
WS-Re2Policy: A policy language for distributed
SLA monitoring and enforcement

Nicolas Repp, André Miede, Michael Niemann, Ralf Steinmetz
Technische Universität Darmstadt
Multimedia Communications Lab

Merckstr. 25, 64285 Darmstadt, Germany
repp@KOM.tu-darmstadt.de

Abstract

Web service technology and the Service-oriented Archi-
tecture (SOA) paradigm have become state of the art for the
integration of systems across enterprise boundaries. Here,
a strong need for policies exists, which describe the Quality
of Service delivered by third parties.

Current policy languages in the area of Web services
and SOAs allow the specification of requirements with re-
spect to the Quality of Service as well as the parameters,
which should be monitored. They do not cover the coun-
termeasures needed and accepted in case of requirement
violations. Especially, in distributed scenarios it is help-
ful to provide the monitoring units with information about
possible reactions to violations in order to enforce policies
at the monitoring units. Therefore, we developed the Web
service requirements and reactions policy language (WS-
Re2Policy), which overcomes those issues by specifying re-
quirements and reactions in a single policy to be distributed
to independent monitoring units.

1. Introduction

In recent years, Web service technology and the Service-
oriented Architecture (SOA) paradigm are propagated as
both solution and implementation means for all sorts of
complex communication systems, e.g., in telecommunica-
tions or business process automation scenarios. Especially
in the latter, Web services and SOAs are used to build up
cross-organisational collaborations between business part-
ners by integrating the business processes and IT systems
of the partners. Here, services of different business partners
can be composed to business processes and executed across
enterprise boundaries, e.g., using the Business Process Ex-
ecution Language (BPEL).

Nevertheless, a collaboration based on the integration of

business processes and IT systems also creates various chal-
lenges enterprises have to cope with. The integration of
third party services into an enterprise’s business processes
and IT systems needs to address Quality of Service (QoS)
as well as security aspects to build dependable and trusted
business relationships. Especially, the dynamics of busi-
ness relationships resulting from the selection of third party
services at runtime, which is possible due to SOA’s loose
coupling, have to be considered. Therefore, contracts and
Service Level Agreements (SLA) respectively have to be
negotiated between the participating parties defining both
business requirements and responsibilities of the partners
involved. From a technological point of view, SLAs and
other requirements are normally defined as XML-based pol-
icy documents.

However, it is not sufficient just to specify such require-
ments in form of policies as recent approaches do. In or-
der to enforce SLAs, monitoring of the requirements during
runtime is crucial. Moreover, in case of deviations from the
values specified in the policies adequate countermeasures
have to be selected and applied to restore compliance with
the policies. Therefore, there is a need to specify accepted
countermeasures as well in parallel with the requirements
to monitor. Furthermore, in distributed scenarios like large-
scale SOAs it is helpful to provide not only a single monitor-
ing unit with the information about requirements and coun-
termeasures but different independent monitoring units in
order to enforce policies at different locations in an infras-
tructure.

In this paper, we present the Web service requirements
and reactions policy language (WS-Re2Policy), which over-
comes both issues by specifying requirements and reactions
in a single policy and therefore can be deployed to differ-
ent monitoring units for distributed SLA monitoring and
enforcement. In addition, a supportive architecture to im-
plement WS-Re2Policy in the areas of Web services and
SOAs is presented. This paper is an extension of our pre-

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

rst
Textfeld
Nicolas Repp, André Miede, Michael Niemann, Ralf Steinmetz:WS-Re2Policy: A policy language for distributed SLA monitoring and enforcement. In: IEEE Computer Society: Proceedings of the Third International Conference on Systems and Networks Communications , p. 256-261, IEEE Press, October 2008. ISBN 978-0-7695-3371-1. 



vious work (cp. [11] [12]) with respect to a stronger fo-
cus on the policy language as well as improvements to it
in comparison to our former work. Furthermore, the evolu-
tion of our distributed proxy architecture towards a mobile
software agent-based approach is discussed.

The remaining part of this paper is structured as fol-
lows. In the next section, the overarching scenario of dis-
tributed SLA monitoring and enforcement is discussed in
more detail. Subsequently, the WS-Re2Policy language is
discussed in depth and explained by the use of an exam-
ple. Afterwards, the Automated Monitoring and Alignment
(AMAS.KOM) architecture is presented, which allows the
use of WS-Re2Policy for Web service-based SOAs. Before
the paper closes with a conclusion and outlook, the related
work in policies for service monitoring is presented.

2. Scenario and approach

The ”classical” scenario for cross-organisational collab-
orations based on an integration of business processes and
IT systems consists of a single enterprise, which wants to
use third party services, and different business partners pro-
viding those services in a 1 to n client-server style [6].

