

• Condition: threshold for the monitoring subject, e.g.,
the upper bound of the service’s response time.

• Actions: reactions to an SLA violation aiming at the
enforcement of the SLA, e.g., the restart of a service
after a failure or time-out.

The use of ECA-styled rules as a basis for our WS-
Re2Policy language has different advantages. In the first
instance, the application of ECA rules does not require a
very deep understanding which allows the generation of
policy files even by non-experts with tool support. Further-
more, using a rule-based system the separation of control
logic from the real implementation of an MAA is supported,
thus allowing adaptability, which is crucial for our approach.
Finally, a broad theoretical foundation exists, ranging from
possible optimisations of rule-based systems to distributed
problem solving strategies of autonomous units in distributed
systems using ECA in combination with π-calculus [7].

3.2. Core elements of the WS-Re2Policy language

The WS-Re2Policy language was designed as an ex-
tension to the World Wide Web Consortium’s WS-Policy
1.2 framework in order to use existing standards and be
compliant to it. Therefore, the WS-Re2Policy can be ex-
tended by other WS-Policy compliant languages, e.g., WS-
SecurityPolicy.

Basically, a WS-Policy compliant policy consists of two
main parts: the requirements and the reactions part as
depicted in Figure 2. For the description of requirements any
WS-Policy compliant language can be used. Currently, some
basic QoS parameters, e.g., throughput and response time,
are natively supported by our approach. In future versions
of the language, further QoS parameters will follow.

In the WS-Re2Policy language, reactions are simple
and easy to understand control structures describing pos-
sible countermeasures in case of deviations from SLAs.
At this stage, the WS-Re2Policy language as well as the
AMAS.KOM framework support the following reactions:

• Restarting of a service, which violated an SLA.
• Renegotiation of SLA parameters for a single service

or composition.
• Replanning of an existing execution plan for the com-

position a unit is responsible for.
• Selection of different services, which offer comparable

functions.
• Reporting of results to caller or third parties.
• Delegation of control to other units on the same level
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Figure 3. A WS-Re2Policy compliant example

or to the central control instance without raising excep-
tions.

• Interruption of execution and passing back control by
raising exceptions.

Additionally, the WS-Re2Policy language supports further
control structures, e.g., loops (so-called iterations).

Finally, with regard to the connection between the parts
of the WS-Re2Policy language and the ECA structures, the
requirements parts contain the events, i.e., the subjects to
monitor, and their corresponding conditions. The reactions
part of the policy contains the specified actions. A reference
key is used to interconnect reactions and requirements, so
that reactions can be reused in different requirement parts.

3.3. WS-Re2Policy – a basic example

A simple example of a WS-Re2Policy compliant policy
document is depicted in Figure 3. The namespace declara-
tions of both WS-SecurityPolicy and WS-Re2Policy were
removed in order to improve readability.

Within the requirements part of the example, requirements
in two different WS-Policy compliant policy languages
are defined. The first requirements element contains WS-
SecurityPolicy information (cf. the following tag: < sp :
EncryptedParts >) representing the required security
features for interaction with the service in this case. The
second requirement element of the example defines QoS
parameters specifying a minimum of 10 concurrent service
calls and a maximum of 23.55 ms for the response time.

The reactions part of the document specifies the coun-
termeasures in case of SLA violations. In the example in
Figure 3, the MAA restarts the service twice 10 ms after an
SLA violation occurred. If no normal service operation can
be established, the MAA raises no exception. Instead, the
control is passed back to the caller for further handling.

4. The AMAS.KOM framework

As a proof of concept, we designed the AMAS.KOM
framework and its underlying architecture. By supporting all
phases ranging from the modelling of requirements to the
enforcement of SLAs by MAAs, AMAS.KOM aims towards
a holistic SLA monitoring and enforcement approach. For
this purpose, AMAS.KOM offers a transformation of a
business process description and associated requirements
into a monitored process. Within the transformation, an
indirection of service calls to the MAA infrastructure is
integrated by analysing and adapting an existing process
description in form of a Web service composition.

