Darmstadt University of Technology

Extended Traffic Control Interface for RSVP

Jens Schmitt, Javier Antich
July 1998

Technical Report TR-KOM-1998-04

Industrial Process and System Communications (KOM)

Department of Electrical Engineering & Information Technology
Merckstral3e 25 « D-64283 Darmstadt « Germany

Phone: +49 6151 166150

Fax: +49 6151 166152

Email: info@KOM.tu-darmstadt.de

URL: http://www.kom.e-technik.tu-darmstadt.de/

Extended Traffic Control Interface for RSVP

Jens Schmitt
1
Industrial Process and System Communications
Dept. of Electrical Engineering & Information Technology
Darmstadt University of Technology
Merckstr. 25 « D-64283 Darmstadt « Germany

{Jens.Schmitt}@kom.tu-darmstadt.de

Abstract
Internet and ATM both aim at providing integrated services. Therefore they independently (more or less) devel-
oped QoS architectures. A realistic assumption certainly is that both will take their place and that they will coex-
ist for quite some time. A likely place for ATM is in the backbone, while IP will probably keep its dominance on
the desktop. It is thus valid to assume an overlay model for the interaction between the two QoS architectures.
Crucial components of the QoS architecture of the Internet are its signalling protocol RSVP and the IP multicast
architecture. There are several hard problems when trying to overlay this combination over an ATM subnetwork.
In particular, the problem of matching RSVP’s heterogeneous receiver concept onto the homogeneous point-to
multipoint VCs of ATM is such a problem. One solution to this problem is to provide VC management strategies
to bridge that gap. However in order to be able to implement such VC management strategies RSVP’s Traffic
Control Interface and its message processing rules need to be extended to provide the necessary flexibility. The:
extensions will be presented in this report.

Keywords: QoS, Integrated Services, RSVP, IP Multicast, ATM.

1 Introduction

When considering the implementation of some of the VC management strategies introduced in in the
companion report [Sch98] in support of heterogeneity over an ATM subnetwork, RSVP’s Traffic Con-
trol Interface (TCI) and the relevant part of the protocol message processing rules as specified ir
([BZB*97],[BZ97]) must be made more flexible than they are (this does not violate these standards,
because these parts are only informational). Currently, RSVP merges all downstream requests and the
hands the merged reservations to the traffic control module via the TCI. This leads to two problems if
operating over ATM, or in general, a NBMA subnetwork with capabilities for multipoint communica-
tion:

» potential for not recognizing new receivers,
» solely support for the homogeneous QoS model.

These problems are already realized in [BBB], where it is conceded that the proposed TClI is only
suitable if data replication takes place in the IP layer or the network (i.e. a broadcast network), but not in
the link-layer as would be the case for ATM. Here, different downstream requests should not necessar
ily be merged before being passed to the traffic control procedures.

A new general interface is needed that supports both, broadcast networks and NBMA networks,
where the replication can also take place in intermediate nodes (e.g. ATM switches) of the NBMA sub-
net. Only such modifications will allow for heterogeneity support over an ATM network, i.e. different
VCs for different QoS receivers. However, even without taking into account heterogeneity support,
there is a need for a modification of the TCI and the message processing rules due to the different natur
of NBMA networks.

If a reservation request is received from a new next hop in the ATM network that is lower than an
existing reservation for the session, then according to the currently proposed processing rules no actior

This work is supported in part by a grant of Volkswagen-Stiftung, D-30519 Hannover, Germany.

will be taken, since it is assumed that all the next hops within the same outgoing interface will receive
the same data packets. That is of course not the case for an NBMA network like ATM, and some actions
must be taken to add this new receiver to the existing point-to-multipoint VC. The same situation arises
when a receiver tears down its reservation. If the LUB (least upper bound) of the other reservations doe
not change, nothing will be done with the current processing rules. However, the receiver must be
deleted from the point-to-multipoint VC.

The problem with the current message processing rules and TCI is that, since they are based upo
broadcast mediums, they do not allow any heterogeneity within a single flow and an outgoing interface.
This is due to the fact that broadcast networks do not allow for heterogeneity of the transmission any-
way. That is the reason why the LUB of the reservations requested for that interface is computed, thus
making downstream merging.

A VC management strategy that supports heterogeneity does not need this downstream merging, c
at least, no downstream merging of all the next hops in the interface. A more flexible scheme is neces
sary, that permits different “Merging Groups” within a certain interface. This general model includes
the current model, if all next hops are considered as one merging groderging Group(MG) is
defined as the group of next hops with the same outgoing interface, whose reservation requests for
certain flow should be merged downstream, in order to establish a reservation.

For a single flow and outgoing interface, there may be several MGs. The two extreme cases are:

a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples
of this situation are:

» the homogeneous model when implementing RSVP over ATM,
« the underlying network technology is broadcast (e.g. Ethernet).

b) As many MGs as next hops: this would be the case if each of the next hops requires a dedicatec
reservation. Example applications of this are:

*NBMA networks which do not allow point-to-multipoint connections, and therefore, a point-to-point
connection is needed for each of the receivers,
* the full heterogeneity model when implementing RSVP over ATM.

The most interesting options of this model from our point of view are the intermediate points between
these two cases, where we allow a certain degree of downstream merging, so that it is possible to tak
advantage of the VC management strategies for heterogeneity support (Figure 1).