Here, both monitoring and handling of SLA violations is
centralised and carried out by the service requester (SR) it-
self (cp. Fig. 1). Monitoring units (MU) and decision mak-
ing components are located at the service requesters, even
if monitoring data is sometimes collected by distributed
probes. However, a centralised approach cannot be used in
large-scale SOA scenarios including a vast number of ser-
vice requesters and providers (e.g., m to n) due to scalability
and complexity issues. Furthermore, legal and governance
issues do exist for example based on unclear responsibilities
between the participating partners or a lack of privacy. Ad-
ditionally, different spheres of control, i.e., ”areas” which
belong only to single partners, hinder the availability of
monitoring data for decision making. That results into an
insufficient quality and amount of monitoring data, which
is needed for decision making and the timely handling of
SLA violations.

SR1

SR2

SP1

SP2

SP3

MU1

MU2

SR1

SR2

SP1

SP2

SP3

MU1

MU2

Figure 1. Monitoring of services in classical
scenarios [11]

In order to overcome the information deficit and to im-
prove the speed of information provisioning, we propose a

SR1

SR2

SP1

SP2

SP3

MAA1

MU2

SR1

SR2

SP1

SP2

SP3

MAA1

MU2

Figure 2. Monitoring of services in a dis-
tributed fashion [11]

distributed approach to SLA monitoring and enforcement.
The basic idea, which is the motivation for the development
of the WS-Re2Policy language as well as the foundation
of our AMAS.KOM architecture, is the distribution of both
monitoring requirements and the specification of counter-
measures to decentralised monitoring and alignment agents
(MAA) located at various places in an infrastructure (cp.
Fig. 2). Here, no fully decentralised approach (i.e., Peer-to-
Peer) is taken but a hybrid approach supporting a mixture
of centralised and decentralised interaction styles.

Monitoring and alignment agents can manage single ser-
vices as well as service compositions in a semi-autonomous
way according to rules defined by a WS-Re2Policy compli-
ant policy file. A policy describes boundaries of the MAA’s
behaviour as a collection of agreed countermeasures in case
of SLA violations. Policies and therefore the behaviour of
MAAs can be split into sub-policies, which again form the
basis for new MAAs. It is also possible to recombine poli-
cies and MAAs to reduce the amount of MAAs up to a sin-
gle instance. MAAs can interact with each other using spe-
cialised communication mechanisms. Therefore, tasks can
also be delegated between MAAs.

3. Web service requirements and reactions pol-
icy language

In this section, we discuss various aspects of the WS-
Re2Policy language in its most recent version. Based on
a theoretical foundation, the core elements of the language
are discussed and explained by a basic example. For a dis-
cussion of a preliminary version of the WS-Re2Policy lan-
guage we refer to [12].

3.1. Theoretical foundation of the WS-
Re2Policy language

The WS-Re2Policy language is based on the well-
founded Event-Condition-Action (ECA) rules paradigm,
which was first discussed in the area of active databases
(e.g., [18]). As the name ECA already explains, the main
concepts of ECA rules are the following:



ON Event
IF Condition
DO Actions

WS-Re2Policy makes direct use of those concepts. The
elements of our language can be mapped to those ECA con-
cepts as follows:

• Event: current measure of a monitoring subject, e.g.,
the response time of a service composition.

• Condition: threshold for the monitoring subject, e.g.,
the upper bound of the service’s response time.

• Actions: reactions to a SLA violation aiming at the
enforcement of the SLA, e.g., the restart of a service
after a failure or time-out.

The use of ECA-styled rules for our language has differ-
ent advantages. In the first instance, ECA rules are easy
to understand and to use. Our goal is to allow the gen-
eration of policy files even by non-experts with and with-
out tool support. Furthermore, a rule-based system support
the separation of control logic from the real implementa-
tion of an MAAs and therefore allows adaptability, which
is crucial for our approach. Finally, there is a broad the-
oretical foundation, ranging from possible optimisations of
rule-based systems to distributed problem solving strategies
of autonomous units in distributed systems using ECA in
combination with π-calculus [17]. The applicability of π-
calculus to WS-Re2Policy is currently under investigation.

3.2. Core elements of the WS-Re2Policy
language

In order to use existing standards, the WS-Re2Policy
language was designed as an extension to the World
Wide Web Consortium’s WS-Policy 1.2 framework. The
language is compliant to WS-Policy and can be ex-
tended by other WS-Policy compliant languages like WS-
SecurityPolicy.

