
Web-Based Multimedia Tools for Sharing Educational 
Resources 

 
Shervin Shirmohammadi 1, Abdulmotaleb El Saddik 2,  

Nicolas D. Georganas 1, and Ralf Steinmetz 2,3 
 

1Multimedia Communications 
Research Laboratory, 
School of Information 
Technology and Engineering, 
University of Ottawa, 
Ottawa, Canada 

2Industrial Process and System 
Communications, 
Dept. of Electrical Eng. & 
Information Technology, 
Darmstadt University of 
Technology, 
Darmstadt, Germany 

3GMD IPSI, 
German National Research 
Center for Information 
Technology, 
Darmstadt, Germany 

 

Abstract 
 
Many educational resources and objects have been developed as Java applets or 
applications. One can access these resources by simply downloading them from different 
repositories. In many instances, it is necessary to share these resources in real-time, such 
as when an instructor teaches remote students how to use a certain resource or explaining 
to them the theory behind it. We have developed some tools for this purpose. These tools, 
which emulate a virtual classroom, are primarily designed for synchronous sharing of 
resources. They enable participants to share Java objects in real time and also allow the 
instructor to dynamically manage the tele-learning session. 
  

1. Introduction 
 
Since the advent of the Internet, the computing and communications industry has 

progressed very rapidly. Today, any user with a desktop computer can access and share 

multimedia documents with others through the Internet. It seems certain that in the near 

future every person, no matter where located geographically, will be equipped with some 

sort of network computing capability, either by means of conventional desktop 

computing or through information appliances. This not only means that geographically-

distributed people will be able to easily communicate, but also “collaborate”; i.e., share 

multimedia documents and applications. Examples are joint editing, whiteboarding, joint 

browsing, and multi-user presentations, used in a variety of applications such as 

conferencing, collaborative design, training and telelearning. 

Having noticed the above paradigm, the education community has started to conduct 

research on how to best utilize this global connectivity to facilitate and evolve education. 



One of these advancements is the creation of repositories of educational resources, where 

Java applets and applications can be downloaded and used for educational purposes [14] . 

Java is used to eliminate the platform/operating system problem of heterogeneous 

environments, such that users wouldn’t have to be restricted in their choice of a resource. 

This is specially important for tele-learning and distance education since some users 

might choose UNIX-workstations, while others might prefer Windows 95/98/NT or 

Macintosh. But with the introduction of Java it became possible to overcome these 

problems. 

Another interesting issue that arises is how to share these resources among 

geographically distributed people? For example, imagine a virtual classroom, with 

participants from different parts of the world, where an instructor wants to discuss a 

specific topic using one of these Java resources. It is necessary for the participants to 

have the same view of the Java applet or application in real time. This signals the need 

for a sharing tool. 

1.1 Web-based learning 

There has been much interest in Web-based tools for telelearning. One can use e-mail, 

newsgroup, chat rooms, and other tools which are readily available. But for efficient 

resource sharing one needs tools specifically designed for such purpose. These tools can 

be used to share educational resources and they can generally be categorized into two 

groups: synchronous tools and asynchronous tools. Synchronous tools are those that 

allow sharing of resources in real-time, such as [1] [3] [7] [12] , and require users to be 

online at the same time. Asynchronous tools, such as Virtual U. [9] , allow for mostly off-

line communication and sharing. Notice that these two methods are complementary 

technologies, not necessarily competing. Some researchers mistakenly choose to adopt 

only one method, but in fact you need both synchronous and asynchronous resource 

sharing for a complete system. Our research; however, is focused on the synchronous 

type. With this in mind, let us have a look at some basics about synchronous sharing. 

