
[SEGStOl] Shervin Shirmohammadi, Abdulmotaleb EI Saddik, Nicolas D. Georganas, and kalf
Steinmetz. JASMINE: A Java Tool for Multimedia Collaboration on the Internet; Journal
of Multimedia Tools and Applications, January 2001.

JASMINE: A Java Tool for Multimedia Collaboration on
the lnternet

Shervin Shirmohammadi ', Abdulmotaleb E1 Saddik ', Nicolas D. Georganas ', and Ralf
Steinmetz

'Multimedia Communications 2~ndusirial Process and System 'GMD IPSI,
Research Laboratory, Communications, German National
School of Information Dept. of Elecirical Eng. & Research Center for

Technology and Engineering, Information Technology, Information Technology,
University of Ottawa, Darmstadt University of Darmstadt, Germany

Ottawa, Canada Technology,
Darmstadt, Germany

Abstract

Although collaboration tools have existed for a long time [9] , Internet-based multimedia

collaboration has recently received a lot of attention mainly due to easy accessibiliiy of the

Internet by ordinary Users. The Java platform and programming language has also

introduced yet another level of easy access: platform-independent computing. As a result,

it is very attractive to use Java to design multimedia collaboration systems for the Internet.

Today there are many systems, which use Java for multimedia collaboration. However

most of these systems require the shared Java application to be re-wntten according to the

collaboration system's Application Programming Interface (API) - a task which is

sometimes difficult or even impossible. In this Paper, we descnbe a practical approach for

trunspurent collaboration with Java. Our approach is transparent in that the Java

application can be shared as is with no modifications. The main idea behind our system is

that User events occumng through the interactions with the application can be caught,

distnbuted, and reconsmicted, hence allowing Java applications to be shared transparently.

Our architecture allows us to make the huge installed base of Java applications

collaborative, without any modification to their original code. We also prove the feasibility

of our architecture by an implementation.

1. lntroduction

Since the advent of the Intemet, the computing and communications industry have

progressed very rapidly. Today, any User with a desktop Computer can access and share

multimedia documents with others through the Intemet. Furthennore, this accessibility is

being extended beyond desktop Computers and into Information Appliances: consumer

devices that bring together computing and communications in one box to ordinary Users.

Examples of these devices are Web TVs, Net Gaming devices, Intemet Screen Phones,

and Network Computers. According to a report published by the International Data

Corporation, some five million such devices were used in 1998, with over f o e million

projected to be in use by 2001 [5]. In addition, all these devices will be interconnected

through pervasive computing technologies and Systems such as JINI [15]. It seems certain

that in the near future every Person, no matter where located geographically, will be

equipped with some sort of network computing capability, either by means of conventional

desktop computing or through infonnation appliances. This not only means that

geographically-distributed people will be able to easily communicate, but also

"collaborate"; i.e., share multimedia documents and applications. Examples are joint

editing, whteboarding, johl browsing, and multi-user presentations, used in a variety of

applications such as conferencing, collaborative design, training and telelearning.

A problem with many collaborative applications is their platform dependence leading to

the fact that users communicating in heterogeneous environments are restricted in their

choice of a cooperative application. For example some users might choose UNIX-

workstations, while others might prefer Windows 95198MT or Macintosh. But with the

introduction of Java it became possible to overcome these problems. Consequently diverse

approaches emerged which used Java for developing collaborative systems, producing a

variety of toolkits and platforms [12] [I] [2] [8]. However, almost every System described

in the literature requires the use of an NI, or tries to replace some core Java-components

with self-defmed collaborative components.

The approach presented in this paper differs ftom other approaches in the way that we

neither propose a new API for developing collaborative systems nor try to replacc core

components at run time. In fact a great varieiy of well-designed applets already exist on

the Wodd Wide Weh which were developed to be rnn as stand-aione and it would not be

acceptable or possible for many developers to re-implement or change these programs to

make them work in a collaborative way. In our mhitecture, we make use of the Java

Events Delegation Model [13] to extend the capabilities of Java applications in a way that

stand-alone applets can be used in a collaborative way. The delegation event model of

JDKl. I provides a standard mechanism for a source component to generate an event and

send it to a Set of listeners. Furthermore, the event model also allows to send the event to

an adapter, which then works as an event listener for the source and as a source for the

listener. Because the handling of events is a cmcial task in developing an application, this

enhancement makes the devclopment of applets much more flexible and the control of the

events much more easier.

