
TOWARDS SECURITY AT ALL STAGES OF A SYSTEM’S
LIFE CYCLE

M. Schumacher
�
, R. Ackermann

�
, R. Steinmetz

��� ��� �
DarmstadtUniversityof Technology, Departmentof ComputerScience

Wilhelminenstr. 7, 64283Darmstadt,Germany�
Departmentof ComputerScience- ITO�

Departmentof ElectricalEngineeringandInformationTechnology- KOM�
GermanNationalResearchCenterfor InformationTechnology- IPSI
Markus.Schumacher@ITO.tu-darmstadt.de,

{Ralf.Ackermann,Ralf.Steinmetz}@KOM.tu-darmstadt.de

Abstract: Recentexperiencehas shown,that interconnectedsystemsare vulnerable to attacks, if
securityquestionsarenotmetappropriately. In this paperwepresentselectedreasonsfor thecurrent
dissatisfyingsecuritylevel of distributedsystemsandpresentselectedapproachesof makingsystems
secure. We describeour conceptfor a systematicway of understandingsecurityweaknessesand
elaboratingefficientsolutions.

KEYWORDS: Security, Software Engineering, System and Network Vulnerabilities

1 Introduction

Muchattentionhasrecentlybeendevotedto securityissuesandit hasbecomeappar-
ent thata high securitylevel shouldbea fundamentalprerequisitefor digital market
placesof the future. The recentoccurenceof the I Love You virus [?] or the Dis-
tributedDenial-of-ServiceAttacks [?] attacksagainstfamouswebsitesin beginning
of 2000showed,thatwe will still needquitesometime to reacha securitystandard
of IT systemsalike thestandardalreadyusualin otherfields.
Onereasonis, that- especiallyin distributedenvironments- it is verydifficult tomake
a softwaresytemsecure,as therearemany differentcomponentsandmechanisms
involved. In addition,trustrelationshipschangefrequently, whichmakesananalysis
of all securityrequirementsveryhard[?], [?].
Anotherfinding is thatthesoftwareindustrydoesnot seemto learnfrom pasterrors
aseven well-known securityproblemssuchasbuffer-overflows continueto appear
over andoveragain [?], [?], [?], [?].
Thoughnot basicallyrelatedto security, they2k problemdemonstrated,thatit is not
animpossiblemissionto copewith known problemsin advance.As preventivemea-
sureswastakenin advancethat time thelessonhadbeenlearnedandmajordamage
couldbeprevented.
This documentis organizedasfollows: Section?? discussesmajor reasonsfor the
currentdissatisfyingsecuritylevel of distributedsystems.Section?? presentsaselec-



tion of securityapproachesat differentstagesof the life cycle of a softwaresystem.
Section?? introducesour conceptfor thesystematicanalysisof softwareerrorsand
the determinationof appropriatesolutions. Section?? outlinesthe relatedwork in
the field of the analysisof softwarevulnerabilities.Finally, section?? presentsthe
conclusions,summarizesourfindings,anddiscussesfuturedirections.

2 Thinking about Security Weaknesses

In the following we presentselectedreasonsfor the currentdissatisfyingsecurity
level of distributedsystems.Basedon theauthor’s experiencethosereasonsdo not
originatefrom a limited numberof technicalproblemsonly.

2.1 Complexity

Theproblemof complexity in distributedsystemsis describedbestwith a quotation
of BruceSchneier[?]: Complexity is the worst enemyof security. Secure systems
shouldbecut to theboneandmadeassimpleaspossible. There is no substitutefor
simplicity. Unfortunately, simplicitygoesagainsteverythingour digital futurestands
for. In facttoday’sIT systemshaveproperties,thatmaketheconsiderationof security
difficult suchasheterogeneity, dynamics,andlackof transparency [?].

