
Mobile NDN-Based Dynamic Adaptive Streaming
over HTTP

Denny Stohr∗, Fares Beji∗, Rahul Dwarakanath†, Ralf Steinmetz† Wolfgang Effelsberg∗
Technische Universität Darmstadt

∗Distributed Multimedia Systems, {denny.stohr, wolfgang.effelsberg}@cs.tu-darmstadt.de, fares.beji@stud.tu-darmstadt.de
†Multimedia Communications Lab, {rahul.chini.dwarakanath, ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—Named Data Networking (NDN) is a novel Internet
architecture proposing a fundamental alternative to the current
host-based routing. It addresses data objects instead of hosts—a
concept promises to be especially useful for data-centric appli-
cations, e.g., dynamic adaptive streaming over HTTP (DASH).
We demonstrate the implications of this networking architecture
for the use case of DASH, based on a bare-bone wireless
hardware testbed using a custom-build JavaScript player. In our
demonstration, we show that NDN provides practical benefits
with regard to resilience and for wireless handovers. Further,
we propose the developed testbed platform for the practical
evaluation of wireless handover and forwarding strategies in NDN
networks, including new forms of mobile video production.

I . I N T R O D U C T I O N

With the global video traffic estimated to reach 82 percent
of all consumer Internet traffic by 2020 [1], along with the
rising significance of mobile devices for video playback and
production, flexible and efficient distribution of video content
under challenging conditions is paramount.

Named Data Networking (NDN) is a novel Internet archi-
tecture which has its roots in Information-Centric Networking
(ICN) [7] that promises to improve the efficiency for a wide
range of applications that depend on the the Internet as a distri-
bution network, such as Over-The-Top (OTT) video streaming
e.g., dynamic adaptive streaming over HTTP (DASH).

In contrast to the traditional host-based Internet model, it
features a data-centric approach where requests are based on
file names rather than host addresses. In NDN there are two
packet types: interest packets and data packets. Interest packets
are issued to request a set of data. Data packets contain the
actual data set. A client expresses an interest in a data set
via an interest packet identifying a dataset name. The network
answers with data packet containing the requested data. This
not only promises a higher tolerance for client mobility and host
failures, but also enables to use innovative routing and caching
strategies essential for efficient video streaming architectures.

To demonstrate these characteristics and their practical
advantages we introduce a mobile DASH streaming system
over NDN. This project consists of three parts: 1) An NDN
testbed that uses routers deployed as an NDN-enabled wireless
network connected to multiple NDN File System (NDN-FS)
nodes hosted on Raspberry Pi’s. 2) A DASH client capable of
video playback via the NDN testbed that has been implemented
using JavaScript, fetching the Media Presentation Description
(MPD) and video segments via the NDN rather than via

KOM – Multimedia Communications Lab
6

LAN Connection

LAN LAN

FS1 FS2 FS3 FS4

Fig. 1: Testbed architecture

the hypertext transfer protocol (HTTP). 3) A demonstration
scenario for our given system, showing video playback on
Nexus 5 mobile devices featuring fluent handover scenarios
when switching between APs, as well as resilience to node
failures. The remainder of this proposal is structured as follows:
First, we give an overview of our system design in Section II.
Next we depict how users interact with our application in
Section III. In Section IV we describe related work, followed
by the conclusions and planned future work in Section V.

I I . S Y S T E M D E S I G N

We follow two major design goals for the demonstration:
1) Providing a mobile video streaming scenario featuring
wireless routers as access points to allow for different data
storages accessible via each router, and 2) achieving wide
compatibility with consumer devices by employing web based
development concepts.

To this end, the demonstration is built as a bare-bone
NDN testbed composed of two Linksys WRT-1200-AC routers
running a custom built OpenWRT, four Raspberry Pi 2 Model B,
as well as one or more Nexus 5 smartphones acting as mobile
clients, as depicted in Figure 1. In the following, we will
introduce the main components of the demonstration, outlining
key implementation and configuration aspects.

A. NDN-Enabled Routers

The routers act as the entry points to the network for
the mobile clients. They host cross compiled versions of
Named Data Networking Forwarding Daemon (NFD)1 and
WebSocket proxy2 and provide an WebSocket-based interface

1https://github.com/named-data/NFD
2https://github.com/named-data/wsproxy-cpp

rst
Textfeld
Stohr, D.; Beji, F.; Dwarakanath, R.; Steinmetz, R.; Effelsberg, W.: Mobile NDN-Based Dynamic Adaptive Streaming over HTTP. In 41st IEEE Conference on Local Computer Networks (LCN): Demo Track, 2016, pp. 1-3.

to NFD that allows for JavaScript based client compatibility
(see Section II-C).

The 802.11ac WiFi is configured to allow seamless switch-
ing between the access points (client-based handovers), thus
changing the routes to data hosts for connected clients while
video content is streamed.