Ingress

Figure 1:Merging Groups.

The TCI and the message processing rules should be independent of the number of MGs for a specifi
flow and the decision of including one next hop into a group or another should be taken by the traffic
control module and not as part of the RSVP message processing. Details on how RSVP’s TCI and its
message processing rules need to be modified to allow for VC management strategies in support of he
erogeneity will be discussed in section 2.

2 Extended TCI for Heterogeneous RSVP Flows over ATM Networks

This section will give the details on how RSVP’s message processing rules and its Traffic Control Inter-
face (TCI) need to be modified in order to allow for flexible VC management strategies for heterogene-
ity support.

2.1 RSVP’s Traffic Control Interface

When analyzing how the combined architecture of RSVP/IntServ with IP Multicast and ATM can be
integrated from an implementation’s point of view, it is necessary to identify the parts of the RSVP
specification that interact with the traffic control procedures offered by ATM. These are the RSVP mes-
sage processing rules and RSVP’s Traffic Control Interface (TCI) calls. RFC2209 [BZ97] describes the
rules for the operation of Version 1 of RSVP (RFC2205 [B2B)). It outlines a set of algorithms
which are induced by the rules of RFC 2205 and which should be used when implementing RSVP. RFC
2209 assumes the generic TCI calls defined in RFC2205 and some implementation-specific data struc
tures. The description style in the following sections is aligned to that of the relevant RFCs to ease read
ing and comparison.

2.1.1 Traffic Control Interface Calls

RFC2205 presents a generic interface between RSVP and traffic control modules. Using these func
tions, RSVP can trigger the creation, change and deletion of reservations, as well as add or delete filter
to existing reservations. The set of defined functions is:

TC_AddFlowspec(Interface, TC_Flowspec, TC Tspec, TC_Adspec, Police_Flags)

-> RHandle [, Fwd_Flowspec]

» This function is used to establish a new reservation. Its main parameters ameetfeece where the
reservation must be set up, and fhé_Flowspecparameter, which specifies the desired effective
QoS for admission control purposes; its value is computed as the maximum over the flowspecs of
different next hops. The return valueHandle, is an opaque number used by the caller for subse-
guent references to this reservation.

TC_ModFlowspec(Interface, RHandle, TC_Flowspec, TC_Tspec, TC_Adspec,

Police flags) [-> Fwd_Flowspec]

» This function is used to modify an existing reservation. T Flowspecparameter is processed
by the admission control procedure, and if the new reservation is rejected, the current flowspec is left
in force. The corresponding filters, if there are any, are not affected by this function.

TC_DelFlowspec(Interface, RHandle)
» This call will delete an existing reservation, including the flowspec and all associated filter specs.
TC_AddFilter(Interface, RHandle, Session , FilterSpec) -> FHandle

» Using this function, a new filter (source address and port) can be associated with the reservation cor
responding td(RHandle. The packet classifier module will use the existing filters of each reservation,
to classify the packets into different flows, which will receive the appropriate QoS in the packet
scheduler module. The return val&jandle is a handle for subsequent callsSTt©©_DelFilter().

TC_DelFilter(Interface, FHandle)

* This function would be called when a filter shall be removed from a reservation. The filter handle
FHandle, returned from th&C_AddFilter() call, will be used for this purpose.

TC_Advertise (Interface, Adspec, Non_RSVP_Hop flag) -> New_Adspec

» This call is used for the OPWA (One Pass With Advertisement) mechanism to compute the outgoing
advertisemeniNew_Adspecfor a specified interface.

Upcall: TC_Preempt() -> RHandle, Reason_code

* In order to grant a new reservation request, the admission and/or policy control modules may pre-
empt one or more existing reservations. This will triggdr@_Preempt() upcall to RSVP for each
preempted reservation, passing Ridandle of the reservation and the subcode indicating the rea-
son.

2.1.2 Data Structures

The data structures defined in RFC2209 which are significant to our investigation are:
RSB - Reservation State Block

* EachRSBholds a reservation request that arrived in a particular RESV message, corresponding to
the triple:

(session, next hop, Filter_spec_list)

» Depending on the style of reservatiiiter _spec_listwill contain:
* WF: Nothing.
* FF: Only one filter.
* SE: A list of filters.

* The main contents of tHeSBare:
* session specification,
*next hop IP address,
«filter_spec_list,
« outgoing (logical) interface Ol, where the reservation is/has to be established,
o style,
« flowspec.
TCSB - Traffic Control State Block

» EachTCSBholds the reservation specification that has been handed to traffic control for a specific
outgoing interface. In generalCSBinformation is derived fronRSB for the same outgoing inter-
face. EaciT CSBdefines a single reservation for a particular triple:

(session, Ol, Filter_spec_list)

* The main fields of aCSBare:

* Session,

* Ol - Outgoing Interface.,

«filter_spec_list,

« TC_Flowspec: LUB over the flowspecs from matchiR$Bs,
* RHandle, F_Handle_list.

Both, RSBand TCSBconsist of additional fields described in RFC2209, but these are not important to
the discussion of the next sections and were omitted for clarity. It should be noted that these data struc
tures are implementation-specific and may contain different data members in particular implementa-
tions'. Other data structures likeSB (Path State Block) an8SB (Blockade State Block) are also
described in RFC2209. For more details on these data structures and the ones explained above see s
tion 1 of RFC2209.