2.2 Innovation Cycles

An ever increasingnumberof new featuresandnew productshits the market and
innovation cyclesbecomeshorter. Unfortuneatelysecurityis often - if at all - only
seenasan add-onin contrastto other frequentlydemandedfeaturesof IT systems
suchas performance,useability, and reliability. Furthermoreit is very difficult to
retrofit security in an application [?] due to time consumingmodificationsof the
design,rewritings of code,andenhancementsof testingprocedures.Thus,systems
areoftenshippedwith ,,quick-and-dirty”patchesor no securityatall.

2.3 Incomplete or Wrong Assumptions

As statedin [?] ,,assumptionsthat programmers make regarding theenvironmentin
which their application will excecute

�
...� frequentlydo not hold in the excecution

of the program”. This is mainly becausethe assumptionsareincompleteor simply
wrongand(partially) explainsflaws like raceconditionsandbuffer overflows.

2.4 Know-How Transfer

Makingasystemsecurein aconvinient timerequiresahighamountof expertknowl-
edge. In the follwoing we list somenon-technicalaspects,that prevent know-how



transferin thefield of security.

� MonetaryAspects: securitysells and many peoplebuy it. Many consultants
offer seminars,workshopsor professionalsecurityscans.As their know-how
is a monetaryvalue, chancesare good to assume,that they are giving away
,,onlypiecesof thewholetruth”. Additionally, non-disclosureagreementsmight
preventthemfrom passingavailableinformationto thepublic.

� Lack of Experience: unfortunatelythecommondeveloperis no securityexpert.
Usuallyonly aselectedcircleof peoplereallyunderstands,whatsecuritymeans
andhow it canbedeployedinto systems.

� Political Issues: in somecasesindividual statesalsointentionallytry to avoid
a (too) high securitylevel. As anexample,theBritish intelligenceservicehas
originatedaweakeningof theGSM encryptionmechanism[?].

2.5 Findings

As long asno suitablemeansof implementingsecuresystemsareavailable,security
remainsatimeandmoney consumingsoftwarefeature.Thatleadsto theomnipresent
penetrate-and-patchapproachwe notice today. In a shippedproductvulnerabilties
will beeliminatedonly after they areaccidentallydiscovered,in many casesaftera
successfulattack. The analysisof the currentsituationmainly shows a passive and
reactive approachinsteadof theattemptto preventerrorsin advance.

3 System Life Cycle and Security Approaches

Ideally, securityshouldbeconsideredat all stagesof the softwareengineeringpro-
cess.In thefollowing wepresentselectedapproachesof makingsystemssecure.The
stagesof thesystemlife cyclearesubsetthatis derivedfrom [?].

3.1 Design: Pattern Approaches

As describedin [?] a patternis a recurrentsolutionto a specificproblemin a context
andshouldhelpnovicesto actas(security)experts. For expertsit canbeseenasa
commonvocabularyfor (security)problems.As written in [?], it allowsthemembers
of thepatterncommunityto identify, nameanddiscussbothproblemsandsolutions
moreefficiently.
In thefield of patternlanguageswe find securityrelatedcontributionstoo. A pattern
languagefor cryptographicsoftware is introducedin [?]. It focuseson the main
objectives of information security, i.e. confidentiality, integrity, authenticationand
proof of origin. Theauthorsrealizedthatcryptograhyis becominga defaultfeature



in manyapplicationsanddestilledthe essentialdesignconceptsfor cryptographic
softw	 arecomponents.
On a higher level of granularity[?] identifiespatternsforsecurityenabledapplica-
tions. In contrastto [?], thosedo not focuson cryptography but on a framework for
building secureapplications.It canbethoughtof asa setof functionalblocks,e.g.a
singleaccesspoint or a secureaccesslayer, which shouldbebestpracticein secure
applications.

3.2 Implementation: Guidelines and Source Code Analysis

Securityguidelines,checklistsor programmingconventionscan improve security
duringthedevelopmentandtestingof software.As anexampleweseeFAQssuchas
[?] or checklistslike [?] thatprovideguidancein secureprogramming.
Basedon the researchof softwareassurancefor securitya methodfor the security
analysisof C andC++ sourcecodehasbeendeveloped[?]. Thetool allows to check
for known vulnerabilitiesin securitycritical softwarepackages.Otherapproaches
areto replacelibrarieswith secureimplementationsor to provide runtimechecksof
securitycritical library calls.