The two main parts of a WS-Re2Policy compliant policy
are the requirements and the reactions part (cp. Fig. 3).
Requirements can be described in any WS-Policy compliant
language. Currently, our approach natively supports some
basic QoS parameters like throughput and response time.
Further QoS parameters will follow in future versions of
the language.

Reactions on the other hand are simple and easy to
understand control structures, describing possible counter-
measures in case of SLA violations. The following re-
actions are currently supported by the WS-Re2Policy lan-
guage and also supported by the AMAS.KOM architecture:

• Restarting of a service, which violated a SLA.

Figure 3. Core elements of the language

• Renegotiation of SLA parameters for a single service
or composition.

• Replanning of an existing execution plan for the com-
position a unit is responsible for.

• Selection of different services, which offer comparable
functions.

• Reporting of results to caller or third parties.

• Delegation of control to other units on the same level
or to the central control instance without raising excep-
tions.

• Interruption of execution and passing back control by
raising exceptions.

Furthermore, WS-Re2Policy supports additional control
structures like loops (so called iterations).

Finally, the connection between the ECA structures dis-
cussed in the last section and the parts of the WS-Re2Policy
language should be mentioned. The requirements parts con-
tain the events, i.e., the subjects to monitor, as well as the
conditions to be met. Actions are defined in the reactions
part of the policy. Both are connected by a reference key,
allowing reuse of reactions in different requirements parts.

3.3. WS-Re2Policy – a basic example

Fig. 4 contains a simple example of a policy docu-
ment, which is compliant to the WS-Re2Policy language
specification. In order to improve readability, we removed



Figure 4. A WS-Re2Policy compliant example

the namespace declarations of both WS-SecurityPolicy and
WS-Re2Policy.

The requirements part of the example contains require-
ments defined in two different policy languages, which are
both WS-Policy compliant. The first requirements element
contains WS-SecurityPolicy information (cp. the follow-
ing tag: < sp : EncryptedParts >), in this case the se-
curity features needed for the interaction with the service.
The second requirements element defines QoS parameters,
which are natively supported by WS-Re2Policy. Here, a
minimum of 10 concurrent service calls as well as a maxi-
mum of 23.55 ms for the response time are specified.

The countermeasures are specified in the reactions part
of the document. In the example depicted in Fig. 4, the
MAA restarts the service twice after waiting for 10 ms fol-
lowing a SLA violation. In case no normal service operation
could be established, the MAA will pass the control back to
the caller for further handling without raising an exception.

4. WS-Re2Policy – overarching architecture

In order to implement our distributed SLA monitor-
ing and enforcement approach, we designed the Auto-
mated Monitoring and Alignment (AMAS.KOM) architec-
ture. AMAS.KOM aims towards a holistic SLA monitoring
and enforcement by supporting all phases beginning with
the modelling of requirements to the enforcement of SLAs
by MAA. Therefore, a process transforming both business
process descriptions and requirements into monitored pro-
cess instances is offered by AMAS.KOM. In more detail, an

existing process description in form of a Web service com-
position is analysed and adapted in order to integrate an in-
direction of service calls to the monitoring and alignment
infrastructure.

The steps of the transformation process are called ”mod-
elling and annotation”, ”modification and splitting”, ”gen-
eration”, and ”distribution”. In the ”modelling and anno-
tation” step, a graphical representation of a business pro-
cess conforming to the Business Process Modelling No-
tation (BPMN) is manually enhanced by SLA assertions
and later on transformed into policy documents describ-
ing the requirements and countermeasures for the com-
plete process using the WS-Re2Policy language. Therefore,
AMAS.KOM offers a Web-based wizard to support the user
with the annotation. During ”modification and splitting”,
requirements for single services or sub-processes are de-
rived depending on the planned granularity of MAAs. Here,
for planning purposes various QoS-aware planning algo-
rithms can be used to generate feasible partitions, e.g., as
discussed by [5] [7]. This process step is carried out au-
tomatically. Its results are policy documents and execution
plans, which contain both simple Web service calls in com-
bination with a policy document and execution plans for
sub-processes in combination with the related policy doc-
uments. In the ”generation” step, MAAs are created based
on the policy information by the monitoring and alignment
infrastructure and are distributed in the infrastructure dur-
ing the ”distribution” step. The generation of MAAs during
the ”generation” step depends on the requirements defined
in the policy documents. MAAs are highly extensible based
on a plug-in concept, which allows the configuration of only
the plug-ins needed (as specified by the requirements in the
policy) before their distribution. For distribution purposes,
various algorithms can be used in AMAS.KOM, e.g., a ran-
dom distribution algorithm or the use of heuristics for the
solution of the MAA location problem.