The transformation process consists of the four steps mod-
elling and annotation, modification and splitting, generation,
and distribution. In the first step, modelling and annotation,
the requirements concerning the complete business process
are specified by manually enhancing a description of a
business process with SLA assertions. Here, the business
process is described in the Business Process Modelling
Notation (BPMN – cf. [8]) which represents a graphical
specification of a business process. Later on, the SLA asser-
tions are transformed into policy documents describing the
requirements and countermeasures for the complete process
using the WS-Re2Policy language. In order to support the
user with the annotation, AMAS.KOM provides a Web-
based wizard. Within the second step called modification and
splitting, separate policies for each service or sub-process,
depending on the planned granularity of MAAs, are derived
using the global policy document. Here, various QoS-aware
planning algorithms can be used for planning purposes in
order to generate feasible partitions, e.g., as discussed in
[9], [10]. This process step is carried out automatically
and results in policy documents and execution plans. Both
contain simple Web service calls in combination with a
policy document and execution plans for sub-processes in
combination with the related policy documents. The third
step, generation, includes the creation of MAAs on the basis
of the predefined policies. Afterwards, the MAAs are dis-
tributed within the monitoring and alignment infrastructure
during the distribution step. Due to a plug-in concept, MAAs
are highly extensible. Therefore, only the configuration of
the plug-ins needed, as specified by the requirements in the
policy before their distribution, is necessary. For distribution
purposes, various algorithms can be used in AMAS.KOM,
e.g., a random distribution algorithm or the use of heuristics
for the solution of the MAA location problem. An optimal
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Figure 4. Overview of the AMAS.KOM framework

distribution strategy based on the analysis of given SLAs is
presented in section 5.

The AMAS.KOM framework contains five core and var-
ious supportive components, like data storages for require-
ments, system configurations as well as monitoring data (cf.
Figure 4). Subsequently, we will shortly discuss the core
components:

• Mediation & Routing Core: combines both configura-
tion information for MAAs as well as the applicable
policies to specification sets and is furthermore respon-
sible for routing both Web service call and specification
set to Monitoring Managers.

• Policy Interpreter: calculates the effective policy, i.e.,
the policy out of a set of possible policies, which
represents the current monitoring situation best.

• Monitoring Manager: generates MAAs based on a
given specification set and distributes them in the
infrastructure.

• Controller: provides the logic to build monitored pro-
cesses by transforming complete requirement sets into
service or sub-process specific policy documents.

• Monitoring & Alignment Agent: responsible for the
actual monitoring as well as the execution of counter-
measures.

The actual process of executing a monitored instance of
a Web service call is described in the following. Generally,
the Web service calls of the BPEL Engine are forwarded to
a Proxy which redirects them to the Mediation & Routing
Core component. For each Web service invocation, this
component requests the effective policy from the Policy
Interpreter which retrieves all applicable policies from the
Repository and determines the effective one. Subsequently,
the Mediation & Routing Core retrieves the associated
configuration information of the service invocation from
the Rule Base. Afterwards, the service invocation is routed
to an appropriate Monitoring Manager which performs the
generation of tailor-made monitoring units. The Monitoring

& Alignment Agent performs the actual service call and
tries to comply with the associated policy. For further
evaluation purposes, the results are stored in the Repository.
After the fulfilment of the policy, the result is passed back
to the BPEL Engine via the Mediation & Routing Core.
In case of an unsuccessful service invocation, appropriate
alignment measures have to be accomplished.

We prototypically implemented the AMAS.KOM frame-
work as a proof-of-concept for our distributed SLA mon-
itoring and enforcement approach and the WS-Re2Policy
language. Therefore, we used the JADE agent development
framework to realise the MAAs, Apache Axis2 for Web
service integration as well as the WSBPEL 2.0 standard for
the specification of Web service-based collaborations. WS-
Policy 1.5 and WS-SecurityPolicy 1.1 are also supported via
the WS-Re2Policy language.

