
Towards Seamless Binding of Context-aware
Services to Ubiquitous Information Sources

(Invited Paper)

Andreas Reinhardt, Johannes Schmitt, Farid Zaid, Parag S. Mogre, Matthias Kropff, Ralf Steinmetz
Multimedia Communications Lab, Technische Universität Darmstadt, Rundeturmstr. 10, 64283 Darmstadt, Germany

{areinhardt, jschmitt, fzaid, pmogre, mkropff, ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—The area of context-aware computing has received
much attention in the last decade. However, many systems to
determine a user’s context are focused on integrating a confined
set of sensors into their decision-making algorithms, and lack
extensibility for new and novel sources of context information.
This limitation however has often resulted in monolithic software
systems, reasoning on the user’s context from a static set of pre-
defined rules. Therefore, most of these systems can not adapt
to the user during runtime, and have not found wide adoption
in reality. Unlike the existing approaches, we present a concept
for a context-aware system circumventing these limitations by
providing generic abstraction layers among its components. We
show a concept for an extensible context-aware system with
autonomous adaptation to changes in the user’s preferences, and
provide arguments for our design decisions. After presenting
the constraints for all participating entities, including sensors,
middleware, and actuation and/or application frontends, we
describe ContextFramework.KOM, an example implementation
of the proposed concept.

I. INTRODUCTION

The vision of ambient intelligence [1] is based on using
ubiquitous devices, integrated in a seamless and unobtrusive
manner into the user’s environment. Systems mainly aim to
support the user, ranging from adaptation to his preferences to
the integration with actuation systems. While such intelligent
environments allow for a wide range of application scenarios,
including ambient assisted living or intelligent buildings, many
of today’s implemented systems are often either based on static
rules (e.g., if the temperature exceeds a given threshold, then
turn on the air conditioning), or require a significant amount
of human interaction to adapt the desired system behavior to
the user’s preferences.

Let us e.g. consider an employee P with different tasks to
accomplish throughout the day, which he starts with writing a
letter. As he must not miss any incoming calls by his superiors,
he cannot simply forward all calls to the mailbox, resulting
in frequent interruptions by incoming phone calls. During
lunch break, he needs to be available on his cell phone in
urgent cases, and must hence always keep in mind to set up a
call redirection before leaving his office. In the afternoon, he
attends a meeting, prior to which he must keep in mind to set
his mobile phone to vibration mode. In all of the situations,
the tedious process of manual phone setup is imposed on P.
Context-aware systems are a viable approach to reduce the
load on the user when e.g. configured to automatically perform
the telephone setup depending on the user’s situation.

We term all information that can be used to describe the
situation of a user as his context in the remainder of this paper
(cf. [2] for an elaborate definition). In general, only subsets of
the available context information are relevant to classify spe-
cific aspects of the user’s situation. We refer to these aspects
as context dimensions, representing characteristic features that
can take a set of discrete classes, including the ones exemplary
depicted in Fig. 1. The notion of context classes describes the
user’s current state within a certain context dimension. For
example, a possible class for the location dimension can be
at the workplace, while the corresponding class for the task
dimension might be writing.

context (person)

[dimension]

[class a]

…

[class n]

task

talk

break

writing

location

reading

…

presence relation

colleague

private

customer

none

…

workplace

home

…

car

canteen

available

urgent cases

…

busy

away

…

Fig. 1. Examples for different context dimensions of a person

If systems providing ambient intelligence are supplemented
by context information, they can base their decisions thereon
and thus better adapt to the user’s concept, i.e. his desired
behavior of the system. In the aforementioned example, the
user’s concept would – amongst others – contain his prefer-
ences regarding call forwarding, e.g. to forward all incoming
phone calls to his cell phone when he is not at his workplace,
or to redirect all incoming calls to the mailbox unless they
originate from a superior colleague when the user is busy.
Especially as the user’s concept is generally hidden and cannot
be transferred to an exhaustive set of rules easily, determining
the correct classes for a set of context dimensions is inherently
difficult. Our contribution to allow for context-aware services
is the presentation of a generic, adaptive approach to use
context information for various applications. Relying on a set
of information sources, comprised of sensor and processor
devices (where processors can perform various, even complex,
operations on input parameters), the system must be capable
of covering multiple context dimensions and offer easy-to-use
interfaces to applications that want to use context information.