The AMAS.KOM architecture contains five core compo-
nents, enhancing our previous work in [11]:

• AMAS Modeller: allows the annotation of both
BPMN and BPEL process descriptions by SLA asser-
tions using a Web-based user interface.

• AMAS Controller: provides the logic to build moni-
tored processes by transforming complete requirement
sets into service or sub-process specific policy docu-
ments.

• AMAS Repository: stores policies and configurations
of the overall system and the MAAs.

• Monitoring and Alignment Manager: generates MAAs
and distributes them in the infrastructure.

• Monitoring and Alignment Agents: responsible for
monitoring and the execution of countermeasures.



We prototypically implemented the AMAS.KOM archi-
tecture as a proof-of-concept for our distributed SLA mon-
itoring and enforcement approach and the WS-Re2Policy
language. Therefore, we use the JADE agent development
framework to realise the MAA, Apache Axis for Web ser-
vice integration as well as the WSBPEL 2.0 standard for
the specification of Web service-based collaborations. WS-
Policy 1.5 and WS-SecurityPolicy 1.1 are also supported
via the WS-Re2Policy language.

For an in-depth discussion of the overall architecture we
refer to [11] and [12].

5. Related work

There are various approaches to specify monitoring re-
quirements with respect to SLAs in the area Web services
and SOAs. Robinson specifies functional monitoring re-
quirements in temporal logic, without any support for the
specification of countermeasures [13]. Again, using logic
to specify functional monitoring requirements, Spanoudakis
and Mahbub present a transformation of BPEL into event
calculus, in which the requirements can be specified [16].
The specification of countermeasures is again not part of
their approach. Sen et al. also use past time linear tem-
poral logic for the description of monitoring requirements,
without any support for countermeasure specification [15].
Furthermore, all of the logic-based approaches lack an easy
readability by non-expert users.

Monitoring assertions, which are integrated in the form
of pre- and post-conditions in BPEL, are discussed by
Baresi and Guinea [3]. Also an approach by Baresi et al.
is the Web service constraint language for the specification
of functional and non-functional requirements [4]. It uses
the WS-Policy language to specify requirements of users,
providers, and third parties. Both approaches do not cover
the handling of deviations or the specification of counter-
measures. Lazovik et al. use business rules for the same
purpose and with the same limitations [9].

The approaches presented above primarily focused on
the specification of monitoring aspects. All of the exam-
ined policy and requirements languages above do not sup-
port the specification of countermeasures and therefore are
not fully applicable to our scenario. An approach, which
also covers basic policy enforcement aspects, is discussed
by Ludwig et al. [10]. The authors use WS-Policy as a part
of WS-Agreement to specify requirements in their CRE-
MONA architecture. A focus of their work is on the initial
creation and subsequent adaptation of agreements between
different parties (i.e., during the negotiation of parameters),
which include policy elements and their enforcement or re-
negotiation. A different policy language named CIM-SPL
is presented in [1], which also supports the specification of
countermeasures and therefore enables an enforcement of

policies. CIM-SPL integrates the elements of the Common
Information Model (CIM), an industry standard provided
by the Distributed Management Task Force, into a policy
language. The application of a heavy-weight standard like
CIM as the foundation of a distributed decision making ap-
proach is currently under research.

An additional area of application for policy enforcement
is the area of security. Sattanathan et al. discuss an ar-
chitecture, which allows the securing of Web services by
the use of adaptive security policies defining e.g. the secu-
rity levels of incoming and outgoing Web service messages
[14]. Here, security policies can be changed during exe-
cution time without changing the implementation. Further-
more, their architecture allows negotiation and reconcilia-
tion of security policies. Ardagna et al. also address policy
enforcement issues with respect to the security of Web ser-
vices [2]. In their work, an approach for the access control
of Web services based on policies is presented, which also
supports basic policy enforcement strategies.

Of further interest is the approach followed by Oracle
in their Web Services Manager [8]. The Oracle Web Ser-
vice Manager integrates centralised monitoring and policy
enforcement with distributed information gathering of ba-
sic QoS parameters (e.g., response time), exceptions, and
security aspects. Therefore, an architecture containing non-
intrusive (i.e., gateways) and intrusive elements (i.e., agents
running at the same application server as the Web service)
was developed, which allows both basic reporting of moni-
toring results as well as the automatic selection and activa-
tion of policies based on given measurements.

6. Conclusion and outlook

In this paper, we presented the WS-Re2Policy language,
which can be used to specify monitoring requirements and
countermeasures to SLA violations simultaneously. Its area
of application is the distributed monitoring and enforce-
ment of SLAs in Web service-based cross-organisational
collaborations. Furthermore, we presented AMAS.KOM
as an overarching architecture, which facilitates the WS-
Re2Policy language in the pre-mentioned Web services sce-
narios.