*. LUB: Least Upper Bound of a set of flowspecs is the minimum flowspec that is larger than all the flowspecs of the

set.

t. However most implementations are derived from ISI's code, which in turn accords to the above specifications, so
that most implementations will “look” similar to this.

2.1.3 UPDATE TRAFFIC CONTROL Processing Rules

When a new reservation request arrives at a RSVP capable node, or a RESV-TEAR message is receive
or a change occurs to any of the reservations established by this node, the last step before invoking th

traffic control module through the TCI functions, is always the UPDATE TRAFFIC CONTROL

sequence. The rules for this part of the RSVP processing are explained in RFC2209 section 2. In the fol

lowing, a summary of this processing is presented, in order to simplify the understanding of the pro-

posed modifications introduced later on. Some steps of this processing will be skipped in this summary

For more details see RFC2209.

The UPDATE TRAFFIC CONTROL sequence is invoked by many of the message arrival sequences
to set or adjust the local traffic control state in accordance with the current reservation and path state. £

parameter of this sequence is thetive” RSB.

If the result of the sequence is a modification of traffic control state, it notifies any matching local
applications with a RESV_EVENT upcall. If the state change is such that it should trigger immediate
RESV refresh messages, it also turns onRlesv_Refresh_Needetlag. These are the steps taken in
the UPDATE TRAFFIC CONTROL sequence:

a) Compute the traffic control parameters using the following steps:

2. Consider the set ®®SB matching (session, Ol) from tHactive” RSB. TheFilter_spec_listmust
also be matched if the style of tteetive” RSB is FF. With thes&®SB, compute:
« the effective flowsped C_Flowspec,as the LUB of the flowspecs in tRSEB,
« the effective traffic controfilter_spec listTC_Filter_Spec as theunion of theFilter_specs_listsfrom
theseRSK.

4. Locate the set oPSB (senders) whosS8ENDER_TEMPLATES.e. address of senders) match
Filter_spec_listin the“active” RSB and whose Outinterface_list includes Ol.

6. ComputePath_Teas the sum of thEENDER_TSPEGDjects (traffic parameters) in this setR$Es.

b) Search for arTCSBmatching (session, Ol) and, if style is FF, also matdriéter spec _list If
none is found, then create a Nn€E@SB

c) If the TCSBis NEW:

1. Store the values just computdd=_Flowspeg TC_Filter_spec Path_Teand other flags in this new
TCSB

2. Turn theResv_Refresh_Needetlag on and issue the traffic control call:

TC_AddFlowspec (Ol, TC_Flowspec, Path_Te, police_flags) ->
RHandle, Fwd_Flowspec

3. If the call fails, build and send a RESV-ERR message and del&t€ 8

4. Otherwise, record thé&kHandle and Fwd_Flowspec in the TCSB For eachfilter_specin
TC_Filter_speccall:

TC_AddFilter(Ol, RHandle, Session, F) -> FHandle
and record the returnégéHandle in theTCSB

d) If the TCSBis NOT NEW, but noRSB where found in step a)2. , it means that the reservation

must be deleted:
1. Turn on thdResv_Refresh_Needetlag.
2. Call traffic control to delete the reservation:
TC_DelFlowspec (Ol, RHandle)
3. Delete th&CSBand return.

e) TheTCSBis NOT NEW, but theTC_Flowspeg Path_Teand/or police flags just computed differ
from corresponding values in tA€SB then:

1. If theTC_Flowspecand/orPath_Tevalues differ, turn on thResv_Refresh_Needeflag.

2. Call the traffic control to modify the reservation:

TC_ModFlowspec (Ol, RHandle, TC_Flowspec, Path_Te,
police_flags) -> Fwd_Flowspec
3. If the call fails, build and send a RESV-ERR message
4. Otherwise, update tHeCSBwith the new values and savevd_Flowspecin theTCSB

f) If the TCSBis NOT NEW, but theTC_Filter_Specjust computed differs from the filter list in the
TCSB then:

1. Make an appropriate set of C_Delfilter() and TC_AddFilter() calls to transform the
Filter_spec_listin theTCSBinto the newl'C_Filter_spec

2. Turn on thdResv_Refresh_Needeflag.

Q) ...

h) If the Resv_Refresh_Needeflag is on, the RESV REFRESH sequence will be invoked later on,
and the appropriate RESV messages will be sent upstream.

2.2 Extensions to RSVP’s TCIl for NBMA Networks

2.2.1 The Traffic Control Interface and NBMA Networks

As explained in RFC 2205 sec.3.11.2, the details of establishing a reservation strongly depend upon th
particular link layer technology in use on an interface. For multicast transmissions, there are three pos:
sible locations where data replication can take place:

a) IP layer: If packets are replicated at this level they will be sent onto different outgoing interfaces.
The reservations coming from these interfaces must be merged to be forwarded upstream.

b) Network: Here replication takes place in the physical medium, e.g., an Ethernet LAN. In this
case, the reservation requests within one outgoing interface (from different next hops) must be
merged in order to establish the reservation for that outgoing interface and to forward the
reservation upstream. Since the LUB reservation will be established on the outgoing interface
some of the next hops will receive a better QoS than they requested.

c) Link-layer driver : This is the case of NBMA networks like ATM, where the data replication may
occur in the link layer driver or interface card. Here, RSVP may need to apply different traffic
control procedures for each VC independently, without merging requests from different next
hops.