rst
Textfeld
Andreas Reinhardt, Johannes Schmitt, Farid Zaid, Parag Mogre, Matthias Kropff, Ralf Steinmetz:Towards Seamless Binding of Context-aware Services to Ubiquitous Information Sources. In: Proceedings of the 4th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS-2010), February 2010. ISBN ISBN:978-0-7695-3967-6.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

After describing an exemplary set of context dimensions
and their applications in Sec. II, we list the requirements for
any system targeted to determine context classes in Sec. III. A
generic approach towards the design of such systems is shown
in Sec. IV, and our implementation of the ContextFrame-
work.KOM system provided in Sec. V. We summarize related
work in Sec. VI, and conclude this paper in Sec. VII.

II. SELECTED CONTEXT DIMENSIONS

In this section, we present four representative context di-
mensions and briefly describe information sources that pro-
vide corresponding context information as well as application
scenarios in which the resulting context classes can be used.

A. Location

A rather basic context dimension is the location of a user
or an object. The knowledge about location enables location-
aware or location-based services, e.g. automatic rerouting of
phone calls to a mobile phone when the user is not at his
workplace. Also, other dimensions might depend on location
information, as the location might pose limits to the set of
possible tasks or available devices. The set of information
sources that can determine the location are manyfold, in-
cluding GPS, WiFi and Bluetooth neighborhood relations.
However, also other information sources can be queried to
deduce a user’s location, e.g. room activity meters or indicators
for the computer usage of a given user account.

B. Presence

The context dimension of presence is widely employed in
communication systems today, where it is used to display
the availability state of participating users. Although users
need to set their state manually in most systems (e.g. instant
messaging tools), a couple of implementations also rely on
a small and fixed set of local information sources (such
as the keyboard or mouse activity). Both variants however
allow the systems to selectively forward or block incoming
communication requests, depending on the users presence
state. Taking a more global view on presence leads to a large
range of dependencies in terms of information types. Besides
information about the current location, at least the available
communication devices and the current task are relevant to
determine the user’s presence.

C. Task

The complexity of capturing information about a user’s
current task depends on the task itself; while the user is
working at his computer, the running applications and data
from the input devices (e.g. average mouse movement speed
or key stroke rate) can be used to support the determination
process of the current task. When the user does not actively
use his computer, i.e. in states like meeting, coffee break,
or reading, a different set of information sources, including
calendar, location, or movement, become relevant. While some
tasks may allow the user to be interrupted at all times, only
interruptions with a high importance should be forwarded to
the user while performing complex or demanding tasks.

D. Relation

Commonly, users have detailed preferences regarding the
handling of incoming communication requests. Besides their
current task having an influence on their decision whether
to accept a request, an even stronger aspect is the social
relationship to the enquiring person. While an interruption
may not be tolerated when the caller is unknown to the callee,
the decision to reject a request might be revoked when some
social relation is determined. Knowledge about the relation can
e.g. be derived from recent interactions, proximity observation,
communication logs, or contact lists. Forwarding calls in a
context-aware manner can also reduce the need to carry several
communication devices to distinguish between private and
business contacts.

III. REQUIREMENTS FOR CONTEXT-AWARE SYSTEMS

Any system targeted to determine context states in a generic
and adaptive way needs to fulfill a set of requirements. We
intentionally present the major challenges in an unsorted list,
as their weighting and priority may differ between application
scenarios.

It must be open to new information sources during
runtime: Anticipating that new sensor types result from the
evolution of embedded systems and sensor devices, it is
essential to remain extensible to these types and integrate them
into the system without reconfiguration efforts.

Extensibility by new context dimensions: New sensor
types and application demands might necessitate the definition
of new context dimensions. The system should thus also
provide extension options for this case.

Only relevant sensors should be queried: Often, a great
number of sensors may be present within the system, but only
a small subset contributes to the determination of the user’s
context. The system should thus confine its queries to the
relevant information sources to use available bandwidth and
energy consciously.