Currently, the WS-Re2Policy language exists in its sec-
ond version and is implemented in a prototypical imple-
mentation of our AMAS.KOM architecture. Nevertheless,
the language is under continuous development. One of the
planned major enhancements of WS-Re2Policy is the na-
tive support of various additional QoS-related parameters
as a common definition of a QoS policy is currently miss-
ing. Furthermore, the splitting, recombination, and sync-
ing of policies is under strong research in order to allow a
conflict-free distribution of policies in an infrastructure.

Finally, we are currently investigating the performance



of AMAS.KOM as well as the overhead introduced by our
agent-based approach and potential improvements.

Acknowledgements

This work is supported in part by E-Finance Lab
Frankfurt am Main e.V. (http://www.efinancelab.com).

Finally, we thank the reviewers of this paper for their
excellent feedback.

References

[1] D. Agrawal, S. Calo, K.-W. Lee, and J. Lobo. Issues in
designing a policy language for distributed management of
it infrastructures. In Proceedings ot the 10th IFIP/IEEE In-
ternational Symposium on Integrated Network Management,
pages 30–39, 2007.

[2] C. A. Ardagna, E. Damiani, S. D. C. di Vimercati, and
P. Samarati. A web service architecture for enforcing ac-
cess control policies. In Proceedings of the First Interna-
tional Workshop on Views on Designing Complex Architec-
tures, pages 47–62, 2006.

[3] L. Baresi and S. Guinea. Towards dynamic monitoring of
ws-bpel processes. In Proceedings of the 3rd International
Conference on Service oriented computing, pages 269–282,
2005.

[4] L. Baresi, S. Guinea, and P. Plebani. Ws-policy for service
monitoring. In Proceedings of the 6th Workshop Technolo-
gies for E-Services, pages 72–83, 2006.

[5] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Stein-
metz. Heuristics for qos-aware web service composition. In
Proceedings of the 4th IEEE International Conference on
Web Services, pages 72–79, 2006.

[6] M. Bichler and K.-J. Lin. Service-oriented computing. IEEE
Computer, 39(3):99–101, March 2006.

[7] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
Qos-aware replanning of composite web services. In Pro-
ceedings of the IEEE International Conference on Web Ser-
vices, pages 121–129, July 2005.

[8] K. Chu, O. Cordero, M. Korf, C. Pickersgill, and R. Whit-
more. Oracle SOA Suite Developer’s Guide. Oracle, 2006.

[9] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and
monitoring the execution of web service requests. Interna-
tional Journal on Digital Libraries, 6(3):235–246, 2006.

[10] H. Ludwig, A. Dan, and R. Kearney. Cremona: An ar-
chitecture and library for creation and monitoring of ws-
agreements. In Proceedings of the 2nd International Con-
ference on Service oriented computing, pages 65–74, 2004.

[11] N. Repp. Monitoring of services in distributed workflows. In
Proceedings of the Third International Conference on Soft-
ware and Data Technologies. INSTICC Press, July 2008.

[12] N. Repp, J. Eckert, S. Schulte, M. Niemann, R. Berbner, and
R. Steinmetz:. Towards automated monitoring and align-
ment of service-based workflows. In Proceedings of the
IEEE International Conference on Digital Ecosystems and
Technologies 2008, pages 235–240, 2008.

[13] W. Robinson. A requirements monitoring framework for
enterprise systems. Journal of Requirements Engineering,
11(1):17–41, 2005.

[14] S. Sattanathan, N. C. Narendra, Z. Maamar, and G. K.
Mostéfaoui. Context-driven policy enforcement and recon-
ciliation for web services. In Proceedings of the Eighth In-
ternational Conference on Enterprise Information Systems:
Databases and Information Systems Integration, pages 93–
99, 2006.

[15] S. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient de-
centralized monitoring of safety in distributed systems. In
Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 418–427, 2004.

[16] G. Spanoudakis and K. Mahbub. Non intrusive monitoring
of service based systems. International Journal of Cooper-
ative Information Systems, 15(3):325–358, 2006.

[17] Y. Wei, S. Zhang, and J. Cao. Coordination among multi-
agents using process calculus and eca rule. In Proceedings of
the First International Conference on Engineering and De-
ployment of Cooperative Information Systems, pages 456–
465, London, UK, 2002. Springer-Verlag.

[18] J. Widom and S. Ceri. Active Database Systems. Morgan-
Kaufmann, 1995.