The practicality of o w architecture is proven by an implementation. We have developed a

collaboration system, called JASMINE', which facilitates the creation of multimedia

collaboration sessions and enables users to share Java applets and applications, which arc

either pre-loaded or brought into the session live. The system also provides basic utilities

for session moderation and floor control. Our approach applies to both applets and

applications and hence these terms are sometimes used interchangeably in this document.

The rest of the paper is organized as follows. Section 2 discusses the system architecture,

while section 3 descnbes the implementation of JASMINE. Section 4 presents a

perfomance evaluation of our system, followed by discussion of related work in section 5.

Finally section 6 concludes the paper and gives an outlook for future work.

2. Architecture

Basically speakig, the core technology behind any collaboration tool is a mechanism to

enable a User to send updates to other users about the interactions that are made to a

shared application, as illustrated in figure 1. For example, when one user draws a line on a

whiteboard, the system informs the whiteboards of other users so that they also draw the

same line. The mechanisms to propagate these "updates" vary according to the design or

intended use of the system. Some systems send graphical display updates of the portion of

the screen that was changed; the receiver simply redraws that portion usmg the graphics

update. Some other systems send the system's graphical events that were generated as a

result of a user's interaction, the receivers then process the events as if generated locally;

hence reproducing the interaction at every User [6] [7]. Another approach is the use of

I JASMINE: Java Application Sharing in Multiuser mteractive Environmnets

object tokens, whereby an update message is preceded by a token that defines the semantic

of that update message. By lookig at the token, the receivers can determine what action

to perforrn; for example draw a line, erase an area, elc. [12],

3) Receivers update
application accardingly.

Figure 1. A genenc collaboration system

All of these approaches can be implemented using a centraiized or fully distnbuted

communication infrashucture. Furthermore, they can be implemented as real-time or near-

real-time Systems. Howevcr, they all have one thing in common: they all must use reliable

communication, such as TCP, for their update messages. Although suitable for real-time

videolaudio data transfer, unreliable communication such as UDP or regular multicasting

is not suitable for the transfer of application update messages since these applications, by

nature, cannot afford to lose any update data.

To optimize the use of bandwidth and compensate for latency, we have to choose an

approach that sends as small amount of information as possible for the updates. Graphics

updates are therefore not suitable because of their bulkiness and heavy use of bandwidth.

Event updates and object tokens are better candidates. Object tokens are heavily based on

the specific application, and must in fact be hard-coded into the shared application - an

approach, which is not transparent. This leaves us with Event updates, which are what we

use in our approach.

Shared
Applet Collaboration

Framework - I
Figure 2. Illustration of the main Idea.

Figure 2 illustrates the overall concept, where our collaboration framework wraps around

an applet that is to be shared. The framework listens to all events occurring in the

graphical User interface of the applet and transmits these events to all other participants in

order to be reconstructed there. The framework captures both AWT-based and Swing-

based events. After captunng the event, it is sent to the communication module where the

event is sent to all other participants in the session (Figure 3)

7 C"". p, I
nlcahon

Figure 3. Overall System Architecture of JASMINE.

In the next sections we are going to discuss the architecture in more details, first the client

side, and then the communication module.

2 . 1 Client side

The JASMINE client can be Seen as a component adapter. Every event occumng at the

graphical User interface of the application is sent to this adapter, which then sends the

events to the collaboration Server (JASMINE-Server). The client is a Java application,

which consists of the following components:

Collaboration Manager

Component Adapter

Listener Adapter

Event Adapter

These components are discussed next.

2. I. I Collaboration Manager

The Collaboration Manager is the main component on the client side and provides the User

with a graphical interface offenng options such as joining the session, starting and sharing

applications/applets and chatting with other participants. The collaboration manager is also

responsible for dispatching extemal events coming from the communication module and

fonvarding them to the component adapter, as well as receiving intemal events from the

component adapter and sending them to the communication module.

2.1.2 Components Adapter

The Component Adapter maintains a list of the GUI-components of all applications and

applets. This list is created with the help of the java.awt.Container class, which allows us

to get references of all applet components [13]. With the help of the main window of an

application, a list of the GUI components in the application can directly be created.

