
Workshop on Contemporary ~ommunications

[SASOO] Markus Schumacher, RaIf Ackermann, RaIf Steinmetz: -
Towards Security at all Phases of a Systems Lifecvcle. In: SoftCom 2000 International

Coyference on Software, Telecommunications und Computer Networks, Split, p. 11--19,

October 2000.

TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S
LIFE CYCLE

M. Schumacher', R. ~ c k e r m a n n ~ , R.
Darmstadt University of Technology, Department of Computer Science

Wilhelminenstr. 7,64283 Darmstadt, Germany
Department of Computer Science - ITO

Department of Electrical Engineering and Information Technology - KOM
German National Research Center for Information Technology - PSI

Markus.Schumacher@ITO.tu-darmstadt.de,
(Ralf.Ackermann,Ra1f.Steinmetz.)@KOM.tu-darmstadt.de

Abstract: Recent experience has shown, that interconnected systems are vulnerable to attacks, if
securir)~ qrtestions are not met appropriately. In this paper we give selected reasons for the current
dissatisfiing security level of distributed systems und present selected approaches of making systems
more secure. We describe our concept of a „Security Improvement Feedback Loop " which is a sys-
temaric wajl of understanding securi9 weaknesses und elaboraring eficient solutions.

KEYWORDS: Seczcrity, Software Engineering, System und Network Vulnerabilities

1 Introduction

Much attention has recently been devoted to security issues and it has become appar-
ent that a high security level should be a fundamental prerequisite for digital market
places of the future. The recent occurrence of the I Love You Vints [9] or the Dis-
trib~ited Denial-of-Service Attacks [13] attacks against famous web sites in the begin-
ning of 2000 has shown, that we will still need quite some time and effort to reach a
security standard of IT systems alike the standard already usual in other fields.
One reason is, that - especially in distributed environments - it is very difficult to make
a software System secure, as there are many different components and mechanisms
involved. In addition, tmst relationships change frequently, which makes an analysis
of all security requirements very hard [I], [22].
Another finding is, that the software industry does not seem to learn from past errors
as even well-known security problems such as buffer-overflows continue to appear
over and over again [17], [8], [7], [151.
Though not basically related to security, the y2k problem demonstrated, that it is
not an impossible rnission to cope with known problems in advance. As preventive
measures were taken in advance that time the lesson had been learned and major
damage could be prevented.
This document is organized as follows: Section 2 discusses major reasons for the cur-
rent dissatisfyin; security level of distributed systems. Section 3 presents a selection

M. SCHUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

of security approaches at different Stages of the life cycle of a software System. Sec-
tion 4 introduces our concept Security Improvement Feedback b o p which describes
the systematic analysis of software errors and the deterrnination of appropriate so-
lutions. Section 5 outlines the related work in the field of the analysis of software
vulnerabilities. Finally, section 6 presents the conclusions, sumrnarizes our findings, 1

and discusses future directions.

2 Thinking about Security Weaknesses

In the following we present selected reasons for the current dissatisfying security
level of distributed systems. Based,on the author's experience those reasons do not
originate from a limited number of technical problems only.

2.1 Complexity

The problem of complexity in distributed systems is best described with a quotation
of Bmce Schneier [18]: Complexity is the worst enemy of security. Secure systems
sllould he cut to the bone and made as simple as possible. There is no substitute for
simplicity. Unfortunately, simplicity goes against everything our digital future stands
for. In fact today's IT systems have properties, such as heterogeneity, dynarnics, and
lack of transparency [l] , that make the consideration of secunty difficult.

2.2 Innovation Cycles

An ever increasing number of new features and new products hits the market and
innovation cycles become shorter. Unfortunately security is often - if at all - only
Seen as an add-on in contrast to other frequently demanded features of IT systems
such as performance, usability, and reliability. Furthermore it is very difficult to

I

retrojit security in an application [26] due to time consuming modifications of the
design, rewritings of code, and enhancements of testing procedures. Thus, systems
are often shipped with ,,quick-and-dirty" patches or no secunty at all.

2.3 Incomplete or Wrong Assumptions

As stated in [15] ,,assumptions that programmers make regarding the environment
in which their application will execute [...I frequently do not hold in the execution
of the program". This is mainly because the assumptions are incomplete or simply
wrong and (partially) explains the occurrence of flaws like race conditions and buffer
overflows.

M. SCHUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

2.4 Know-How Transfer

Making a system secure in a convenient time requires a high amount of expert knowl-
edge. In the following we list some non-technical aspects, that prevent know-how
transfer in the field of security.