Integration of existing systems: To reduce additional
required monetary expenses and integrate with ubiquitous
devices like mobile phones more easily, the system should be
capable of being run on such devices and platforms. It must
therefore provide common interfaces for both information
sources and applications that use context information.

Tolerance for failing and missing sensors: Fluctuations of
radio links, or device failures may lead to incomplete sensor
query results or entirely missing data. The system needs to be
able to cope with such situations and react adequately.

Maintaining latency and quality parameters: Obtaining
sensor information might be a time-consuming process, if
devices are placed at remote locations or connected over
slow links. However, incoming context requests should be
served within reasonable time, possibly necessitating means
to integrate sensors with greater querying delays.

Adaptation to concept drift/shift: In many cases, user
concepts evolve over time. To avoid incorrect context classes
to be provided by the system, it must be capable to react to
gradual (drift) and sudden (shift) changes of concepts.

Coverage of multiple context dimensions: As presented in
the preceding section, multiple dimensions of context exist and
might be required to be evaluated simultaneously. The system
should therefore provide capabilities to determine more than
one context dimension at a time.

Scalability: The system needs to be scalable and must
maintain regular operation mode even during periods of high
load and a great number of registered sensors.

Privacy: As private information about users is collected
and processed within such systems, eavesdropping attacks at
both radio links and the processing system might pose risks
to the privacy. Ideally, the user should be in control which
information he provides at which instant in time.

IV. SYSTEM CONCEPT

To meet the aforementioned requirements, we propose the
use of a modular middleware-based approach, as shown in
Fig. 2, which we present in more detail in the following
subsections.

 Middleware

Application

 Ontology RegistrarSearch

Communication

Sensor Feature
Processor

Context
Inference

Processor

Semantic Description

Fig. 2. Modular structure of the context system

A. Information Sources
To avoid compatibility problems when combining several

heterogeneous devices and technologies, the system must be
capable to integrate them without the need for extensive
manual reconfiguration. Especially when a broader set of
sensors and especially embedded devices, which may not
be connected over wired Ethernet, are part of the system,
suitable protocols and network transport mechanisms must be
identified and implemented. In general, context dimensions are
bound to sensors and processors, which provide information
of different relevance and accuracy. Instantiations of sensors
include dedicated physical sensors, either directly connected
to a computer, or over wireless radio technologies. However,
sensors can also be present as software suppliers, which
extract sensor information (such as the keystroke rate or the
current open application) from a computer system controlled
by the corresponding user. Processor nodes might be present
in form of databases, mapping the value of an input type to
another value of another data type (e.g. GPS coordinates to
the according room number). More sophisticated options, such
as feature extraction tools, which extract the most relevant
information from a greater set of data, or high-level sensors,
like image processing tools, can also be integrated as processor
nodes.

B. Common description

To allow for new and novel sensors to be interfaced, it is
essential for information sources to describe their functionality.
Although this description can be limited to the input (in case of
processors) and output data types as well as meta information
(such as expiry time or accuracy of sensed data), it must
be generic enough to allow the integration of heterogeneous
sensors, which may range from very small embedded systems
up to high-definition image processing server farms. It is
obvious that syntactic descriptions are insufficient to determine
if sensor readings can be used by a processor component,
as they lack information about the meaning of the contained
information. Instead, the use of semantic annotations is well
suited to bridge the gap. A variety of semantic sensor descrip-
tion languages exist, many of them inspired from the area of
Web Services [3]. Special emphasis has been put on making
service descriptions understandable to machines, so that any
application can use many different services, even though it
may lack knowledge of the service a priori. Furthermore, the
vocabulary of data types must be agreed on at all participating
systems. Ideally, a comprehensive and extensible semantic data
structure, such as an ontology, is used to also incorporate
relations between such types, e.g. inheritance or equality.