1.2 Fundamentals of Real-Time Sharing 

Basically speaking, the core technology behind any synchronous collaboration tool is a 

mechanism to enable a user to send updates to other users about the interactions that are 



made to a shared application, as illustrated in figure 1. For example, when one user draws 

a line on a whiteboard, the system informs the whiteboards of other users so that they 

also draw the same line. The mechanisms to propagate these “updates” vary according to 

the design or intended use of the system. Some systems send graphical display updates of 

the portion of the screen that was changed; the receiver simply redraws that portion using 

the graphics update. Some other systems send the system's graphical events that were 

generated as a result of a user’s interaction, the receivers then process the events as if 

generated locally; hence reproducing the interaction at every user [6] [7]. Another 

approach is the use of object tokens, whereby an update message is preceded by a token 

that defines the semantic of that update message. By looking at the token, the receivers 

can determine what action to perform; for example draw a line, erase an area, etc. [12]. 

User A

User B

User N

Collaboration
Technology

update
update

update

1) Interactions of user A
generate updates to the
shared application

2) Updates are sent to
other users

3) Receivers update
application accordingly.

 

Figure 1. A generic collaboration system 

All of these approaches can be implemented using a centralized or fully distributed 

communication infrastructure. Furthermore, they can be implemented as real-time or 

near-real-time systems. However, they all have one thing in common: they all must use 

reliable communication, such as TCP or Reliable Multicast (RM), for their update 

messages. Although suitable for real-time video/audio data transfer, unreliable 

communication such as UDP or regular multicasting is not suitable for the transfer of 

application update messages since these applications, by nature, cannot afford to lose any 

update data. 

To optimize the use of bandwidth and compensate for latency, we have to choose an 

approach that sends as small amount of information as possible for the updates. Graphics 

updates are therefore not suitable because of their bulkiness and heavy use of bandwidth. 



Event updates and object tokens are better candidates. Object tokens are heavily based on 

the specific application, and must in fact be hard-coded into the shared application - an 

approach, which is not transparent. We have used both the event update and the object 

token technique in our tools. 

In addition to dissemination of update messages, a collaboration system must also 

address issues such as latecomers, floor control, awareness, synchronization, and 

management. However, detailed discussion about these issues is outside the scope of this 

paper and can be found in other literature such as [12] . 

In the next two sections we will present two resource sharing tools. The Java-Enabled 

Telecollaboration System (JETS), has been developed at the Multimedia Communications 

Research Laboratory (MCRLab) at the University of Ottawa, Canada, under funding 

from the national Telearning Network of Centers of Excellence. The second system, Java 

Application Sharing in Multiuser INteractive Environments (JASMINE), is a 

collaborative effort between the MCRLab and the KOM Laboratory at the Darmstadt 

University of Technology in Germany. 

2. JETS 2000 

Figure 2 below shows a screenshot of a sample JETS session. 

 

Figure 2. A sample JETS session with shared applets and A/V conferencing. 

 



As can be seen from figure 2, JETS consists of many utilities that enable multimedia 

viewing and sharing. The following section briefly describes these utilities.  

2.1 Utilities 

 
Presentation 

Using the JETS whiteboard, which can be used for shared color drawings, one has the 

ability to bring up presentations. JETS is capable of bringing slides from the Web server 

and displaying them. These slides can be PowerPoint slides saved in HTML format, or 

simple sequences of images. Participants can annotate on these slides in the same way as 

the images. 

 

Pictures 

The whiteboard is capable of bringing up images in JPEG or GIF format from the Web 

server and displaying them inside the whiteboard. The users can then annotate on these 

images and start a discussion. The built-in locking mechanism of JETS is used to forbid 

modification of the same object at the same time by more than one user. 

 

Chat 

The whiteboard also facilitates user conversations by a having a shared chat space which 

can be used by participants to exchange textual massages. The chat space is useful in 

cases where audio access is not available. 

 

Video 

A very useful feature of JETS is its ability to play ITU-T H.263 [13] compliant video in 

the whiteboard. The video must be stored on the Web server. When a user opens a video 

file and starts playing it, the video data is streamed down to all participants, decoded in 

real-time (processor permitting), and displayed in their whiteboard. Users can also play 

the video frame-by-frame as well as annotate on a frozen frame. 