5. Distribution strategy for monitoring and
alignment units

In this section, we introduce an approach to the distri-
bution of MAAs in an infrastructure. As the installation of
those monitoring and alignment components is associated
with expenses, it should be avoided to distribute them
randomly. Instead, we recommend to distribute the MAAs in
a way that minimises the total costs, which can be divided in
setup costs and costs for the communication between nodes.

5.1. Modelling basics and prerequisites

In order to model the distribution problem of MAAs, some
assumptions have to be made.

The relationships between service requester, service
providers, and potential intermediaries form a network,
which can be modelled as an undirected graph. Intermedi-
aries are all nodes in the communication path between ser-
vice requester and providers. The communication between
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requester and providers forms a spanning tree, normally
based on the shortest path from the requester to one provider.
All intermediaries as well as the root itself can be seen as
possible candidates for the execution of a monitoring and
alignment unit.

The goal of our optimisation problem is the selection of
those nodes, where the setup of monitoring and alignment
units minimises the overall costs consisting of setup and
communication costs. We call such an optimisation model
Monitoring Unit Location Problem (MULP).

As constraints, we need to ensure that the alignment
demands of all providers are satisfied. Here, the alignment
demand defines the need for corrective actions with respect
to a monitored service if an SLA is violated during service
execution. The alignment demand is an abstract concept
used for modelling, which can contain various elements
like availability of a service or its error rate. As input for
both the alignment demand calculation and the costs for
communication as well as setup costs, the SLAs between
the communicating parties are used.

In order to clarify the idea of the MULP as well as
the concept of alignment demands, we present a simple
example in Figure 5. As depicted in Figure 5, Service
Requester 3 (SR3) executes a process which is composed of
services from different service providers – Service Providers
1 to 4 (SP1 to SP4). If SR3 calls the service provided by
SP4, the request and its corresponding response pass the
Intermediaries 1 and 2 (I1 and I2). Assume, that a MAA
is installed on I1, which controls SP3 and SP4. In case the
service provided by SP4 violates its current SLA, the MAA
at I1 is able to detect this violation long before it is noted by
the calling party. Furthermore, the MAA tries to correct the
violation, e.g., by restarting the service, if the service was
unavailable before. In the best case, the calling party does
not even notice the problems. The alignment demand, which
emerges from the SLA violation of the service, is satisfied by
the MAA at I1, as it is responsible for the service provided

by SP4. If I1 is unable to align the service, the control of the
service execution is passed back to the calling party SR3.

Our optimisation problem, which determines the place-
ment of MAAs in an infrastructure by reducing overall costs,
can be mapped to a Warehouse Location Problem (WLP –
cf. [11]). Depending on the existence of capacity restrictions
with regard to the amount of supported alignment demands
at an intermediary, the problem can be mapped to either a
capacitated WLP or an uncapacitated WLP. In both cases,
the corresponding optimisation problems are NP-hard.

Mixed integer programming techniques (cf. e.g., [12],
[13]) can be applied for the purpose of solving the
WLP-based Monitoring Unit Location Problem for arbi-
trary topologies. The resulting models can be solved using
Branch-and-Bound algorithms afterwards.

5.2. Modelling the distribution strategy

Service requester, service providers and intermediaries are
described by nodes of the network topology. Here, we can
distinguish between the set of nodes that represent service
providers (nodes j ∈ M = {1, ...,m}) and the set of
nodes that represent service requesters and intermediaries
(nodes i ∈ N = {1, ..., n}). By definition, only the service
providers have alignment demands dj , as already stated in
the section before. Service providers are not allowed to
directly execute monitoring and alignment units, because we
only consider the requester perspective in our model. Service
providers probably will carry out their own monitoring. For
this, it is sufficient only to consider the nodes i ∈ N when
assigning setup costs. The actual costs for installing a MAA
on node i are indicated by cs

i . The cost of communication
between node i (service requester or intermediary) and node
j (service provider) are labelled with cc