C. Data Type Management

Information sources must maintain information about the
data types for their input and output parameters. To ensure
that devices from different vendors are interoperable and
maintain extensibility during system runtime, a static semantic
data structure is obviously insufficient. A better solution is
to extend the ontology automatically when yet unknown
sensor types are encountered. Further means must therefore
be integrated to ensure integrity of the ontology, eliminate
redundancies, and integrate the correct relations to existing
data types. The use of semantic data types obsoletes static
system settings or search requests to be adapted to new sensor
devices, but instead generates queries based on a sensor’s
semantic description. Extensibility of the system is thereby
ensured while maintaining full functionality. Loose coupling,
i.e. means to replace information sources by semantically
equivalent ones during runtime, is a significant benefit of
semantic data type management, and also covers for missing
and failing sensors.

D. Communication

To provide an abstraction for the inherent need of com-
munication between heterogeneous systems, the concept of
connectors can be applied. Representing a generic interface
to call methods provided by other systems, any data exchange
passes through the connector, which chooses the right means to
forward each request. It thus effectively alleviates the need for
looking up where another service is running and how it can be
invoked. Another advantage of a connector-based architecture
is its extensibility; new systems joining the network only
need to implement an existing connector to interoperate. The
central issue related to the connector-based structure is the

discovery of information sources in the network. Approaches
in wired networks usually make use of a centralized direc-
tory to manage available services and means of connecting
to their host systems. Sacrificing scalability and thus only
applicable in small networks, broadcasting can also be used
to assist service discovery. As context-aware systems comprise
networked devices fitted with physical sensors, parameters like
QoS (Quality of Service) and QoI (Quality of Information)
gain importance. Requirements for QoS parameters may arise
from time limits on the process of context determination, but
QoS also addresses scalability, as large numbers of sensors
might be attached to a system. The QoI metric describes the
expressiveness of the aggregated information; the challenge is
to find enough relevant information in limited time to allow the
context classification algorithm to make decisions with high
accuracy.

E. Search

Even when annotating information sources semantically,
information lookup algorithms should be designed in a way to
avoid iterating over all available sources of context information
for a given dimension, which would result in a great number
of requests and possibly lead to context information unrelated
the original search request. As this affects both scalability
and the quality of the resulting decision, any context deter-
mination system should ideally only query relevant sensors.
Scalability is hereby inherently ensured by using search al-
gorithms, which can adapt to different applications and to a
dynamically changing sensor network topology without the
need for a manual redefinition of the search request. As
processor nodes always require input from other information
sources queried previously, an iterative search is mandatory,
where results retrieved in previous iterations are used as
input parameters to successive requests. To integrate slow
and resource-constrained devices into the system, specialized
means to access their need to data be integrated. While caching
of previous query results may – in combination with meta
information about the sensor information quality – reduce
the number of queries to the sensor, adaptive pre-fetching of
sensor data can be used to retrieve sensor data before an actual
query takes place to reduce the delays when polling the sensor.
To adapt to the traffic present for sensors and processors, both
querying approaches and publish-subscribe architectures can
be used to retrieve data in an efficient and timely manner.

F. Context Classification

The context classification mechanism, deducing a user’s
context state from available context information, is a special
type of processor node. To determine correct context states
from the set of context information, the system must contain
an autonomous classification entity, targeting to approximate
the user concept as good as possible with minimum user
interaction required. Several approaches towards adapting the
classification model to the user’s concept are known, including
the definition of static rules or the configuration of the system
through expert knowledge [4]. Both contradict with the defined

requirement of future extensibility, and pose an additional
cost, as the entire system configuration must be defined in
both cases. A better suited approach therefore is to determine
the patterns between the sensor data and the user’s behavior
from a set of training data. The extracted patterns can then
also be used to determine the probable results for new and
not yet encountered situations (extrapolation). We describe
an approach that uses machine learning techniques to deduce
context states from available context information in Sec. V-C.
Preprocessing of sensor information might also be required in
the system, to eliminate noise on sensor readings or set newly
encountered observations into relation to existing data.