 



3D Viewing 

Another applet is a simple shared 3D viewer for VRML files which permits real-time 

collaborative interaction with simple VRML objects. The applet brings from the server 

simple VRML 1.0 files and displays them in wireframe mode. A user can then 

collaboratively interact with the 3D scene, with all the rotations, moving, and zooming 

reflected on all participants' screens. 

 

A/V Conferencing and Recording 

The Java Video Conference Recorder (J-VCR) tool further enhances JETS by providing 

services for audio/video conferencing, recording a session, and playback of a recorded 

session. J-VCR can record the session in the Synchronous Multimedia Integration 

Language (SMIL) format, which is a World Wide Web Consortium (W3C) standard. As 

a result, any SMIL-player such as RealNetwork’s RealPlayer can be used to playback the 

recorded session [12] . 

2.2 Moderation 

Managing a shared session is a very important ability, specially for telelearning. An 

instructor can use this ability to moderate a session, as in the real world moderation of a 

classroom or meeting. Figure 3 below shows these abilities in JETS. 

a b

c d  

Figure 3. Moderation Abilities in JETS 2000. 

As shown in figure 3a, an instructor, who has logged into the session with special 

password, can enable moderation by pressing the moderation button. After this, any 



participant wishing to interact with the shared applications must ask for permission by 

pressing the permission button. The moderator will then receive a permission request 

which can be granted or denied (fig 3b). Should the moderator decide to grant 

permission, the participant sees a green light on the permission button (fig 3c) and can 

interact with the application. The moderator can “cut off” any participant by pressing the 

cut button next to the participant’s name. 

2.3 Architecture 
 

JETS is a framework that permits sharing of Java applets. Since JETS uses the core Java 

packages, users don’t need to install any additional Java classes on their system. This 

allows any user to access JETS and share applets with a Java-enabled browser. From a 

developer’s point of view, JETS can be regarded as a set of Application Programming 

Interfaces (API) that the developer can use to build shared resources. It provides the 

developer with built-in consistency, access control, and data passing. 

applet A data server 1 data server 2

client list A

Server A

data server 1 data server 2

client list B

Server B

applet B applet B

applet A

data channel A

data channel B

client 1
client 2

 
Figure 4. Client-Server communication in JETS 

JETS uses a multithreaded server as shown in figure 4, where the main server launches a 

sub-server for each user joining the session. The sub-server is responsible for processing 

only the update messages or requests coming in from its own client. Once the sub-server 

receives the update message, it will send it to all other clients in the session. This will 

create a fast system response, at the expense of more resources utilized due to sub-server 

threads. However, usually only one client at a time can control and interact with an 



application (due to floor control as we will see), and most threads will simply be waiting 

For its client-server communication, JETS uses TCP/IP and UDP/IP sockets. In figure 4, 

when client 1 does some interaction with application A, his actions are reflected to data 

server 1 which runs as part of Server A for application A. Next, data server 1 relays the 

actions of client 1 to other clients which are listed in a client list on Server A. Finally, 

application A of client 2 receives those actions and reflects them on the screen of client 2. 

3. JASMINE 

JETS requires Java applets or applications to explicitly utilize its API in order to become 

shareable. While this is doable most of the time, it is sometimes difficult or impossible to 

modify the source code of a resource. There’s therefore a need for a system that can 

transparently share resources without the need to modify the code for the resource. 

Enter JASMINE: a Java resource sharing tool that allows applets and applications to be 

shared transparently without any modification [2] . Figure 5 illustrates the overall 

concept, where the JASMINE framework wraps around an applet that is to be shared (fig 

5a). The framework listens to all events occurring in the graphical user interface of the 

applet and transmits these events to all other participants in order to be reconstructed 

there. The framework captures both Java AWT-based and Swing-based events. After 

capturing the event, it is sent to the communication module where the event is sent to all 

other participants in the session (fig 5b). 

SharedApplet
Collaboration
Framework

Client 1

Client 2

Commu-
nication
module

a b  

Figure 5. JASMINE’s Architecture. 

 

In the next section we describe how JASMINE is able to share resources without any 

modification to the resources’ source code. 