Monetary Aspects: security sells and many people buy it. Many consultants
offer seminars, workshops or professional security scans. As their know-how
is a monetary value, chances are good to assume, that they are giving away
,,only pieces of the whole truth". Additionally, non-disclosure agreements might
prevent them from passing available infonnation to the public.

LQck of Experience: unfortunately the cornmon developer is often no security
expert. Usually only a selected circle of people really understands, what security
means and how it can be deployed into systems.

Political Issues: in some cases individual states also intentionally try to avoid
a (too) high security level. As an example, the British intelligence service has
originated a weakening of the GSM encryption mechanism [l l] .

2.5 Findings

As long as no suitable means of implementing secure systems are available, security
remains a time and money consurning software feature. That leads to the ornnipresent
,,penetrate-and-patch" approach we notice today. In a shipped product vulnerabilities
will be eliminated only after they are accidentally discovered, in many cases after a
successful attack. The analysis of the current situation mainly shows a passive and
reactive approach instead of the attempt to prevent errors in advance.

3 System Life Cycle and Security Approaches

Ideally, security should be considered at all stages of the software engineering pro-
cess. In the following we present selected approaches of making systems secure. The
stages of the system life cycle are a subset that is derived from [14].

3.1 Design: Pattern Approaches

As described in [3] a pattern is a recurrent solution tu a specijic problern in a context
and should help novices to act as (security) experts. For experts it can be Seen as
a cornrnon vocabulary for (security) problems. As explained in [6], it allows the
members of the pattern cornrnunity to identify, name and discuss both problems and
solu tions more efficiently.

M. SCHUMACHER: TOWARDS SECURITy AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

In the field of pattern languages we find security related contributions too. A pattern
language for cryptographic software is introduced in [4]. It focuses on the main
objectives of information security, i.e. confidentiality, integrity, authentication and
proof of origin. The authors realized that cryptography is becoming a default feature
in many applications and distilled the essential design concepts for cryptographic
software components.
On a higher level of granularity [26] identifies patterns for security enabled applica-
tions. In contrast to [4], those do not focus on cryptography but on a framework for
building secure applications. It can be thought of as a Set of functional blocks, e.g. a
single access point or a secure access layer, which should be best practice in secure
applications.

3.2 Implementation: Guidelines and Source Code Analysis

Security guidelines, checklists or programming conventions can improve security
during the development and testing of software. As an exarnple we See FAQs such as
[21] or checklists like [2] that provide guidance in secure programming.
Based on the research of software assurance for security, a method for the security
analysis of C and C++ source code has been developed [23]. The tool allows to check
for known vulnerabilities in security critical software packages. Other approaches
are to replace libraries with secure implementations or to provide runtime checks of
security critical library calls.

3.3 Operation: Security Analysis, Infrastructure and Safeguards

Tools for security analysis such as [25] and [24] can be used for detecting known
vulnerabilities. Typically they can detect errors in the configuration or the presence
of faulty pieces of software. We consider these tools to have both a preventive and a
reactive nature - they can be used before a System becomes operational as well as for
monitoring a certain security level.
In a similar way, we classify components of the security infrastructure such as Intru-
sion Detection Systems and Firewalls. They are used to enforce a defined security
level and help to protect from known threats. Additionally they may emit notifica-
tions on the occurrence of unusual situations.
Standard security safeguards can be found in reference models like the IT Baseline
Protection Manual [5] or the Site Security Handbook [10].

3.4 Findings

So far there seem to be individual solutions for particular problems, but an isolated
approach does not solve the security problem. It is necessary to understand, that

M. SCHUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

security aspects must be considered during all phases of software engineering. Espe-
cially preventive measures in the earlier phases would improve the security level of
distributed systems significantly.

4 Security Improvement Feedback Loop

In the following we describe our concept for a systematic way of understanding secu-
rity weaknesses and elaborating efficient solutions. Our approach is clarified in figure
1 and is based on the concept of a Security Improvement Feedback L o o p . The top-
level components and interfaces (labeled with A, B, C, and D) that we have already
identified and partly implemented are introduced in the following.

I fcaiback lwp

Figure I: Components und Interfaces of the Secitrity Inzprovernent Feedback Loop

4.1 Interface A: Analysis and Utilization

A highly structured Vulnerability ~atabase' (VDB) is the most important prerequi-
site for the systematic analysis of security problems, which will help to render both
existing and new systems more secure. As we have described in [19] appropriate data
mining procedures help to identify and improve Patterns that are in turn used to en-
gineer new or to improve existing systems. For example the knowledge can be used
for the generation of guidelines or as input for security tools. Our main objectives are
described as follows:

' A Vulnerability Database contains detailed data on vulnerabilities such as possibilities o f exploitation, irnpact on
systern security, and possible ways to solve the problerns causcd by the vulnerability.