B. NDN Repositories based on Raspberry Pi’s

The Raspberry Pi’s function as the networks’ video data
repositories, serving requests depending on the forwarding
strategy and location of clients. Each node executes an instance
of NFD for packet forwarding as well as NDN-FS, based on
the NDN-CPP library, which serves as the repository for the
media files. This allows the nodes to act as file repositories
from which the MPD and DASH segments are requested by
the clients. After initialization and data processing, NDN-FS
stores a segmented version of the MPD and of the media files
which can be served to the clients. For segmented data storage,
NDN-FS uses an SQLite database that also contains auxiliary
information necessary for file retrieval. This includes, among
others, the version number, chunk numbers, the MIME-types
of the data as well as the chunk length.

C. NDN-enabled DASH Video Player

To address the second design goal, a client-side DASH
video player was implemented using JavaScript and HTML5
Media Source Extensions (HTML5-MSE), allowing to stream
MPEG-DASH-compliant AVC-encoded content. The custom-
build implementation can be executed in all modern browsers,
including mobile versions. It can be accessed via HTTP or
directly via NDN (the latter requires a plug-in which is available
for Firefox). For the NDN support in JavaScript, required by the
DASH Player, the client is developed based on NDN.js3, which
has been introduced by Shang et al. [6]. All communication
between clients and routers uses the WebSocket protocol to
communicate with a proxy present on the router, as described
in Section II-A.

Along the lines of the DASH standard, initialization of the
video player is done by requesting the MPD, in conformance
with isoff-live:2011 [3], which is extended to allow NDN-based
requests (see Listing 1). First, the prefix field contains the NDN
prefix by which the video segments can be fetched. Second, the
!RepresentationID! tag is a variable pointing to the id
field of the requested representation. For example, the video or
initialization segments of the representation with id 2 must be
subsequently accessible via the URL Prefix/2/init.mp4.
In the same way, the tag §Number§ points to the segment
number requested, and it must be included in the file name.

Listing 1: Sample MPD for the Video Player
<MPD xmlns=”urn:mpeg:dash:schema:mpd:2011”

mediaPresentationDuration=”PT12M14S” minBufferTime=”PT3
.00S” profiles=”urn:mpeg:dash:profile:isoff−live:2011”
type=”static”>
<Period>
<AdaptationSet mimeType=”video/mp4”

3https://github.com/named-data/ndn-js

segmentAlignment=”true” startWithSAP=”1”
numberOfSegments=”30”>
<SegmentTemplate duration=”3000”

Prefix=”/ndn/broadcast/ndnfs/ndnfs files/tears of steel/
cleartext/video/” initialization=”!RepresentationID!/
init.mp4/”media=”!RepresentationID!/seg−Number.m4f/”
startNumber=”1” timescale=”1000”/>
<Representation bandwidth=”686685” codecs=”avc1

.42C015” frameRate=”24” height=”214” id=”3”
scanType=”progressive” width=”512”/>
...

</AdaptationSet>
</Period>

</MPD>

D. Playback
To start a playback session, first, a face (representing a logical

connection point in NDN) is initialized with the IP address
of an access point to the NDN network. The segment URL is
then computed from the information obtained after parsing the
MPD. An interest request is sent to determine the availability
of the segment and to fetch the appropriate version number. As
soon as the first interest is successful, a new URL is computed
from the obtained version number and a fetcher is initialized
with this URL. The fetcher is responsible for downloading all
the segment chunks until an end-of-file block is received.

After the completion of the transfer the video data is added
to the buffer, a new offset time to the next segment is calculated
and the main loop continues by requesting the next segment
when the time comes. The full request process of the player
is illustrated in Figure 2. The offset time to next segment
is computed from the difference between the playback time
and the buffer length. The algorithm gets the next segment
as fast as possible until an amount n of not yet played
segments are buffered. If n segments are present in the buffer,
downloading the next segment is delayed proportional to the
current playback time. If the resolution is switched, the next
segment is downloaded without delay. This avoids a possible
waste of bandwidth if the client stops watching in the middle
of the video. For now, a basic adaptation logic is implemented,
which measures the downloading speed of each segment and
computes an approximation of the available bandwidth by
taking the average of the last three download rates.

I I I . D E M O N S T R AT I O N I N T E R A C T I O N

The main goal of the demonstration is to show a functioning
DASH streaming scenario using NDN concepts by providing

1. Client /

Consumer

2) Server

Browser

2. NDN Network

Router File System

WS Proxy

Interest/Data

WS Protocol

::9696

Nfd Nfd

NDNFS

MPD Media

Files

TCP Protocol

::6363

Nfd.sock

Fig. 2: DASH Player request pipeline

LAN
Connection

IP: 192.168.1.1
Channel 3

IP: 192.168.1.150
Channel 6

Main access
Point

DHCP

enabled

Relay access
point

Client 1 moved from A to B . A B .