3.1 Client side 

The JASMINE client can be seen as a component adapter. Every event occurring at the 

graphical user interface of the application is sent to this adapter, which then sends the 

events to the collaboration server (JASMINE-Server). The client is a Java application, 

which consists of the following components: 

• Collaboration Manager 

• Component Adapter 

• Listener Adapter 

• Event Adapter 

These components are discussed next. 

 

3.1.1 Collaboration Manager 

The Collaboration Manager is the main component on the client side and provides the 

user with a graphical interface offering options such as joining the session, starting and 

sharing applications/applets and chatting with other participants. The collaboration 

manager is also responsible for dispatching external events coming from the 

communication module and forwarding them to the component adapter, as well as 

receiving internal events from the component adapter and sending them to the 

communication module.  

 

3.1.2 Components Adapter 

The Component Adapter maintains a list of the GUI-components of all applications and 

applets. This list is created with the help of the java.awt.Container class, which allows us 

to get references of all applet components [13]. With the help of the main window of an 

application, a list of the GUI components in the application can directly be created. 

Therefore, the main window of an application loaded by the Collaboration Manager is 

registered by the Component Adapter. However, Java applets do not use stand-alone 

windows. They are an extension of the class java.applet.Applet and thus of 

java.awt.Panel. Hence, applets can be easily placed into a window, which can then be 

registered as the main window for the applet. All these registrations are done at the 

Component Adapter. 



After the registration is done a list of all Swing and/or AWT-components within the 

loaded application/applet is created. This task is done in the same order on each client, so 

that a component has the same reference identification at all clients. These references are 

used to point to specific components, which are the source of the events generated 

internally and the recipient of the events generated externally. With the help of the 

references, the recipient of an incoming event is located and the event is reconstructed on 

each client, as if it occurred locally. 

 

3.1.3 Listener Adapter 

The Listener Adapter implements several AWT listeners, which listen to MouseEvent and 

KeyEvent for all AWT-components except of java.awt.Scrollbar, java.awt.Choice and 

java.awt.List. For these components the Listener Adapter listens to AdjustmentEvent, 

ItemEvent and ActionEvent. When an event occurs on the GUI of the application, the 

Listener Adapter catches it, converts it to an external event, and forwards it to the 

Collaboration Manager. The Collaboration Manager in turn sends this event to the 

communication module, which propagates the event to all other participants.  

 

3.1.4 Event Adapter 

The Event Adapter works opposite to the Listener Adapter: it converts incoming external 

events to AWT events, which can then be processed locally.  

 

3.1.5 Data Flow 

Let us summarize the client side's architecture through the following data flow diagram. 

Figure 6 shows the overall event circulation of the system. 

Java
Application

Window

JASMINE
Com. Module

Components
Adapter

Listeners
Adapter

Events
Adapter

Collaboration
Manager

JASMINE Client

1

2

3

6
5

7

4

 

Figure 6: Events Circulation 



There are two main data paths in the system: the first path is labeled with numbers 1,2 

and 3. This path is used to send the internal AWT events to the communication module, 

and it works as follows: any Event occurred in a Java-application is caught by the 

Listener Adapter. The Listener Adapter first tests whether the event is an external or an 

internal event. It then sends only the internal events, which were not received from other 

clients, to the Collaboration Manager, which in turn sends the events to the 

communication module. 

Via the second data path shown in figure 5 with numbers 4, 5, 6 and 7, the external AWT 

events received from the communication module are captured by the Collaboration 

Manager and the Component Adapter in order to reconstruct the event locally. After 

receiving the remote event, the Component Adapter extracts the information about its 

target component and sends this information together with the events to the Event 

Adapter. The Event Adapter converts the event to normal AWT events and sends them to 

the application, which then reacts to the event in the same manner as it would to a local 

user's interaction with the application's GUI. 

3.2 Utilities 
 

 

Figure 7. Screenshot of a JASMINE session. 



Figure 7 shows a sample JASMINE session, where arbitrary applets and resources from 

the Internet have been brought into the session dynamically. The starting point with 

JASMINE is the collaboration browser shown in figure 8 below. 