ij . In this context
it is important to mention that the existence of an edge
between two arbitrary nodes is not mandatory. Therefore,
cc
ij is defined as follows:

cc
ij :=

⎧⎪⎨
⎪⎩

cc∗
ij , in case (i, j) exists

min(cc
kj + cc∗∗

ik ), in case (i, k) exists
∞, else

Thereby, cc∗
ij describes the communication costs

between intermediary i and provider j (i ∈ N, j ∈ M ).
Furthermore, cc∗∗

ik describes the communication costs
between intermediary i and intermediary k (i, k ∈ N ).
These definitions ensure that cc

ij specifies the minimum
possible communication costs between intermediary i and
provider j. The variables ai constitute the capacities for
nodes i. As already mentioned before, load restrictions
could be seen as an example for such capacities. The
decision variables yi state, whether or not to install a MAA
on node i, while the decision variables xij describe the
communication at a given path assuring that the alignment
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demands are satisfied. The definition of the required
variables is also depicted in Table 1 and Table 2.

According to [11], the corresponding mathematical model
of the MULP can be described as denoted in the following
optimisation model:

Target function

minimise F (x, y) =
n∑

i=1

cs
i yi +

n∑
i=1

m∑
j=1

cc
ijxij (1)

subject to
n∑

i=1

xij = dj ∀j ∈ M (2)

m∑
j=1

xij ≤ aiyi ∀i ∈ N (3)

yi ∈ {0, 1} , xij ≥ 0 ∀i ∈ N, ∀j ∈ M (4)

Finally, it is important that the MAA setup costs at the
service requesters’ are zero, i.e., monitoring and alignment
can be done at the service requester’s process engine without
additional costs. Here, centralised monitoring is always
enabled and taken into account.

As stated in the previous section, we use Branch-and-
Bound algorithms to solve the WLP. For large topologies,
this would require strong computational effort. In such
a case, we propose to relax the integrity conditions and
apply heuristics afterwards – as for example H1 RELAX IP
discussed in [9] – to get a valid solution with integer
values for yi. This heuristic does not perform significantly
worse compared with the optimal solution with respect to
its solution quality (cf. [9]).

In any case, the partitioning and distribution of the opti-
misation process improves the scalability of the complete
system (e.g., the load situation at the service requester’s
QoS management system), because the computation of the
distribution schemes is not only carried out by a single
system but by all existing monitoring units for the areas
they are responsible for. Furthermore, the distribution of
the monitoring units and hence the computation of the
distribution schemes into control spheres of third parties with
no external access allows the application of our approach,
e.g., in scenarios with high security demands.

6. Evaluation of the distribution strategy

In this section, we present the evaluation of the distribu-
tion strategy presented before. For this, different infrastruc-
ture types and configurations are simulated. As prerequisites,
we present the scenarios used for simulation as well as the
simulation setup in the following sections.

Table 1. Definition of variables

i: service requester, intermediary
j: service provider
dj : alignment demand of provider j
ci
s: costs for installing a MAA on node i

cc
ij : communication costs between i and j

Table 2. Definition of decision variables

yi: whether or not to install a MAA on i
xij : alignment demand of j satisfied by i

6.1. Simulation scenarios and assumptions

The overall goal of the simulation is to show that the
distribution of MAAs can lead to cost savings for a given
distributed scenario. The following aspects were taken into
account during the evaluation:

• A cost comparison of the optimal distributed solution
with the centralised solution.

• The comparison of the number of MAAs with the
overall nodes and service providers.

• The analysis of the execution time behaviour of our
distribution strategy.

During simulation different parameters were adjusted and
their impact on the overall performance was measured. The
following parameters were used in the evaluation:

• Topology parameters, containing the number of nodes
and connectivity parameters of the network, which are
used to configure the Waxman algorithm.

• Percentage of service providers, defining the amount of
service providers in relation to the overall nodes. The
service providers are randomly distributed in the given
topology.

• Cost ratio, which is defined as the ratio of setup costs
for installing a MAA on a node to the maximum of the
communication costs per link.