G. Application

When context-aware systems provide generic interfaces,
integrating new applications and user frontends is a simple
process, as they merely need to interface the system over
one of the available connectors. Examples for basic frontend
systems include textual displays, indicating the status of a user
to his friends, or a daemon that notifies a person whenever an
object’s context changes. More sophisticated usage scenarios
envisage the integration into workflows like call management
or business processes. When corresponding processor services
are integrated into the system, they can autonomously trigger
actions to establish phone calls or reroute them when the
callee is unavailable. Knowledge about the presence state also
allows placing a phone call to any person within a group of
persons, given the constraint that the person must be available
over a landline phone connection. We present a more detailed
discussion on arising options to use determined context states
through frontends in Sec. II. Context information can also
be used in intelligent buildings or intelligent signage, which
may even include personalized recommendation systems or
actuation over home automation buses (e.g. switching the
lights off when the user has left the room).

V. CONTEXTFRAMEWORK.KOM – AN IMPLEMENTATION

We have determined the requirements for a context-aware
system in the preceding sections. However, to prove the fea-
sibility of our concepts, a real system has been implemented,
following the structure shown in Fig. 2, which we describe
in detail in the following subsections. For further design
decisions and implementation details, we refer the interested
reader to our technical report [5].

A. Information Sources

As all information sources need to provide semantic self-
descriptions to allow for loose coupling, we have made use
of the semantically enriched Web Ontology Language for
Services (OWL-S) [6] to describe the features and function-
alities of all sensing devices. To allow embedded devices with
limited capabilities to join the network, we have implemented
a lightweight version of the protocol, reduced to the essential
set of data required to describe a sensor. New sensors can
easily be integrated with the network of information sources
by registering their description to the central server instance,

which runs a middleware system. Sensor invocations can be
realized over a set of supported protocols, catering for the
heterogeneity of the sensor set. Including the XML-RPC [7],
RMI [8], and R-OSGi [9] transport mechanisms, the system
allows to integrate a wide range of sensors. When integrating
nodes in wireless sensor networks, compressed radio messages
are employed to efficiently use the available bandwidth and
energy budget [10].

B. Middleware

Interpreting sensor and processor functionalities as services
yields multiple advantages. Using a service-oriented system
architecture provides the required flexibility to cater for failing
sensors and dynamic loading of modules during runtime.
The OSGi service platform [11] provides the functionality to
ease software integration. Services and applications can be
integrated and maintained via the network. In our system,
the Concierge distribution [12] was selected, since it has a
small filesystem and memory footprint while providing all
required functionality. The system has been implemented using
the Java programming language to allow for portability to
many different platforms. Functionalities of the middleware
layer can be summarized as sensor management and search
functions. The list of registered sensors is kept up-to-date,
both in terms of signing up sensors and removing stale
sensors from the list to avoid unnecessary calls to non-existing
devices. Besides maintaining the ontology of sensor types
and their relations, the middleware also provides functionality
for searching dedicated sensor types. Search queries can be
confined to any subset of sensors to avoid scalability problems
and lead to an improved quality of the search result.

C. Search and Classification

The target of adaptive search mechanisms is to determine
the relation between a search request and the available set
of sensors, and only query sensors which match both the
desired quality and relevance. To cater for these options,
our implemented system relies on the use of the extensible
ontology as well as an iterative search process. When either
the desired quality is reached, or the allowed search time
is exceeded, results are forwarded to the evaluation process.
Evaluation modules for a set of context dimensions have been
implemented, and are presented in more detail in Sec. II. We
have employed machine learning techniques to support the
adaptation of the model, forming the basis for any context
decisions, to the user’s preferences and wishes. The evaluation
instance features an online learning mechanism with gradual
forgetting and adaptive window sizing [13]. All results from
evaluation modules are fed back into the middleware system as
new information sources, allowing their results to be used by
all other components of the system, including other processors
and frontends.

D. Frontends

The system has been enriched by a set of frontends, which
make use of the determined context information in various

regards. We have specifically configured a telephony server to
only route calls to the callee when he is in an available context
state, and configured instant messaging tools to automatically
adapt to the context state and avoid pop-up windows when
the user is busy. The system has additionally been extended
by a set of additional services, including an web based portal
for configuration, a control system for sensor management,
and a set of non-obstrusive feedback interfaces to support the
adaption algorithms.