 

Figure 8. Main JASMINE Application. 

This is the interface that is presented to the participant. It includes a chat box where 

participants can exchange textual messages in real-time. Using the “URL field” at the top 

of the interface, one can type in the URL of any resource on the Web. That resource s 

then brought into the session dynamically and is shared among all participants in real 

time. In addition, a number of resources can be predefined before the session starts and 

can be started during the session from the “Tools” menu. 

Since any Java applet or application can be brought into the session, JASIMNE has a 

potential unlimited extendibility property, since each resource enhances JASMINE  

dynamically.  

As can be seen from figure 8, JASMINE has the same moderation capabilities as JETS, 

allowing for dynamic and real-time moderation of a shared session. 

4. Related Work 

There are many Java-based collaboration systems, none of which offer a management or 

moderation feature similar to JETS or JASMINE. Kuhmünch [10] has developed a Java 

Remote Control Tool, which allows the control and synchronization of distributed Java 

applications and applets. Similar to JETS, this approach uses an API that Java applets and 

applications must use to become shareable by the system. The Java Shared Data Toolkit 



(JSDT) from JavaSoft is also an API-based framework. Habanero [1] is an approach that 

supports the development of collaborative environments. Habanero is in its terms a 

framework that helps developers create shared applications, either by developing a new 

one from scratch or by altering an existing single-user application which has to be 

modified to integrate the new collaborative functionality. Instead of using applets, which 

can be embedded in almost every browser, the Habanero system uses so-called 

“Happlets” which need a proprietary browser to be downloaded and installed on the 

client site. Java Collaborative Environment (JCE) has been developed at the National 

Institute of Standards and Technology (NIST) coming up with an extended version of the 

Java-AWT [2] called Collaborative AWT (C-AWT). In this approach AWT-components 

must be replaced by the corresponding C-AWT components [3]. 

All these approaches propose the use of an API, which has the cost of modifying the 

source-code of an application, re-implementing it or to design and implement a new 

application from scratch in order to make it collaborative.   

Java Applets Made Multiuser (JAMM) [8] is a system, which is similar to JASMINE in 

terms of its objective: the transparent collaboration of single-user applications. The 

difference between JAMM and JASMINE is the way collaboration is achieved. In JAMM 

[6], the set of applications that can be shared is constrained to those that are developed 

using Swing user interface components as part of Java Foundation Classes, which are part 

of the standard JDK since version 1.2. JAMM’s set of applications is furthermore 

restricted to those which implement the Java serializable interface. 

5. Conclusion 

We have successfully deployed and tested both JETS and JASMINE in shared sessions. 

Based on our experience, the most interesting part of both systems is the moderation from 

the user perspective. This enables a useful and practical session to be carried out without 

interruptions. The ability to dynamically bring any resource into a JASMINE session is 

another key feature enjoyed and emphasized by all users. 

Since the JETS system has an API, it gives more control over resources, which allows for 

fine-grained tasks such as MM synchronization which are not possible with JASMINE or 

any other transparent collaboration tool. On the other hand, JASMINE’s transparency to 



resources make it a very powerful tool for sharing. We believe that JETS and JASMINE 

each have their own set of applications and can be used under different scenarios. 

Both of these tools can be further enhanced using metadata to give different views of the 

same problem to different persons. For example, a professor can see more options and 

control of a resource, whereas students can see fewer options and controls. This issue is 

currently under investigation. 

Acknowledgments 
 

The authors acknowledge the financial assistance of the Telelearning Network of Centers 

of Excellence of Canada, the Natural Sciences and Engineering Research Council of 

Canada, and Volkswagen Stifftung of Germany. 

References 

 
[1]  A. Chabert et al, “Java Object Sharing in Habanero”, Communications of the ACM, 

Volume 41, No. 6, June 1998, pp. 69-76. 
[2]  A. El Saddik, S.Shirmohammadi, N.D.Georganas, R.Steinmetz, “JASMINE: Java 

Application Sharing in Multiuser INteractive Environmnets”, Proc. 7th International 
Workshop on Interactive Distributed Multimedia Systems and Telecommunication 
Services (IDMS2000), Enschede, The Netherlands, October 2000. 