RFC 2205 also points out that it would be desirable to organize an RSVP implementation into two parts:
a core that performs link-layer-independent processing, and a link-layer-dependent adaptation layer.

The RSVP message processing rules as specified in RFC 2209, or more specifically their UPDATE
TRAFFIC CONTROL part, are based on the TCI as specified in RFC 2205 sec.3.11.2, which explicitly
assumes that the replication can only take place in the IP layer or the network. This means that not only
the TCI, but also the message processing rules have to be modified in order to allow for a flexible imple-
mentation of RSVP over ATM.

A new general interface is needed that supports both, broadcast networks and NBMA networks,
where the replication can also take place in intermediate nodes (e.g. ATM switches) of the NBMA sub-
net. Only these modifications will allow for heterogeneity support over the ATM network, i.e. different
VCs for different QoS receivers. However, even without taking into account heterogeneity support,
there is a need for a modification of the TCI and the message processing rules due to the different natur
of NBMA networks. These basic changes will be explained first in the next sections before advancing to
the broader modifications in order to allow for VC management strategies to support heterogeneity ovel
the ATM network.

2.2.2 Changes in TCI and Processing Rules to Support NBMA Networks

In the current UPDATE TRAFFIC CONTROL sequence, after locating the different reservation
requests(RSBs) for a specific session and outgoing interface (and a source template if the style is FF
the LUB of the different flowspecs of these RSBs is computed. Then, a TCSB corresponding to that ses
sion and Ol is searched for. In the next steps, it is differentiated between three alternatives:

1. That no TCSB matching session and Ol (and source for FF) is found. In this case, a new TCSB is
created and th€C_AddFlowspec()function is called.

2. A matching TCSB is found, but there where no RSBs matching. Therefore, the previously com-
puted LUB of the flowspecs is null and the list of filters for that reservation is also null. Under these
circumstances, theC_DelFlowspec()function is called.

3. A matching TCSB is found, and the new flowspec is different from the flowspec contained in the
TCSB. This means that the reservation must be changed, an@ tModFlowspec()is called.

Now, with the ATM interface and taking into account multicast, a new case appears:

* Areservation request is received from a new next hop in the ATM network (see Figure 2). The LUB
of the reservation requests coming from the ATM network is computed, and, let us suppose, it does
not change. That means that the new request is lower or equal than the already existing reservatior
With the currently proposed processing rules no actions will be taken, since they expect that all the
next hops within the same outgoing interface will receive the same packets. That is of course not the
case for an NBMA network like ATM, and some actions must be taken to add this new receiver to the
existing point-to-multipoint VC. The same situation arises when a receiver tears down its reservation
down. If the LUB of the other reservations does not change, nothing will be done with the current
processing rules. However, the receiver must be deleted from the point-to-multipoint VC. Therefore,
a new function

TC_Update_Destinations()
must be implemented, in order to add/delete nodes to/from the point-to-multipoint VC.

This little modification is sufficient for the support of a homogeneous QoS over the ATM network, i.e. if
there is only one point-to-multipoint VC for a RSVP flow. However, for the support of multiple VCs per
RSVP flow deeper modifications are necessary..

Existing reservation 10 Mbit/

ATM
Ingress. __ This new next hop
requests 8 Mbit/s

Figure 2: The problem of a new next hop.

2.3 Extensions to RSVP’s TCI for Heterogeneity Support over NBMA Networks

The problem with the current message processing rules and TCI is that, since they are based upo
broadcast mediums, they do not allow any heterogeneity within a single flow and an outgoing interface.
This is due to the fact that broadcast networks do not allow for heterogeneity. That is the reason why the
LUB of the reservations requested for that interface is computed, thus making downstream merging.

A VC management strategy that permits heterogeneity support does not need resp. cannot work witl
this downstream merging, or at least, no downstream merging of all the next hops in the interface. A
more flexible scheme is necessary, that permits different “merging groups” within a certain interface.
This general model includes the current model, if we use only one merging group. First of all, it is nec-
essary to define what we mean exactly by the term “merging group”:

We define aMerging group (MG) as a group of next hops within an outgoing interface,
whose reservation requests for a certain flow should be merged downstream, in order to
establish a reservation.

For a single flow and outgoing interface, there may be several MGs. The two extreme cases are:

a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples
of this situation are:

* The homogeneous model when implementing RSVP over ATM.
» The underlying network technology is broadcast (e.g. Ethernet).

b) As many MGs as next hops: this would be the case when each of the next hops requires &
dedicated reservation. For example:

* NBMA networks which do not allow point-to-multipoint connections, therefore, a point-to-point connec-
tion is needed for each of the receivers.

The most interesting options of this model from our point of view could be the intermediate points
between these two cases, where we allow a certain degree of downstream merging, and at the same tir
it is possible to take the advantages of heterogeneity support. The TCI and the message processing rul

9

should be independent of the number of MGs for a specific flow and the decision of including one next
hop into a group or another should be taken outside the UPDATE TRAFFIC CONTROL sequence.

Merging Group 1

Ingress

~ -

Figure 3:Merging Groups.