Based on those simulation parameters, several simulation
scenarios can be specified. For this article, we focus on
scenarios in which the topologies (as well as the related
matrices) are sparse, i.e., they have a high degree of
unconnected links. We assume different cost ratios in order
to test extreme configurations of the simulation. Here, cost
ratios of setup costs and maximum communication costs of
1:4, 1:1, and 4:1 were used. Furthermore, every scenario
contains random topologies including 10, 20, ..., 100 nodes.
Every type of scenario is executed 10 times with different
configurations. For the analysis of the results the mean of
all calculated values is used.

Additionally, we assume the capacity of the nodes to be
infinite for the evaluation, so we apply an uncapacitated
WLP. Furthermore, we only take one service requester into
account. In addition, it is possible to imagine a completely

39

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/



10 20 30 40 50 60 70 80 90 100

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104

Number of nodes

C
os

ts
 u

ni
ts

Cost of centralised solution
Cost of optimal solution

Cost comparison (cost ratio 1:1)

(a)

10 20 30 40 50 60 70 80 90 100

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108

Number of nodes

C
os

ts
 u

ni
ts

Cost of centralised solution
Cost of optimal solution

Cost comparison (cost ratio 4:1)

(b)

10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

Number of nodes

N
um

be
r 

of
 u

ni
ts

Cost ratio 1:4
Cost ratio 1:1
Cost ratio 4:1

Number of units (cost ratio 1:4, 1:1, 4:1)

(c)

10 20 30 40 50 60 70 80 90 100

0.00

0.09

0.17

0.26

0.34

Number of nodes

E
xe

cu
tio

n 
tim

e 
[s

]

Cost ratio 1:4
Cost ratio 1:1
Cost ratio 4:1

Execution time (cost ratio 1:4, 1:1, 4:1)

(d)

Figure 6. Cost savings, number of MAAs, and execution time samples

decentralised scenario in order to reach a high degree of scal-
ability and robustness. However, concerning our simulation,
we postulate that the alignment demand of one provider j
has to be satisfied by a single node i having a MAA installed,
which is located on the ”shortest path” (with respect to our
minimisation problem) from this provider j to the requester
or by the requester itself. That means in the context of our
work: xij = dj .

6.2. Simulation setup

For simulation purposes, a workbench was set up which
integrates topology and cost model generation with a solver
capable of solving mixed integer programs as well as ap-
propriate visualisation functionalities.

In detail, the topology generator BRITE (Boston Univer-
sity Representative Internet Topology Generator – cf. [14])
was modified in order to support the data formats needed
by our model generator and the solver. BRITE supports the
generation of topologies based on the Waxman- and the
Barabasi-Albert methods – both of them well established
in the research community. We used Waxman-generated
topologies for the evaluation of our approach (cf. [15] for in-

depth discussion of Waxman topologies), but our approach
is not limited to those types of topologies. After topology
generation, the topology description file is complemented
by cost and demand vectors, which are generated randomly
by our .NET based model generator. In order to generate
real random values, the randomiser methods of the .NET
cryptography API are used. The solution to the mixed inte-
ger program is calculated with the commercial XPress-MP
solver (release 2007B). Results of the solver are prepared
and visualised using the R statistics package (version 2.7.1).
In order to automate the simulation runs, all components
were linked together using shell scripts.

The simulation itself was run on an Intel Core 2 Duo 2.33
GHz computer with 2 GByte RAM running the Windows
Vista operating system.

6.3. Discussion of results

In this section, we will discuss some of the results which
were generated during the simulation runs.

Figure 6a shows a comparison of the overall costs of
monitoring and alignment for different topologies ranging
from 10 to 100 nodes. Here, 20 % of the nodes are service
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providers and the cost ratio of setup costs to maximum
communication costs is 1:1. As Figure 6a shows, almost
every configuration has some optimisation potential by dis-
tributing monitoring and alignment units. The maximum is
at 60 nodes with a 38.9 % cost reduction. At this point, 6
to 7 MAAs are needed on average to manage 12 service
providers, which is depicted in Figure 6c.