Therefore, the main window of an application loaded by the Collaboration Manager is

registered by the Component Adapter. However, Java applets do not use stand-alone

windows. They are an extension of the class java.applet.Applet and thus of

java.awt.Pane1. Hence, applets can be easily placed into a window, which can then be

registered as the main window for the applet. All these registrations are done at the

Component Adapter. An example Syntax of the registration by the Component Adapter is

shown in Figure 4.

.....
Class CI = Class.forName(c1assNarne);
11 If it is an applet, instantiate and locate
11 it in a Frame
myApplet = (Applet)cl.newInstance();
myApplet.init();
my Widow = new FramerTitel");
myWindow.add("Center", myApplet);
11 Oihenvise (if it is an instance of Window) just
I1 instantiate it
myWindow = (Window)cl.newlnstance();
11 Register this Frame as main Frame
I/ by Components Adapter
ComponentsAdapter.addContainer(myWindow);
....

Figure 4: Excerpt of the instantiation method

Afier the registration is done a list of all Swing andlor AWT-components within the

loaded applicationiapplet is created. This task is done in the Same order on each client, so

that a component has the Same reference identification at all clients. These references are

used to point to specific components, which are the source of the events generated

intemally and the recipient of the events generated extemally. With the help of the

references, the recipient of an incoming event is located and the event is reconstmcted on

each client, as if it occurred locally.

2.1.3 Listener Adapter

The Listener Adapter implements several AWT listeners, which listen to MouseEvent and

KeyEvent for all AWT-components except of java.awt.Scrollbar, java.awt.Choice and

java.awt.List. For these components the Listener Adapter listens to AdjustmentEvent,

ZteinEvent and ActionEvent. When an event occurs on the GUI of the application, the

Listener Adapter catches it, converts it to an external event, and fonvards it to the

Collaboration Manager. The Collaboration Manager in turn sends this event to the

communication module, which propagates the event to all other participants.

2.1.4 Event Adapter

The Event Adapter works opposite to the Listener Adapter: it converts incoming extemal

events to AWT events, which can then be processed locally.

2.1.5 Data Flow

Let us summarize the client side's architecture through the following data flow diagram.

Figure 5 shows the overall event circulation of the system.

J A S M I N E
com Module

Figure 5: Events circulation

There are two main data paths in the system: the first path is labeled with numbers 1,2 and

3. This path is used to send the intemal AWT events to the communication module, and it

works as follows: any Event occurred in a Java-application is caught by the Listener

Adapter. The Listener Adapter first tests whether the event is an extemal or an intemal

event. It then sends only the intemal events, which were not received from other clients, to

the Collaboration Manager, which in turn sends the events to the communication module.

Via the second data path shown in figure 5 with numbers 4, 5, 6 and 7, the extemal AWT

events received from the communication module are captured by the Collaboration

Manager and the Component Adapter in order to reconstruct the event locally. Afler

receivmg the remote event, the Component Adapter extracts the information about its

target component and sends this information together with the events to the Event

Adapter. The Event Adapter converts the event to normal AWT events and sends them to

the application, which then reacts to the event in the Same manner as it would to a local

user's interaction with the application's GUI.

2 . 2 Communication Module

The comminations module's main purpose is to receive events fiom the collaboration

manager and propagate them to all participants in the session. It abstracts the network and

communication functionalities from the client side so that the client side need not wony

about how the events are actually transmitted over the network. This module is separated

fiom the rest of the System because it can be implemented in many different ways based on

the communication environment. As mentioned earlier, reliability is a non-negotiable

requirement for collaborative applications since loosing even one event can potentially

disrupt the collaboration session. This means that the communication module must be

implemented by either reliable multicast (RM) or TCP.

Each of these approaches has certain advantages and disadvantages. The obvious

disadvantage of the one-to-one TCP linking approach is scalability: the more users there

are, the more network comections are required. What's worse is that the number of

connections increases non-linearly with increasing number of users. However, using a

client-server approach can substantially decrease the number of network connections.

Each client establishes a TCP comection only to the server as opposed to each and every

other client. The server then becomes responsible for sending messages between users.

The main disadvantage of a sewer-based approach is the additional delay caused by the

server's processing of the incoming events, which sometimes makes the server the

bottleneck of the system.