[3]  H. Abdel-Wahab et al “An Internet Collaborative environment for Sharing Java 
Applications” IEEE Computer Society Workshop on Future Trends of Distributed 
Computing Systems (FTDCS'97), October 29 - 31, 1997, pp. 112-117. 

[4]  H. Abdel-Wahab et al, “Using Java for Multimedia Collaborative Applications” Proc. 
PROMS'96, Madrid, Spain, 1996. 

[5]  A. El Saddik, O. Karaduman, S. Fischer, and R. Steinmetz. “Collaborative Working 
with Stand-Alone Applets”. Proc. 12th International Symposium on Intelligent 
Multimedia and Distance Education (ISIMADE'99), August 1999. 

[6]  J. Begole et al, “Leveraging Java Applets: Toward Collaboration Transparency in 
Java”, IEEE Internet Computing, March-April 1997, pp. 57-64. 

[7]  J. Begole et al, “Transparent Sharing of Java Applets: A Replicated Approach”. Proc. 
Symposium on User Interface Software and Technology, ACM Press, NY, 1997, pp. 
55-64. 

[8]  C. Kuhmünch et al, “Java Teachware - The Java Remote Control Tool and its 
Applications”, Proc. ED-MEDIA'98, 1998. 

[9]  L. Harasim, “A Framework for Online Learning: The Virtual-U”, IEEE Computer,  
Vol. 32 No. 3, 1999, pp.44-49. 

[10]  Multimedia Communication Forum Inc., “Multimedia Communication Quality of 
MMCF/95-010, Approved Rev 1.0, September 24, 1995. 



[11]  S. Shirmohammadi, L. Ding, and N.D. Georganas, "An Approach for Recording 
Multimedia Collaborative Sessions: Design and Implementation", Journal of 
Multimedia Tools and Applications (accepted, to appear). 

[12]  S. Shirmohammadi, J.C. Oliveira, and N.D. Georganas, “Applet-Based 
Telecollaboration: A Network-Centric Approach”, IEEE Multimedia, Vol. 5, No. 2, 
April-June 1998, pp. 64-73. 

[13]  K. Rijkse, "H.263: Video Coding for Low-Bit-Rate Communication", IEEE 
Communications Magazine, December 1996. 

 
URL: 
 
[14]  Computer Science Teaching Center, Digital Library of Peer Reviewed Teaching 

Resources, http://www.cstc.org/ 
 
 
Author Biographies: 
 

 
Shervin Shirmohammadi received his M.A.Sc. and Ph.D. in Electrical Engineering 
from the University of Ottawa in 1996 and 2000, respectively, where he conducted 
research at the Multimedia Communications Research Laboratory in various projects. His 
research interests include collaborative virtual environments, multimedia 
communications, and telecommunications software. He is the 1995 University of Ottawa 
Gold Medallist for highest standing in Engineering, 1998 Canadian Advanced 
Technology Association Award winner in Telecommunications Software, and Natural 
Sciences and Engineering Research Council of Canada scholarship holder (NSERC-PGS 
B). 
 

 
Abdulmotaleb El Saddik is pursuing a Ph.D. in electrical engineering in the Department 
of Electrical Engineering and Information Technology at Darmstadt University of 
Technology, Germany. He is currently working on the Multibook project, founded by the 
German Federal Ministry for Education and Research (BMBF). His research interests 



include interactive multimedia visualizations, collaborative learning environments, 
multimedia communications, and telecommunications software. A. El Saddik received 
his M.Sc. (Dipl.-Ing.) degree in electrical engineering from Darmstadt University of 
Technology in 1995. He is a member of the Association for Computing Machinery 
(ACM), The Gateway to Educational Materials (GEM) and the Interactive Multimedia 
Electronic Journal of Computer-Enhanced Learning (IMEJ). He is also co-author of the 
Open Java book, published 1999 by Springer. 
 