When a reservation change occurs and the UPDATE TRAFFIC CONTROL sequence is invoked, a hew
function should be calledJpdate MergingGroups() in order to determine in which MG this change
took place. A change could be a new reservation request, a deleted reservation or a modified reserv:
tion. TheUpdate_MergingGroups() function will be part of a particular implementation for the traffic
control module, and should organize the different existing or new reservations into merging groups.
There are a lot of possible ways of doing that, and it is a choice of the implementors, based on which
network technology is available, and which degree of heterogeneity support, if possible, they desire.

Once the different reservations requested are distributed into MGs, the next steps are almost the san
as the current processing rules. For each MG, its flow specifications should be merged and the union c
the filters should be computed, in order to determine which of the functions for flow managédeént (
Flow(), ModFlow(), DelFlow()) and for filter managemenfAgdFilter() , DelFilter()) should be called.
Moreover, as already explained, a new function is needed, in order to update the destinations of the res
ervation within a MG, even if the effective flowspec of the group has not changed
(Update_Destinations().

Thus, the behavior of the UPDATE TRAFFIC CONTROL sequence in concert with the concept of
MGs is independent of the particular link layer technology, which was the requirement. However, not
only the new functions of the TClUpdate MergingGroups() andUpdate Destinations(), but also
the already existing, are strongly dependent on the network technology. Therefore, different implemen:-
tations are necessary for each kind of network (i.e. Broadcast, ATM, FrameRelay, ...). Whether this dis-
tinction is made before or after the function call is an implementation detail.

Besides the changes in the processing rules and the TCI, the data structures utilized to maintain sta
of the reservations, also need some modifications. The Reservation State B&Blka(d the Traffic
Control State BlockTCSB should include some information to distinguish among the different merg-
ing groups. Th&kSBcould include an extra field, which identifies the MG within the interface to which
the reservation belongs. TRESBcould be modified in two different ways. It could include a MG indi-
cator, like anRSB thus associating onBCSBwith the reservation for a MG. Alternatively, we could
keep the association betweeif@SBand the pair (flow, outgoing interface), by modifying it internally
to include the information of the different MGs in that interface, their filter lists and flow specifications.
Even though both choices are principally possible, the first one is easier to implement.

10

Let us now investigate the modifications of the data structures, the message processing rules and tf
TCI in more detalil.

2.3.1 Modified Data Structures

First of all, some extensions to the GENERIC DATA STRUCTURES as defined in Section 1 of [BZ97]
have to be introduced:

RSB - Reservation State Blockiwo new fields MG _id andold_MG id, have to be included, as
explained in 2.3, identifying the merging group to which the RSB belongs, and the ME3idbas
just left (see next sections for more details). Furthermore, one of the possible values of this MG iden-
tifier for reorganization is defined as NOT_ASSIGNED, since newly creR&8s do not belong to
any MG until theTC_Update_MergingGroups() function has been called.

» TCSB - Traffic Control State BlockThe same extension is required for th€SB in order to deter-
mine to which MG this traffic control state belongs, but in this caseotieMG _id field is not nec-
essary.

2.3.2 Modified Traffic Control Interface

In this section, the necessary modifications and extensions to the TCI, in order to allow for a VC man-
agement strategy to support heterogeneity over a NBMA network, are introduced
TC_Update_MergingGroups(Session, *activeRSB)

The objective of this function is to carry out a MG management strategy, by e.g. including the new or

modified RSBin the appropriate MG or creating a new MG. Existing MGs could even be changed

depending on the VC management strategy in useRE8is moved from a MG to another, the fields

MG_id andold_MG_id must be filled correctly, so that the reservations can be correctly modified.

TC_AddFlowspec(Interface, MG _id, TC_Flowspec, TC_Tspec, TC_Adspec,

Police_Flags, activeRSB) -> RHandle [, Fwd_Flowspec]

» This function interface is roughly the same as the one proposed in RFC2205, but the merging groug
identifier MG_id) has been added, to provide the traffic control module with the information to
which MG this new reservation belongs. Moreover, glsiveRSBhas been included in order to give
access to the next hop information. For networks like e.g. Ethernet, the reservation does not require
connection to a specific endpoint, therefore the information of the next hop has no relevance. How-
ever, a more general interface should pass this information, in case the network is a NBMA, which
necessitates the knowledge about the destination for a specific connection to be set up and thus to t
able to establish the requested reservation.

TC_ModFlowspec(Interface, MG_id, RHandle, TC_Flowspec, TC_Tspec, TC_Adspec,

Police_flags ,activeRSB) [-> Fwd_Flowspec]

» The parameterB1G_id and theactiveRSBhave also been added to this function, for the same rea-
sons as in th@C_AddFlowspec()function. The functionality is the same as explained in RFC2205.
However, for NBMA networks, like ATM, this function also performs the set up and tear down of
connections, depending on whether a new next hop has requested QoS or an old one has deleted
reservation. Or maybe even, because of changes in MG membership, after the
TC_Update_MergingGroups() function has been called.

TC_DelFlowspec(Interface, MG_id, RHandle)

* In this function the paramet®&G_id has also been added, for the reasons given above. This func-
tion is called when there are no more next hops in a MG, and therefore the reservation for that groug
can be deleted.

TC_AddFilter(Interface, MG_id , RHandle, Session , FilterSpec) -> FHandle

11

* The parameteMG_id has again been included. Filters might be specific not to a flow, butto a MG.
Due to the fact that each MG has a different set of receivers, for each MG, if SE style is used, the fil-
ters’ union might be different. Thus, it is possible not to send a packet on a VC corresponding to a
MG, if the members of that group have not included that source in their filters’ list.