Figure 6b again shows a comparison of overall costs,
but in this case for a cost ratio of 4:1. Again, 20 % of
the nodes are service providers and 100 random topologies
ranging from 10 to 100 nodes were investigated. Figure 6b
shows that cost savings are only marginal in this scenario. A
maximum cost saving of 11.1 % on average can be achieved
at 100 nodes. For this, at most two MAAs are needed as
Figure 6c shows. Scenarios, which only place one MAA are
centralised ones.

A drawback of our approach is the runtime behaviour of
the mixed integer program. As noted before, a WLP like
optimisation problem is NP-hard. As we can see in Figure
6d, the runtime of the solver for the mixed integer program
grows exponentially – even for relatively small problem
sets. Therefore, an application to real-time scenarios is only
possible for small topologies – e.g., a topology of 1000
nodes takes more than 30 minutes to solve on our simulation
system – or by applying heuristics, which are in scope of
our further research.

7. Related work

Due to the amount of research areas touched in this article,
related work out of different areas has to be taken into
account. First, we discuss the area of specification languages
as well as the corresponding monitoring systems, followed
by the presentation of a selection of distributed monitoring
approaches. Finally, we discuss the related work to the
distribution of monitoring units in an infrastructure.

There are various approaches to specify monitoring re-
quirements with respect to SLAs in the area of Web services
and SOAs, almost all with appropriate system support.
Robinson specifies functional monitoring requirements in
temporal logic, without any support for the specification of
countermeasures [16]. Again, using logic to specify func-
tional monitoring requirements, Spanoudakis and Mahbub
present a transformation of BPEL into event calculus, in
which the requirements can be specified [17]. The specifi-
cation of countermeasures is again not part of their approach.
Sen et al. also use past time linear temporal logic for the
description of monitoring requirements, without any support
for countermeasure specification [18]. Furthermore, all of
the logic-based approaches lack an easy readability by non-
expert users.

Monitoring assertions, which are integrated in the form of
pre- and post-conditions in BPEL, are discussed by Baresi
and Guinea [19]. Also an approach by Baresi et al. is

the Web service constraint language for the specification
of functional and non-functional requirements [20]. It uses
the WS-Policy language to specify requirements of users,
providers, and third parties. Both approaches do not cover
the handling of deviations or the specification of coun-
termeasures, but offer framework support for integration.
Lazovik et al. use business rules for the same purpose and
with the same limitations [21].

The approaches presented above primarily focus on the
specification of monitoring aspects. All of the examined
policy and requirements languages above do not support
the specification of countermeasures and therefore are not
fully applicable to our scenario. An approach, which also
covers basic policy enforcement aspects, is discussed by
Ludwig et al. [22]. The authors use WS-Policy as a part
of WS-Agreement to specify requirements in their CRE-
MONA architecture. A focus of their work is on the initial
creation and subsequent adaptation of agreements between
different parties (i.e., during the negotiation of parameters),
which include policy elements and their enforcement or re-
negotiation. A different policy language named CIM-SPL is
presented in [23], which also supports the specification of
countermeasures and therefore enables an enforcement of
policies. CIM-SPL integrates the elements of the Common
Information Model (CIM), an industry standard provided
by the Distributed Management Task Force, into a policy
language. The application of a heavy-weight standard like
CIM as the foundation of a distributed decision making
approach is currently under research.

An additional area of application for policy enforcement is
the area of security. Sattanathan et al. discuss an architecture,
which allows the securing of Web services by the use of
adaptive security policies defining e.g., the security levels of
incoming and outgoing Web service messages [24]. Here,
security policies can be changed during execution time
without changing the implementation. Furthermore, their
architecture allows negotiation and reconciliation of security
policies. Ardagna et al. also address policy enforcement
issues with respect to the security of Web services [25].
In their work, an approach for the access control of Web
services based on policies is presented, which also supports
basic policy enforcement strategies.