 
Nicolas D. Georganas is Professor and Director of the Multimedia Communications 
Research Laboratory (MCRLab) at the School of Information Technology and 
Engineering,  University of Ottawa, Canada. He has been leading multimedia application 
development projects since 1984.  He was General Chair of the IEEE Multimedia 
Systems’97 Conference (ICMCS97) (June 1997, Ottawa) . He has served as Guest Editor 
of the IEEE Journal on Selected Areas in Communications, issues on "Multimedia 
Communications" (1990) and on "Synchronisation Issues in Multimedia 
Communications" (1996). He is on the editorial boards of the journals Multimedia Tools 
and Applications, ACM/Springer Multimedia Systems, ACM Computing Surveys, 
Performance Evaluation, Computer Networks, Computer Communications, and was an 
editor of the IEEE Multimedia Magazine. He is Fellow of IEEE,  Fellow of the Canadian 
Academy of Engineering, Fellow of  the Engineering Institute of Canada and Fellow of 
the Royal Society of Canada. In 1998, he was honoured as the University of Ottawa 
Researcher of the Year and also received the University 150th Anniversary Gold Medal 
for Research.  In 1999, he received the T.W.Eadie Medal of the Royal Society of Canada, 
funded by Bell Canada. In 2000, he received the A.G.L. McNaughton Medal and Award, 
the highest distinction of IEEE Canada, the Julian C. Smith Medal of The Engineering 
Institute of Canada and the President's Award of the Ottawa Center for Research and 
Innovation. 
 

 



Ralf Steinmetz is professor at the "Electrical Engineering and Information Technology" 
as well as "Computer Science" departments of the Darmstadt University of Technology, 
Germany, since 1996. There he is in charge of a new chair position in the area of process 
communications and multimedia networking sponsored mainly by the Volkswagen-
Stiftung. He is also one of the directors of the Information Transfer Office at the 
university. In late 1996 he was appointed director of the Integrated Publications and 
Informations Institute of the German National Research Center (GMD) in Darmstadt, 
Germany. Here he is in charge of co-operative work, workspaces of the future, interactive 
learning, media processing and mobile networking.  His research interests are networked 
multimedia systems, co-operative applications, as well as mobile and service gateways 
for multimedia data. Dr. Ralf Steinmetz studied electrical engineering with the focus on 
communications at the University of Salford, England, and at the Technical University of 
Darmstadt, Germany, where he received the M.Sc.  (Dipl.-Ing.) degree in 1982.  Working 
as scientific assistant, he received the Ph.D. degree (Dr.-Ing.) in 1986 at this university.  
He mainly worked in the area of Petri-Nets and concurrent programming languages. 
Subsequently he joined the "Advanced Development Department" of "Philips 
Kommunikations Industrie" in Siegen-Eiserfeld, Germany, where he was involved in 
ISDN multimedia project workstations development activities. From 1988 until 1996 he 
worked at the IBM European Networking Center in Heidelberg, Germany.  There he has 
been involved in various multimedia communication activities.  He started his first 
activities on multimedia and networking and was in charge of a multimedia laboratory.  
In integrated multimedia projects that followed he acted as a key technical coordinator.  
He was the leader of the whole multimedia transport system development and 
subsequently was in charge of several application projects and their respective 
application support issues. He managed the multimedia department in Heidelberg which 
at that time became IBM’s European Multimedia Center. He is editor and co-author of a 
multimedia course, which reflects the major issues of a first in-depth technical book on 
multimedia technology, 1993, (in German).  He is editor of the magazine "Computer 
Communications" published by Butterworths-Heinemann and "Distributed Systems 
Engineering".  He was in charge of a worldwide IEEE Multimedia Taskforce working 
group for magazine publication.  There he is associate-editor in-chief of the IEEE 
Multimedia Magazine.  He has served as chair, vice-chair and member of various 
program and steering committees of multimedia workshops and conferences. He is a 
member of ACM, GI, ITG, as well as senior member of IEEE. 