There are many advantages in using RM for the implementation of the communication

module. RM technology uses substantially less bandwidth and produces lower delays than

a TCP-client-sewer based approach. But the disadvantages of the RM approach are

practical ones, not theoretical ones. All Rh4 technologies available are based on UDP

multicast. Multicast support in today's Intemet is far from acceptable and in fact today's

Intemet leaves a lot to be desired when it Comes to multicasting. The M-bone tnes to

compensate this lack of adequate support, but even then a great portion of a multicast

session's traffic are "tunneled" through the non-multicast portions of the Internet. In

addition, joining and maintaining M-bone connectivity is not a trivial task; one cannot

expect ordinary users to easily connect to the M-bone. Furthermore, RM technology is

still mattuing and standards are still being made. As a result there are many incompatible

RM implementations today but mostly for researchiexpenmentation purposes [14].

With JASMINE, our main goal is to create a system that can be accessed by the most

number of people and in fact that's why we chose the Java technology. From practical

stand-point, it makes little sense to implement the communication module in such a way

that most ordinary Intemet Users won't be able to use it, or will have to go through a great

deal of comection set-up just to use our system. We therefore decided to implement the

communication module with a TCP-client-server design. As we will see later in the

performance evaluation section, the performance of this design is quite adequate for small

to medium-sized group collaboration sessions.

2.2.1 JASMINE Server

JASMINE uses a multithreaded server, where the main server launches a sub-server for

each User joining the session. The sub-server is responsible ior processing only the update

messages or requests coming in from its own client. Once the sub-server receives the

update message, it will send it to all other clients in the session (figure 6). This will create

a fast system response, at the expense of more resources utilized due to sub-server

threads. However, usually only one client at a time can control and interact with an

application (due to floor control as we will see), and most threads will simply be waiting

and won't consume too much resources.

-
Figure 6 . JASMINE'S client-server a r c h i t z r e .

'paqsmv!p jeqMatuos s! ualsns aq jo awaj lua~edswn aq aouaq 'sa!qleuo!Puy

asaq jo a%elueape ayel 01 1fl aq asn L[[e~~!3ads lsntu uo!)eydde ue 'laaa,noH

.siuauiannbai paomape jo aa asaq ioj pasn aq ueo ley) IW 1aaa1-@y e sapraoid iahias

BMSQ~ aqk .siasn %uom Louals!suoo upu~m 03 ,,LS iaqmnu amy uo asned„

se qons 'siua!l~ uaamaq sa8essatu lquoo puas oi paau e s! aiaq~ amaH ,paz~uqouLs

aq lou [TIM sluaq:, pm aurey juaiagp e uo asnsd K!M ideld oapp aqj lua!lo qgea je 'iaAe[d

oapp i!aql 01 J! Aldde pm luaaa asned ayl aa!aoai slua!~:, iaylo uaqM asneoaq luaroyjns

lou SI sluago iaqjo [[E 01 11 . aurpuas . pue ,luaaa asned,, aql %uun~deo L~dtu!s 'uonnq asned

aq sassaid iasn auo uam .paLeId Bu!aq SI laldde oapp e aiaqh uorssas uo!~ioqe~~oo e jo

yu!ql 'a~dmxa iofi .oja 'ao!~as jo Q!lmb 'uo!lez!uoqouKs SE qms suoqexldde e!pauiy[nm

Kq pa~!nba~ an leg sa3pas oy!oads 01 anp s! ssru '[zI] suo!)e~!~dde e!patuylnu

ioj)ua!oylns lou s! tuapAs uo!leioqe[[oo luandsmli amd e 'ainleialg aqj U! passnostp SQ

suo!?e3ilddv ejpawlnyy paJueApv 2.2'2

'lxau aas

aM se suo!ssas e!pawglnui ioj aouepodtu! le[no!pvd jo s! a8ueqoxa ejea .a%ueqoxa ejep

pm '[oiluoo ioop 'luama%emtu pm uogeiapou uo!ssas ioj saowas sappoid 11 .uo!ssas

uogeioqe~[oo r! 8upyvu1 ioj hssaoau an qow~ 'saopuas iaqo sappoid osp 11 ing

'siasn iaqo [[e 01 iasn e wog sluaaa 8puroou! aq apBedoid 01 s! qor u!em s,lahias aqJ

2qsn padola~ap suo!le3!~dde ale~eun-uo1~e~oqe~~o3 an suo!le3!ldde pue sialdde paleys

a User can invoke must be stored in a configuration file before the start of the session and

are loaded by the JASMINE-Client at the start-up Stage. In the second case, participants

can just type the URL of the applet they want to bring into the environment to Share.