3.3 Operation: Security Analysis, Infrastructure and Safeguards

Tools for securityanalysissuchas[?] and[?] canbe usedfor detectingknow vul-
nerabilties.Typically they candetecterrorsin the configurationor the presenceof
faultypiecesof software.Weconsiderthesetoolsto havebothapreventiveanda re-
active nature- they canbeusedbeforea systembecomesoperationalandto monitor
acertainsecuritylevel.
In a similar way, we classifycomponentsof the securityinfrastructuresuchasIn-
trusionDetectionSytemsandFirewalls. They areusedto enforcea definedsecurity
level andhelp to protectfrom known threats.Additionally they may emit notifica-
tionson theoccuranceof unusualsituations.
Standardsecuritysafeguardscanbe found in referencemodelslike the IT Baseline
ProtectionManual[?] or theSiteSecurityHandbook[?].

3.4 Findings

So far thereseemto besinglesolutionsfor particularproblems,but an isolatedap-
proachesdoesnot solve the securityproblem. It is necessaryto understand,that
securityaspectsmustbeconsideredduringall phasesof softwareengineering,espe-
cially preventive measuresin theearlierphaseswould improve thesecuritylevel of
distributedsystemssignificantly.



4 An Integrated Approach to Software Security

In thefollowing wedescribeourconceptfor asystematicwayof understandingsecu-
rity weaknessesandelaboratingefficientsolutions.Ourapproachis clarifiedin figure
1 andis basedon theconceptof a closedfeedbackloop. Thetop-level components
andinterfacesthatwehavealreadyidentifiedandpartly implementedareintroduced
in thefollowing.

Figure 1: OURApproach - a Feedback-Loop: Observe, Understand,(Re)act

4.1 Interface A: Analysis and Utilization

A highly structuredVulnerability Database1 (VDB) is themostimportantprerequi-
site for thesystematicanalysisof securityproblems,which will help to renderboth
existing andnew systemsmoresecure.As we have describedin [?] appropriateda-
ta mining procedureshelp to identify andimprove patternsthat arein turn usedto
engineernew or to improve existing systems.Our mainobjectivesaredescribedas
follows:

� Assessment of thesystem’s hazard:Throughinformationon comparablecom-
promisedsystemsvulnerabilitiescanbeindicatedandcounter-measurescanbe
recommended.For completiontheforceof expressionof theassessmentcanbe
improvedby providing testproceduresfor individual vulnerabilities.

� Prognosis on how likely it is that vulnerabilitiesoccurandon the category of
vulnerabilityto beexpectedfor new softwarecomponentsnot yet registered.

� Avoidance of knownfaultydesignpatternswith futuresoftwareprojects:Through
analysingthevulnerabilitiesfoundthefaulty designpatternsbehindareidenti-
fied. Building up on this, the correcteddesignpatterncanbe developedand
madeavailable.

Currentlyweperformedasurvey [?]in orderto determinethemostacceptableopera-
tionalpropertiesof avulnerabilitydatabasethatwill beof usefor thegreatestpossible
groupof people,companiesandinstitutions. Theevaluationwill revealwhetheran
existing VDB is sufficient for systematicanalysis.

1A VulnerabilityDatabaseis containsdetaileddataon vulnerabilitiessuchaspossibilitiesof exploitation, impacton
systemsecurity, andpossiblewaysto solve theproblemscausedby thevulnerability.



4.2 Interface B: Transformation and Screening

A uniform dataschemeis importantfor (semi-)automatedexaminationsof data. In
orderto achieve this, it is importantto know thestructureof information. In general,
highly structuredinformation is more suitablefor machine-basedprocessing.Be-
sidesstructure,thestorageof informationis alsoimportant.We distinguishbetween
databaseor file-basedstoragesystems.
Usuallyit will benecessaryto transcodeinformationinto thedesireddatabasescheme.
Dependingon the structure,humaninteractionwill be necessary. With the help of
dynamicontologies[?], importantcatch-wordsout of thevulnerabilitydescriptions
canbeused.Thecharacteristicsof catchwordsarecataloguedwith thehelpof logic-
baseddescriptionlanguagein orderto achieve a standardizedvocabulary for rating
andscreeningof information.