TC_DelFilter(Interface, MG_id, FHandle)

« TheMG_id parameter has been included here for the same reasons asli@ tAeldFilter() func-
tion.

TC_Update_Destinations(Interface, MG_id, Nhops_list)

» With this function the appropriate actions will be carried out (addition or deletion of nodes to/from a
multipoint connection) to match the destinations of Mteops_listand the nodes of the connection.
This Nhops_listshould be computed in the UPDATE TRAFFIC CONTROL module, the same way
that the filters list is computed, i.e. per MG.

2.3.3 Modified Message Processing Rules

With the new TCI defined in the previous section, the RSVP Message Processing Rules (RFC 220¢
[BZ97]) also require some changes. The purpose of these modifications is to provide a set of messag
processing rules, as general as possible, allowing for the support of NBMA networks and heterogeneity
Some difficulties appear if we do not know anything about whaflitGeUpdate _MergingGroups()is
doing, that is to say, to which extent the merging groups can be modified when this function is called.
One could think of algorithms which dynamically reorganize the MGs depending on the requested
resources, the current cost of the connections and the number of MGs.

In order to advance a first step with heterogeneity support, the modifications introduced in the mes-
sage processing rules, assume thatTtGe Update MergingGroups() function will only modify the
active RSB, either by assigning a new MG, or adding/deleting it to/from an existing group, or even
changing from one MG to another. This limitation simplifies the changes in the message processing
rules considerably.

The following shows how the UPDATE TRAFFIC CONTROL processing rules (section 2 of
[BZ97]) look like:

1. For the active RSB call:

TC_Update_MergingGroups(Session, active RSB)
2. SetcurrentMG = MG _id of the active RSB, and execute steps 8 to 15.
3. If step 2 failed

3.1. Restore the MG _id in the active RSB with the old MG _id, and return to the event
sequence that invoked this one.

4. If step 2 did not falil,

4.1. If old_MG_id and MG_id of the active RSB are different, and old_MG _id is not
NOT_ASSIGNED , seturrentMG = old_MG_id and execute again steps 8 to 15.

5. If the active RSB contains a RESV_CONFIRM object, then:

5.1. If the Is_Biggest flag is on, move the RESV_CONFIRM object into the TCSB and turn on
the Resv_Refresh_Needed flag. (This will later on cause the RESV REFRESH sequence to
be invoked, which will either forward or return the RESV_CONFIRM object, deleting it
from the TCSB in either case.)

5.2. Otherwise, create and send a RACK message to the address in the RESV_CONFIRM

12

object. Include the RESV_CONFIRM object in the RACK message. The RACK message
should also include an ERROR_SPEC object whose Error_Node parameter is the IP addres:
of Ol from the TCSB and that specifies "No Error".

6. If the Resv_Refresh_Needed flag is on and the RSB is not from the API, make a RESV_EVENT
upcall to any matching application:

Call: <Upcall_Proc>(session-id, RESV_EVENT, style, Flowspec,
Filter_spec_list [,POLICY_DATA])

where Flowspec and Filter_spec_list come from the TCSB and the style comes from the active RSB.
7. Return to the event sequence that invoked this one.
8. Compute the traffic control parameters using the following steps.
8.1. Initially the local flag Is_Biggest is off.

8.2. Consider the set of RSBs matching SESSION and Ol from the active RSB. If the style of
the active RSB is distinct, then the Filter_spec_list must also be matched.

- If the active RSB has a FLOWSPEC larger than all the others, turn on the
Is_Biggest flag.

8.3. From this set of RSB’s consider only those Wita_id equals currentMG.

- Compute the effective traffic control flowspec, TC_Flowspec, as the LUB of the
FLOWSPEC values in these RSBs.

- Compute the effective traffic control filter spec (lisSEC_Filter_Spec* as the
union of the Filter_spec_lists from these RSBs.

- Compute théNhops_listas the union of the next hops of these RSBs.

8.4. Scan all RSBs matching session and Filter_spec_list for all Ol. Set TC_B_Police_flag on
if TC_Flowspec is smaller than, or incomparable to, any FLOWSPEC in those RSBs.

8.5. Locate the set of PSBs whose SENDER_TEMPLATEs match Filter_spec_list in the
active RSB and whose Outlinterface_list includes OI.

8.6. Set TC_E Police flag on if any of these PSBs have their E_Police flag on. Set
TC_M_Police_flag on if it is a shared style and there is more than one PSB in the set.

8.7. Compute Path_Te as the sum of the SENDER_TSPEC objects in this set of PSBs.

9. Search for a TCSB matching SESSION,add currentMG, for a distinct style (FF), it must also
match Filter_spec_list. If none is found, create a new TCSB.

10. If TCSB is new:

10.1. Store TC_Flowspec, TC_Filter_Spec*, Path clerentMG , and the police flags into
the TCSB.

10.2. Turn the Resv_Refresh_Needed flag on.
10.3. Make the traffic control call:

TC_AddFlowspec(Ol, currentMG, TC_Flowspec, Path_Te,
police_flags, active RSB) -> Rhandle, Fwd_Flowspec
10.4. If this call fails, build and send a RERR message specifying "Admission control failed"
and with the InPlace flag off. Delete the TCSB, delete any RESV_CONFIRM object from
the active RSB, and return.