VI. RELATED WORK

Evolving from Mark Weiser’s vision of ubiquious comput-
ing [1], many approaches have been made to detect a user’s
context and react to its changes. Some initial approaches
(e.g. [14], [15]) hereby derive contexts from a static set of
sensors. The modules for sensor coupling are mostly hardwired
in the application code, which generally complicates the
application development and poses severe reusability issues.

The CoBra system in contrast supports loose coupling of
sensors by employing a central broker for context data [4]. It
uses OWL to model context and keep a consistent knowledge,
as well as to enforce privacy rules specified by the users.
Similarly, the Context Toolkit [16] presents a widget-based
context infrastructure which abstracts the low-level sensors
from the applications using them and thus supports the reuse
of context data by multiple applications. However, the Context
Toolkit fails to support important features addressed in this
paper like drifting concepts, failing components and fully
transparent acquisition of context information. The CALAIS
project has been designed with a focus on determining a user’s
location [17]. In contrast to our proposed concept, CALAIS is
limited to a set of static evaluation algorithms and only relies
on matching the syntactic descriptions of information sources
to pre-defined event templates.

Comparable to our presented approach, SOCAM uses OWL
for context representation and knowledge sharing [18]. It also
proposes an OSGi-based architecture for provisioning and
delivery of context-aware services. The service behavior is
driven by reasoning about OWL rules that are specified by
the service designer. However, unlike our approach, the end
user in SOCAM still lacks the ability to adapt these rules
to changing preferences. ContextWare proposes a scheme for
late binding of sensors by allowing them to be wrapped as
web services [19]. The interface of the service is exposed
to the system and semantics are added to the provided data
types according to an RDF ontology. However, this last step
requires the user interaction to supply the right mapping. In
contrast, our approach facilitates extending the ontology at
runtime without need for user intervention. The “Suggested
Upper Merged Ontology” presented in [20] addresses the
challenges of merging multiple existing upper-level ontologies
into a single data structure and provides hints on the design of
extensible ontologies. In addition, the authors present means
towards performing a semantic search, which is closely related
to the search mechanisms present in our concept.

VII. SUMMARY

In this paper, we have outlined the features to be supported
by any generic, extensible and modular context-aware system,
including integration of new sensor types, runtime sensor
binding, sensor fault-tolerance, query of relevant sensors and
accommodating generic context dimensions. We detailed our
concept for supporting these features. In particular, we showed
the advantage of using an extensible domain ontology for
sensor description, loose coupling and search enhancement.
Besides, we proposed a service-oriented design based on
the OSGi framework to facilitate platform-independent and
efficient interactions. User preferences can be accommodated
by adoption of a kind of supervised machine learning which
can be adapted through user-friendly feedback frontends. As
a proof-of-concept, we presented the implementation of Con-
textFramework.KOM, which we utilize to capture a wide range
of context dimensions.

A. Outlook
We expect that context-awareness is going to be the driving

technology for rich personalized services in future. Allowing
for augmented reality systems, smart homes/offices, and many
further applications, context-aware systems hold the potential
to change the way people interact with their environment and
experience the world. However, we believe that some issues
need to be addressed and considered right from the design
phase for future context-aware systems if these are to be
successful and accepted by the users.

First and foremost, privacy and security issues need to be
addressed for such systems in depth, as private and sensitive
data is required to enable personalized services. As we expect
the numbers of users and services to increase, strong emphasis
must also be put on designing distributed systems to maintain
scalability. This corresponding distributed nature of processing
and collection of context information implies that privacy and
security issues become even more important. Further, when de-
signing context-aware systems, attention should be paid to the
design complexity of the solutions to gain broad acceptance
among application designers. The computational complexity
of the designed solutions will also play an important role;
users will expect context-aware services to be provided by
an ever increasing set of small and mobile devices, where
heavy computational requirements may be infeasible due to
processor and battery lifetime limitations. The system design
should provide developers with a set of primitives which
permit the development and integration of diverse information
sources and sensors. The ability to monitor and diagnose faulty
behavior in context-aware systems should also be considered,
as well as the integration of self-organization and self-healing
properties. We feel that the vision of using context-aware
systems, being ubiquitous and dramatically changing the way
of interacting with the world, can become a reality. However,
there are several research challenges which need to be tackled
on the way to its realization. We intend to use our presented
architecture as a baseline and build up on it to address the
issues which we have presented.