Fig. 3: Client based wireless handover

Nexus 5 devices as mobile video players to participants.
This allows viewers to understand the underlying networking
concepts of NDN and experience their potential benefits. These
benefits will be further emphasized in two scenarios:

First, by changing the location of the mobile clients, thus
registering to different access points, routes to the Raspberry
Pi data hosts will change their costs (e.g. in terms of Round
Trip Time (RTT))during runtime (see Figure 3). In a regular
streaming scenario, the requests for the DASH playback would
continue unaltered and the routes to data hosts with lower costs
are neglected. In NDN, depending on the forwarding strategy
used, the best route is dynamically selected for each request,
providing a better quality of service (QoS).

Next, we will induce manual node failures. Here, a regular
DASH streaming system would not provide continuous play-
back, without reinitializing the MPD providing an updated data
host IP-address. In contrast to this, the playback session in
the demonstrated scenario will provide a continuous playback
as the identification of hosts is handled by the NFD which
abstracts the knowledge of hosts from the client.

Further, a central monitoring User Interface (UI) will show
live information regarding the currently used routes, based on
the selectable forwarding strategy, as well as node utilization
in real time. The user can configure two different routing
strategies: best-route and broadcast. In the first case,
the interest is forwarded to the lowest-cost next hop, which
reduces the overall load on the system. In the second case,
the interest is forwarded to all eligible next hops, allowing for
a higher resilience in the case of node failure or handovers.
The implications of the changes will be evident on the overall
system utilization and performance as shown on the client
devices and the central monitoring UI.

I V. R E L AT E D W O R K

Muto et al. [5] introduced the first implementation of a
JavaScript-based NDN DASH Player. They evaluated a train
commuting scenario, where video elements are prefetched
using NDN to servers located in railway stations. The work is
implemented on the virtual LXC Testbed, and it is unclear if
the NDN-based DASH player is being deployed on the client
devices. In contrast to this work, we focus on showcasing actual
handover for individual playback based on NDN requests within
DASH on mobile devices in a physical testbed.

In a follow up work by Kanai et al. [4] the system was
evaluated in a real-world scenario by deploying the proposed
prefetching infrastructure in train stations and on trains. The

developed DASH player was tested on mobile devices. Building
on the same concept of a mobile JavaScript-based NDN DASH
player, we focus on providing a live demonstration to users,
focusing on client handover and resilience during streaming
sessions instead of prefetching in a commuting scenario.

Another ndn.js-based work by Ishizu et al. [2] focuses on
improving the efficiency of NDN requests by implementing
interest aggregation and evaluating the influence of different
playback buffer sizes for a DASH streaming scenario. The
authors implemented functionality for fetching DASH segments
based on ndn.js, however, they did not integrate an adaptive
bitrate streaming.

V. C O N C L U S I O N S A N D F U T U R E W O R K

In this demonstration, we propose a mobile DASH stream-
ing scenario based on NDN networking concepts practically
showing improvements with respect to handover and routing
efficiency.

In future work, we will extend the developed testbed
architecture for the evaluation of new forwarding strategies and
their influence on QoS and quality of experience (QoE) factors
in DASH streaming. Further, we plan to minimize the usage
of WebSocket connections to full NDN based communication
from client to server by running a local instance of NFD on
the Android devices themselves,4 accompanied by a wider
choice and evaluation of handover strategies, i.e. extended
to network based handovers. Lastly, the novel scenario of
User-generated Video (UGV) and network assisted composition
can potentially significantly benefit from using NDN concepts
given the simplified addressing of mobile video sources, and
is therefore planned to be integrated in future work.

V I . A C K N O W L E D G M E N T

This work has been funded by the German Research Foun-
dation (DFG) as part of the project C03 in the Collaborative
Research Center (SFB) 1053 MAKI.

V I I . R E F E R E N C E S
[1] Cisco Visual Networking Index, 2014-2019 White Paper. http://

www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-
ngn-ip-next-generation-network/white paper c11-481360.pdf.

[2] Y. Ishizu, K. Kanai, et al. “Energy-Efficient Video Streaming
over Named Data Networking Using Interest Aggregation and
Playout Buffer Control”. In: 2015 IEEE DSDIS.

[3] ISO/IEC 23009-1:2014. http://www.iso.org/iso/home/store/catalo
gue ics/catalogue detail ics.htm?csnumber=65274.

[4] K. Kanai, T. Muto, et al. “Performance Evaluation of Proactive
Content Caching for Mobile Video through 50-User Field
Experiment”. In: 2015 IEEE Globecom Workshop. 12/2015.

[5] T. Muto, K. Kanai, and J. Katto. “Implementation evaluation
of proactive content caching using DASH-NDN-JS”. In: 2015
IEEE WCNC, pp. 2239–2244.

[6] W. Shang, J. Thompson, et al. “NDN.JS: A javascript client
library for named data networking”. In: 2013 IEEE INFOCOM.

[7] L. Zhang, A. Afanasyev, et al. “Named data networking”. In:
ACM SIGCOMM 44.3 (07/2014), pp. 66–73.

4https://github.com/named-data-mobile/NFD-android