13

10.5. Otherwise (call succeeded), record Rhandle and Fwd_Flowspec in the TCSB. For each
filter_spec F in TC_Filter_Spec*, call:
TCAddFilter(Ol, currentMG, Rhandle, Session, F)-> Fhandle
and record the returned Fhandle in the TCSB.

11. Otherwise, if TCSB is not new but no effective traffic control flowspec TC_Flowspec was
computed in step 8, then:

11.1. Turn on the Resv_Refresh_Needed flag.
11.2. Call traffic control to delete the reservation:

TC_DelFlowspec(Ol, currentMG, Rhandle)
11.3. Delete the TCSB and return.

12. Otherwise, if TCSB is not new but the TC_Flowspec, Path_Te, and/or police flags just computed
differ from corresponding values in the TCSB, then:

12.1. If the TC_Flowspec and/or Path_Te values differ, turn the Resv_Refresh_Needed flag
on.

12.2. Call traffic control to modify the reservation:

TC_ModFlowspec(Ol, currentMG, Rhandle, TC_Flowspec,
Path_Te, police_flags , active RSB) -> Fwd_Flowspec
12.3. If this call fails, build and send a RERR message specifying "Admission Control failed"

and with the InPlace bit on. Delete any RESV_CONFIRM object from the active RSB and
return.

12.4. Otherwise (the call succeeded), update the TCSB with the new values and save
Fwd_Flowspec in the TCSB.

13. Otherwise,
13.1. Call:

TC_Update_Destinations(Ol, currentMG, Nhops_list)

13.2. If this call fails, build and send a RERR message specifying "Admission control failed"

and with the InPlace bit on. Delete any RESV_CONFIRM object from the active RSB and
return.

14. If the TCSB is not new but the TC_Filter_Spec* just computed differs from the FILTER_SPEC*
in the TCSB, then:

14.1. Make an appropriate set of TC_ DelFilter and TC_AddFilter calls to transform the
Filter_spec_list in the TCSB into the new TC_Filter_Spec*.

14.2. Turn on the Resv_Refresh_Needed flag.
15. Return.

As explained, these modified processing rules assume that only one RSB, the active RSB, is change
during theTC_Update_MergingGroups() function call. This requirement limits the algorithms that
could be used within that function.

An algorithm which involves lots of changes in MGs’ membership, would, as a result, also produce
many modifications in the VC connections (new VC’s, changes in point-to-multipoint VC, ...). With
such a scheme, it is essential to take care of what should be done in case of a failure of any of thes
changes, and how previous state can be restored. In order to solve the complexity introduced by this

14

more comprehensive changes in the processing rules would be necessary. For example, the notion of
single active RSB is not useful any more. This concept refers to the RSB that had seen some kind o
modifications (it was new, deleted or changed). However, with a complicated
TC_Update_MergingGroups() an arbitrary number of RSBs can be modified, and all of them should
be processed, the same way the single active RSB is currently processed.

All the difficulties that arise, when designing a TCI and processing rules valid for any model of hetero-

geneity support, may suggest that the UPDATE TRAFFIC CONTROL sequence might be different

depending on the underlying network technology and the heterogeneity model utilized. Thus it would
be more appropriate to include it into the traffic control module, thus integrating the downstream merg-
ing and reservation establishment tasks. With this scheme, the interface between RSVP and the traffi
control module could be simply a single functiopdate_TC() with the current parameters. This func-

tion would carry out a different processing for each traffic control module depending on the kind of net-

work and/or heterogeneity support strategy.

3 Summary and Conclusion

This report is a very detailed description of how the RSVP Traffic Control Interface and the RSVP mes-
sage passing rules need to be modified or rather extended in order to provide the flexibility that would
be necessary to support VC management strategies in support of heterogeneity over the ATM subne
work as described in [Sch98]. In this companion report we differentiated these strategies according tc
the fact whether the edge device is situated on the premises of the ATM network provider or not. That
led us to different algorithms for each case. We showed how these algorithms could achieve a signifi-
cant gain in either reduced costs or saved bandwidth when compared to simple schemes as proposed
the literature. That was the starting point for investigating the necessary changes in the RSVP over ATM
implementation.

References

[BZ97] R. Braden and L. Zhang. RSVP Version 1 Message Processing Rules, September
1997. RFC 22009.

[BzB*97] R. Braden, L.Zhang, S.Berson, S.Herzog, and S.Jamin. Resource Reservation
Protocol (RSVP) - Version 1 Functional Specification, September 1997. RFC 2205.

[Sch98] J. Schmitt and Javier Antich. Issues in Overlaying RSVP and IP Multicast on ATM

Networks. Technical Report TR-KOM-1998-03, University of Technology
Darmstadt, August 1998.

	Extended Traffic Control Interface for RSVP
	Jens Schmitt1
	1 Industrial Process and System Communications Dept. of Electrical Engineering�&�Information Tech...
	{Jens.Schmitt}@kom.tu-darmstadt.de
	1 Introduction
	a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples ...
	b) As many MGs as next hops: this would be the case if each of the next hops requires a dedicated...

	Figure 1: Merging Groups.