4.3 Interface C: Information Retrieval

In ordertogatherinformationefficiently, weworkoncomponentsfor (semi-)automated
informationretrieval. Currentlywe have a prototypeimplementationfor the moni-
toring of mailing-lists,newsgroups,andHTML pages2. A converterthatallows for
queriesfrom otherVDBs maybedesirable.
Whenever eventssuchasNewMessage andPageModified occur, the related
informationis sentto componentsthatimplementinterfaceB. Form-basedinterfaces
can be usedto guide humanusersby enteringinformation that comesfrom non-
digital sourcessuchasbooksandarticles.

4.4 Interface D: Observation

Observationsof securityweaknessesof existing systemsarereflectedin variousfo-
rums.Continueingourwork in [?] weelaboratedanoverview of theoriginsof infor-
mation that is characterizedby theauthorof a securityrelatedcontributions. Cred-
ibility, actuality, and completenessare importantcharacteristicsof an information
source,examplesarepresentedin table1.

Type Credibility Actuality Completeness

BugtraqMessage high high middle
CERT Advisory high middle high
SecurityBook high low high

VendorMailinglist middle middle middle
Hacker Web-Site low high middle

Table1: Classificationof InformationSources

2Actually theseareMailing-list archives.



5 Related Work

In [?] a unifying definition of softwarevulnerabilitiesis given. Besidethat, asone
of the mostimportantresultsthe authorshows, that previous classificationsof vul-
nerabilitieswereambiguous.Basedon that knowledgethe definition of mandatory
featuresthatarenecessaryfor thedevelopmentof classifactionsled to a remarkable
improvement.
As a formal approacha VulnerabilityDatabasecontainsdetaileddataaboutsecurity
weaknessesor vulnerabilities. It storesanddocumentspossibleexploits and their
impacton systemsecurityaswell aspossiblewaysto (temporarilyor permanently)
solve the problems. Additionally it holdsmetadatafurther describingthe primary
contentandits structure. Sucha vulnerability databaseforms a goodbasisfor the
systematicanalysisof softwarefailures.
Theevaluationprocesstremendouslybenefitsfrom thepossibilityto combinediffer-
entinformationsources.A first steptowardssuchasharingof informationwasmade
with thedevelopmentof a schemefor unifiedidentifiersof vulnerabilities(Common
Enumerationof Vulnerabilities,CVE) [?].

6 Summary, Conclusions and Future Directions

The digital future heavily relieson the Internetwhich hasno appropriatesecurity
level today. Therearestrongefforts to changethatsituation- but therule thatachain
is asweakasits weakestlink appliesto securityaswell. I.e. a strongcryptographic
protocoldesignedinto asystemgetsmoreor lessuseless,if its implementationcom-
prisesbuffer overflows or similar securityweaknesses.Thusour approachinvolves
a systematicanalysisof systemcomponentsandinterfaces,in orderto improve the
understandingof thesecurityproblemandto elaboratecomprehensivesolutions.
In thispaperwehave

1. providedsomereasonsfor theworsesituationin thefield of securesoftware,

2. pointedout the correlationof securitysolutionsto the stagesof a systems’s
lifecycle,

3. andintroducedour conceptof a closedfeedback-loopfor the overall software
engenieeringprocess.

Theneedandsuitabilityof mechanismsandtoolsfor describingand(semi-)automating
transitionsbetweenthe involvedcomponentshasbeenshown. Basedon the model
ouractualwork concentratesonenhancingthequalityof informationgatheringwith-
in thestaticparts(e.g.by meansof theongoingsetupof apublicallyusableDistribut-
edVulnerabilityDatabase)andon further identifying, describingandimplementing
thedynamicparts,mechanismsandtools.