M. S C H U M A ~ ~ ~ ~ : T o W A R D ~ SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

~ssessment 0f the System's hawrd: Through information On comparable com-
pr~rnised Systems vulnerabilities can be indicated and countermeasures can be
recommended. For completion the force of expression of the assessment can be
improved by providing test procedures for individual vulnerabilities.

prognosis On how likely it is that vulnerabilities occur and on the category of
vulnerability to be expected for new software components not yet registered.

Avoidance of h o w n faulty design patterns within future software projects:
Through analyzing the vulnerabilities found, the faulty design pattems behind
them are identified. Building up on this, the corrected design pattem can be
developed and made available.

Currently we are perfonning a survey [12] in order to determine the most acceptable
opcrational properties of a vulnerability database that will be of use for the greatest
possible group of people, companies and institutions. The evaluation will reveal
whcther an existing VDB is sufficient for systematic analysis.

4.2 Interface B: Screening

A uniform data scheme is important for (semi-)automated examinations of data. In
order to achieve this, it is important to know the structure of information. In general,
highly structured information is more suitable for machine-based processing. Be-
side structure, the storage of information is also important. We distinguish between
database or file-based storage Systems.
Usually it will be necessary to transcode information into the desired database scheme.
Depending on the structure, human interaction is going to be necessary. With the help
of dynamic ontologies [19], important catch-words out of the vulnerability descrip-
tions can be used. The characteristics of catchwords are cataloged with the help of
logic-based description language in order to achieve a standardized vocabulaq for
rating and screening of information.

4.3 Interface C: Information Retrieval

In order to gather information efficiently, we work on components for (serni-)automated
information retrieval. Currently we have a prototype implementation for the moni-
toring of mailing-lists, newsgroups, and HTML ~ a g e s ~ . A converter that allows for
quenes from other VDBs is desirable.
Whenever events such as NewMessage and PageModi fied occur, the related
information is sent to cornponents that implement Interface B (see figure 1). Form-
based interfaces can be used to guide human Users by entenng information that Comes
from non-digital sources such as books and articles.

? ~ c i u a l l ~ ihese are Mailing-list archives.

M. SCHUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

4.4 Interface D: Observation

Observations of security weaknesses of existing systems are reflected in various fo-
rums. Continuing our work in [20] we elaborated an overview of the origins of in-
formation that is characterized by the author of security related contributions. Cred-
ibility, actuality, and completeness are important characteristics of an information
source, examples are presented in table 1.

T v ~ e I Credibilitv 1 Comoleteness 1 Actualitv I
J .

CERT (Advisory)
CERT (Other Messages)

Table 1 : Classification of Information Sources

Hacker Group
Security Consulting

Book

5 Related Work

high
high

In [15] a unifying definition of software vulnerabilities is given. Beside that, as one
of the most important results the author'shows, that previous classifications of vul-
nerabilities were arnbiguous. Based on that knowledge, the definition of mandatory
features that are necessary for the development of classifications led to a remarkable
improvement.
As a formal approach a Vulnerability Database contains detailed data about security
weaknesses or vulnerabilities. It Stores and documents possible exploits and their
impact on systern security as well as possible ways to (temporarily or permanently)
solve the problerns. Additionally it holds meta-data further describing the primary
content and its structure. Such a vulnerability database forms a good basis for the
systematic analysis of software failures.
The evaluation process tremendously benefits from the possibility to combine differ-
ent information sources. A first step towards such a sharing of information was made
with the developrnent of a scheme for unified identifiers of vulnerabilities (Cornrnon
Enumeration of Vulnerabilities, CVE) [16].

low
middle - high
middle - high

6 Summary, Conclusions and Future Directions

high
high

Future Intemet-based services and applications heavily rely on an appropriate se-
cunty level. There are strong efforts to improve the situation today - but the nile
that a chain is as weak as its weakest link applies to security as well. 1.e. a strong
cryptographic protocol designed into a system gets more or less useless, if its impIe-
mentation comprises buffer overflows or similar security weaknesses. Thus our ap-
proach involves a systematic analysis of system components and interfaces, in order

low
middle

usually high
middle - high
middle - high

high
low - high
very low

M. SCHUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

to improve the uriderstanding of the security problem and to elaborate comprehensive
solutions.
In this paper we have

1. provided some reasons for the worse situation in the field of secure software, ' 1
2. pointed out the correlation of security solutions to the Stages of a system's life

cycle,

3. and introduced our concept of the S e c u r i ~ Improvement Feedback Loop for the
overall software engineering process.