	2 Extended TCI for Heterogeneous RSVP Flows over ATM Networks
	2.1 RSVP’s Traffic Control Interface
	2.1.1 Traffic Control Interface Calls
	2.1.2 Data Structures
	2.1.3 UPDATE TRAFFIC CONTROL Processing Rules
	a) Compute the traffic control parameters using the following steps:
	b) Search for a TCSB matching (session, OI) and, if style is FF, also matches Filter_spec_list. I...
	c) If the TCSB is NEW:
	d) If the TCSB is NOT NEW, but no RSBs where found in step a)2. , it means that the reservation m...
	e) The TCSB is NOT NEW, but the TC_Flowspec, Path_Te and/or police flags just computed differ fro...
	f) If the TCSB is NOT NEW, but the TC_Filter_Spec just computed differs from the filter list in t...
	g) ...
	h) If the Resv_Refresh_Needed flag is on, the RESV REFRESH sequence will be invoked later on, and...

	2.2 Extensions to RSVP’s TCI for NBMA Networks
	2.2.1 The Traffic Control Interface and NBMA Networks
	a) IP layer: If packets are replicated at this level they will be sent onto different outgoing in...
	b) Network: Here replication takes place in the physical medium, e.g., an Ethernet LAN. In this c...
	c) Link-layer driver: This is the case of NBMA networks like ATM, where the data replication may ...

	2.2.2 Changes in TCI and Processing Rules to Support NBMA Networks
	1. That no TCSB matching session and OI (and source for FF) is found. In this case, a new TCSB is...
	2. A matching TCSB is found, but there where no RSBs matching. Therefore, the previously computed...
	3. A matching TCSB is found, and the new flowspec is different from the flowspec contained in the...
	Figure 2: The problem of a new next hop.

	2.3 Extensions to RSVP’s TCI for Heterogeneity Support over NBMA Networks
	a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples ...
	b) As many MGs as next hops: this would be the case when each of the next hops requires a dedicat...

	Figure 3: Merging Groups.

	2.3.1 Modified Data Structures
	2.3.2 Modified Traffic Control Interface
	2.3.3 Modified Message Processing Rules
	1. For the active RSB call:
	2. Set currentMG = MG_id of the active RSB, and execute steps 8 to 15.
	3. If step 2 failed
	4. If step 2 did not fail,
	4.1. If old_MG_id and MG_id of the active RSB are different, and old_MG_id is not NOT_ASSIGNED , ...

	5. If the active RSB contains a RESV_CONFIRM object, then:
	5.1. If the Is_Biggest flag is on, move the RESV_CONFIRM object into the TCSB and turn on the Res...
	5.2. Otherwise, create and send a RACK message to the address in the RESV_CONFIRM object. Include...

	6. If the Resv_Refresh_Needed flag is on and the RSB is not from the API, make a RESV_EVENT upcal...
	7. Return to the event sequence that invoked this one.
	8. Compute the traffic control parameters using the following steps.
	8.1. Initially the local flag Is_Biggest is off.
	8.2. Consider the set of RSBs matching SESSION and OI from the active RSB. If the style of the ac...
	8.3. From this set of RSB’s consider only those with MG_id equals currentMG.
	8.4. Scan all RSBs matching session and Filter_spec_list for all OI. Set TC_B_Police_flag on if T...
	8.5. Locate the set of PSBs whose SENDER_TEMPLATEs match Filter_spec_list in the active RSB and w...
	8.6. Set TC_E_Police_flag on if any of these PSBs have their E_Police flag on. Set TC_M_Police_fl...
	8.7. Compute Path_Te as the sum of the SENDER_TSPEC objects in this set of PSBs.

	9. Search for a TCSB matching SESSION, OI and currentMG, for a distinct style (FF), it must also ...
	10. If TCSB is new:
	10.1. Store TC_Flowspec, TC_Filter_Spec*, Path_Te, currentMG, and the police flags into the TCSB.
	10.2. Turn the Resv_Refresh_Needed flag on.
	10.3. Make the traffic control call:
	10.4. If this call fails, build and send a RERR message specifying "Admission control failed" and...
	10.5. Otherwise (call succeeded), record Rhandle and Fwd_Flowspec in the TCSB. For each filter_sp...

	11. Otherwise, if TCSB is not new but no effective traffic control flowspec TC_Flowspec was compu...
	11.1. Turn on the Resv_Refresh_Needed flag.
	11.2. Call traffic control to delete the reservation:
	11.3. Delete the TCSB and return.

	12. Otherwise, if TCSB is not new but the TC_Flowspec, Path_Te, and/or police flags just computed...
	12.1. If the TC_Flowspec and/or Path_Te values differ, turn the Resv_Refresh_Needed flag on.
	12.2. Call traffic control to modify the reservation:
	12.3. If this call fails, build and send a RERR message specifying "Admission Control failed" and...
	12.4. Otherwise (the call succeeded), update the TCSB with the new values and save Fwd_Flowspec i...

	13. Otherwise,
	13.1. Call:
	13.2. If this call fails, build and send a RERR message specifying "Admission control failed" and...

	14. If the TCSB is not new but the TC_Filter_Spec* just computed differs from the FILTER_SPEC* in...
	14.1. Make an appropriate set of TC_DelFilter and TC_AddFilter calls to transform the Filter_spec...

	15. Return.

	3 Summary and Conclusion
	References

	Extended Traffic Control Interface for RSVP
	Jens Schmitt, Javier Antich
	July 1998