Of further interest is the approach followed by Ora-
cle with their Web Services Manager [26]. The Oracle
Web Service Manager integrates centralised monitoring and
policy enforcement with distributed information gathering
of basic QoS parameters (e.g., response time), exceptions,
and security aspects. Therefore, an architecture containing
non-intrusive (i.e., gateways) and intrusive elements (i.e.,
agents running at the same application server as the Web
service) was developed, which allows both basic reporting
of monitoring results as well as the automatic selection and
activation of policies based on given measurements.

With respect to distributed monitoring, there are different
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approaches, which are in some parts comparable to our
work, especially in their application of agent technology for
the distribution of the monitoring logic. The integration of
SNMP into an agent-based architecture for network manage-
ment is discussed in [27]. Here, agents are responsible to col-
lect the monitoring data from SNMP-capable data sources.
Again for network management purposes, the work of [28]
discusses a scalable framework based on mobile software
agents. The approaches differ from our AMAS.KOM ap-
proach by not supporting deviation handling mechanisms. A
further representative of agent-based monitoring approaches
is discussed in [29], in which software agents act as area
managers responsible for the monitoring and control of
dedicated parts of a network. Area assignment is dynamic,
allowing agents to adapt their zones during runtime and to
migrate into the selected zone using agent mobility features.

Finally, some approaches to the distribution of monitoring
units exist, which are related to our work presented in this
article. All of the existing approaches are focusing on overall
network monitoring, but not on monitoring of services in
a SOA. An overview presenting applicable models and
problem definitions for the location of network monitoring
units is discussed in [30]. The authors analyse in detail
what types of monitors can be matched to what kind of
optimisation problems. Possible solutions to those prob-
lems are presented in addition. Furthermore, [31] present
methods for the optimal positioning of monitoring units
for network performance assessment. Hereby, the authors
focus on the minimisation of the number of devices as
well as finding their optimal location. Another approach to
calculate the optimal number of monitoring units based on
BGP (Border Gateway Protocol) data is presented by [32],
where the authors give some theoretical foundation to define
boundaries for the number of monitoring units needed in an
Internet-like scenario. As a result, the authors claim that one
third of all nodes in an arbitrary topology should execute
monitoring functionalities in order to manage the complete
infrastructure.

8. Conclusion and outlook

In this article, we presented an integrated approach for
distributed SLA monitoring and enforcement in service-
oriented systems. For this, we introduced the policy lan-
guage WS-Re2Policy to specify requirements and counter-
measures to SLA violations simultaneously. Additionally,
the AMAS.KOM framework, supporting distributed mon-
itoring and enforcement of SLAs in Web service-based
cross-organisational collaborations as well as a distribution
strategy to find the optimal locations of monitoring units in
distributed scenarios were presented.

The AMAS.KOM framework utilises the mobile software
agent paradigm to define autonomous monitoring and align-
ment units, which are distributed in a service-oriented sys-

tem by applying our optimisation approach. The correspond-
ing monitoring and alignment units are pre-configured using
the WS-Re2Policy language. First performance evaluations
showed that the overhead introduced by our agent-based
approach is almost insignificant in a Web service scenario.

The evaluation of the distribution strategy proposed in this
article, which calculates the optimal position of a monitoring
unit with respect to the total cost, shows that cost improve-
ments can be reached by distributing monitoring units in
almost every scenario we investigated. Here, a realistic cost
model is crucial because the cost ratio of setup costs to
communication costs can limit potential benefits.

Currently, the WS-Re2Policy language exists in its second
version and is implemented in a prototypical implementation
of our AMAS.KOM framework. Nevertheless, the language
is under continuous development. One of the planned major
enhancements of WS-Re2Policy is the native support of
various additional QoS-related parameters, as a common
definition of a QoS policy is currently missing. Another
focus of our ongoing work is on the improvement of the
distribution strategy. As noted before, the current strategy is
not applicable to large topologies under real-time conditions.
At the moment, we are working on heuristics to improve the
planning process.
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