ACKNOWLEDGMENT

This research has been supported by the German Federal
Ministry of Education and Research (BMBF), and by the
German Research Foundation (DFG) within the Research
Training Group 1362 “Cooperative, adaptive and responsive
monitoring in mixed mode environment”.

REFERENCES

[1] M. Weiser, “The Computer for the Twenty-First Century,” Scientific
American, 1991.

[2] A. K. Dey, “Understanding and Using Context,” Personal and Ubiqui-
tous Computing Journal, vol. 5, no. 1, 2001.

[3] World Wide Web Consortium, “Web Services Glossary,” Online: http:
//www.w3.org/TR/ws-gloss, 2004.

[4] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-
Aware Systems,” Ph.D. dissertation, University of Maryland, Baltimore
County, 2004.

[5] J. Schmitt, M. Kropff, A. Reinhardt, M. Hollick, C. Schäfer,
F. Remetter, and R. Steinmetz, “An Extensible Framework for
Context-aware Communication Management Using Heterogeneous
Sensor Networks,” Multimedia Communications Lab, TU Darmstadt,
Tech. Rep. TR-KOM-2008-08, 2008. [Online]. Available: ftp://ftp.kom.
tu-darmstadt.de/pub/TR/KOM-TR-2008-08.pdf

[6] World Wide Web Consortium, “OWL-S: Semantic Markup for Web
Services,” Online: http://www.w3.org/Submission/OWL-S/, 2004.

[7] D. Winer, “XML-RPC Specification,” Online: http://www.xmlrpc.com/
spec, 1999.

[8] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for
the Java System,” in Proceedings of the USENIX Conference on Object-
Oriented Technologies, 1996.

[9] J. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: Distributed Ap-
plications Through Software Modularization,” in Proceedings of the
ACM/IFIP/USENIX 8th International Middleware Conference (Middle-
ware), 2007.

[10] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented Lossless
Packet Compression in Wireless Sensor Networks,” in Proceedings of
the 6th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2009.

[11] OSGi Alliance, “OSGi Service Platform Release 4 Specification,” On-
line: http://www.osgi.org/Specifications, 2007.

[12] J. Rellermeyer and G. Alonso, “Concierge: A Service Platform for
Resource-Constrained Devices,” in Proceedings of the ACM EuroSys,
2007.

[13] J. Schmitt, M. Hollick, C. Roos, and R. Steinmetz, “Adapting the User
Context in Realtime: Tailoring Online Machine Learning Algorithms to
Ambient Computing,” Mobile Networks and Applications, vol. 13, no. 6,
2008.

[14] K. V. Laerhoven, “Online Adaptive Context Awareness starting from
Low-Level Sensors,” Master’s thesis, Free University of Brussels, 1999,
http://www.teco.edu/tea/thesis99.ps.

[15] J. Rekimoto, “Tilting Operations for Small Screen Interfaces,” in Pro-
ceedings of the 9th Annual ACM Symposium on User Interface Software
and Technology (UIST), 1996.

[16] A. Dey, G. Abowd, and D. Salber, “A Context-based Infrastructure for
Smart Environments,” in Proceedings of the 1st International Workshop
on Managing Interactions in Smart Environments (MANSE), 1999.

[17] G. J. Nelson, “Context-Aware and Location Systems,” Ph.D. disser-
tation, University of Cambridge, 1998, http://www.sigmobile.org/phd/
1998/theses/nelson.pdf.

[18] T. Gu, H. Pung, and D. Zhang, “Towards an OSGi-based Infrastructure
for Context-aware Applications,” IEEE Pervasive Computing, vol. 3,
no. 4, 2004.

[19] T. Szydlo, R. Szymacha, and K. Zieliński, “Context Generation and
Structuralization for Ambient Networks,” in Proceedings of the 1st
International Conference on Autonomic Computing and Communication
Systems (Autonomics), 2007.

[20] A. Pease, I. Niles, and J. Li, “The Suggested Upper Merged Ontology: A
Large Ontology for the SemanticWeb and its Applications,” in Working
Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web,
2002.