The need and suitability of mechanisms and tools for describing and (semi-)automating
transitions between the involved components has been shown. Based on the model
our actual work concentrates on enhancing the quality of information gathering within
the static parts (e.g. by means of the ongoing setup of a publically usable Distributed
Vulnerability Database) and on further identifying, describing and implementing the
dynamic parts, mechanisms and tools.

REFERENCES

[l] Ameneh Alireza, Ulrich Lang, Marios Padelis, Rudolf Schreiner, and Markus Schumacher. The
Challenges of CORBA Secunty. In Markus Schumacher and Ralf Steinmetz, editors, Sicherheit
in Netzen und Medienströmen, Informatik aktuell, pages 61-72. Gesellschaft für Informatik,
Springer Verlag, 2000.

[2] AUSCERT. A Lab Engineers Check List for Wnting secure Unix Code. ftp : / /coombs .
anu.edu.au/pub/auscert/papers/secure_proing~checklist%,l996.

[3] Grady Booch. Software Architecture and UML. UML World Keynote Speech, 1999.

[4] Alexandre M. Braga, Cecilia M. F. Rubira, and Ricardo Dahab. Tropyc: A Pattern Language for
Cryptographic Software. PLoP, 1998.

[5] BSI. IT Baseline Protection Manual. http: //www. bsi . bund. de/gshb/english/
menue . htm, 2000.

[6j Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Sofhyare Architecture: A System of Patterns. John Wiley & Sons, 1996.

[7] CERT Coordination Center. CERT Summary CS-99-03. f tp : / / f tp . cert . org/pub/
cert-summaries/CS-99.03, August 1999.

[8j CERT Coordination Center. CERT Summary CS-99-04. f tp : / / f tp . cert . org/pub/
cert-summaries/CS-99-04. txt, November 1999.

[9j CERTICC. CERT Advisory CA-2000-04 Love Letter Worm. ht tp : / /www . cert . org/
advisories/CA-2000-04. html, May 2000.

[10] Barbara Fraser. Rfc 2 196: Site Security Handbook, 1997.

[I I] Nicky Hager. Secret Power. Craig Potton Publishing, 1996.

M. SCIIUMACHER: TOWARDS SECURITY AT ALL STAGES OF A SYSTEM'S LIFE CYCLE

[12] Christian Haul, Markus Schurnacher, and Michael Hurler. A Suwey on Vulnerability Databases.
Technical report, Darrnstadt University of Technology, 2000.

[13] iDEFENSE. Reports on Distributed Denial of Service. http : //www . idefense . com/
pages/ddosreport~.htrn1,2000.

[14] IEEE. IEEE Standard for Developing Life Cycle Processes. IEEE Std. 1074, 1995.

[15] Ivan Victor Krsul. Sofrware Vulnerability Analysis. PhD thesis, Purdue University, 1998.

[16] David E. Mann and Steven M. Christey. Towards a Comrnon Enumeration of Vulnerabilities.
The MITRE Corporation, 1999.

[17] Bruce Schneier. The Process of Security. ICSA Infomtion Security Magazine, April 2000.

[18] Bruce Schneier. Software Cornplexity and Security. http : / /www . counterpane . com/
crypto-gram-0003. html, March 2000.

[19] Makus Schurnacher, Christian Haul, Micheal Hurler, and Alejandro Buchrnann. Data-Mining
in Vulnerability Databases. http: //www . ito . tu-darmstadt . de/publs/papers/
dfncert2000-eng. pdf, March 2000.

[20] Markus Schurnacher, Marie-Luise Moschgath, and Utz Roedig. Angewandte Informationssicher-
heit: Ein Hacker-Praktikum an Universitäten. Infomfik Spektrum, 23(3):202-211,2000.

[21] Lincoln D. Stein. The World Wide Web Security FAQ. http : / /www . w3. org/Securit y /
Faq/, 1999.

[22] Jiawen Su and Daniel Manchala. Building Tmst for Distributed Commerce Transactions. In
Proceedings of the 17th International Conference on Distributed Compltting Systems. IEEE,
1997.

[23] John Viega, J.T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4 : A Static Vulnerability
Scanner for C and C++ Code. f t p : //f t p . rst c o r p . c o r n / p u b / p a p e r s / i t s 4 . p d f ,
2000.

[24] WebTrends Corporation. Webtrends Security Analyzer, 2000.

[25] Inc. World Wide Digital Secunty. SAINT. http: //wwdsilx. wwdsi . com/saint /, 2000.

[26] Joseph Yoder and Jeffrey Barcalow. Architectural Patterns for Enabling Application Security.
PLoP. 1997.