JASMINE then fetches the applet and inserts it into each client's session. There is no limit

as to the number of simultaneous appletdapplications mnning in the session.

We have successfully tested our System on a number of applets irnplemented in JDK 1.1,

using normal AWT or Swing components. We did however encounter a limitation for

Frames, Dialogs and FileDialogs. These components, when created within the

application at run time, cannot be used collaboratively since they are not registered by the

Component Adapter explicitly. In other words, collaboration is only possible for the first

level windows. To overcome this problem, we developed a collaboration class loader,

incorporated in JASMINE as the collaboration browser. The development of such a class

loader gives the browser the capability of tracking all components it loads and hence it is

able to control Frames, Dialogs and FileDialogs created within the shared applet at run

time.

3 . 2 Configuration f i l e

Information about locally available applications and applets, which can be used in a

collaborative way, are read from a configuration file. The configuration file, which is

organized as a properties file, contains the names of the applicationslapplets, which will be

presented in the menu and the full names of their main class or URL. The entries have the

following syntax:

application.[n].name = [name]

application.[n].class = [class]

n: number of the application in the list.

name: a suitable name for the application to be shown in the menu.

class: full name of the main class.

An example configuration file is illustrated in Figure 9:

#Application entries
application. 1 .nam-yTestApplication
application. 1 .class=kom.develop.apps.MyApp
Applet entries
applet. 1 .name=rnyTestApplet
applet. 1 .class=kom.develop.applets.TestApplet
URL entcies
url. 1 .name= TestUrl

I url.l.address=http:/~desiered.serveritest.html
Figure 9: Excerpt from a configuration file.

Before starting the session, applets and applications that are thought to be useful can be

placed in this configuration file. Additional applets and applications can be brought into

the session live as needed.

3 . 3 Floor Control

A collaborative System must address many issues such as synchronization, latecomers,

management or moderation, floor control, and awareness [12]. Arnong these, floor control

is perhaps the most pnmary issue without which a collaborative session won't function

properly. In short, floor control ensures that only one Person at a time controls the shared

application. Without floor control, there will be collisions of events, which leads to

unwanted results in the shared application.

In JASMINE, floor control is achieved by means of locking. Each application has a

conesponding semaphore on the Server. When a User wants to interact with the shared

application, the system first locks the application by locking a semaphore. At this point,

any other Users trying to interact with the application will be denied access. When the first

User is finished, the system releases the semaphore and others can take control of the

application.

For a specific shared application, most developers prefer an "intuitive" implementation of

the floor control capability; i.e., as soon as the User tries to interact with the application,

the client automatically asks for floor control and allows or disallows its User to interact.

After the User is finished, the client releases the lock automatically. Figure 10 shows

sample Java code that demonstratcs how the floor control is used in an intuitive way. This

approach is in contrast to the "direct" approach, where a client must specifically ask for

control, for example by pressing a "control-request" button,

public void mouseDragged(MouseEvent e) (
Iluser is dragging the rnouse, so ask for control

if (getControl()=mie) (

I/ do whatever must be done for a mouse drag
releaseControl0;

)
eise displayMessage("Aceess Denied!");

Figure 10. Intuitive floor control.

Just how intuitive the approach in figure 10 really is depends on the system response. If

there is a small delay between the time the User tries to interact and the time when

something actually happens on the screen, the application is intuitive. If however that

delay is large, the application becomes "unnatural". So the Floor Control Delay @CD) is

an interesting parameter that we must also evaluaie.

3 . 4 Moderation

Although floor control addresses the issue of event collisions, it works on a first-come-

first-serve basis. Tbis in turn leads to the possibility of a participant to abuse or disrupt the

session by feeding unwanted events into the session. There is therefore a need to have a

moderator in order for a session to be more productive, for example, a teacher moderating

a distance learning session. The moderator is usually tbe Person who calls for a

collaborative session and st&s the server. In JASMINE we have two types of sessions:

moderated, and non-moderated. The server can be started by speci@ng a login name and

password for the moderator. Once the session starts, the moderator can login at any time

and take control of the session. When the session is moderated, no one can send any

events to the server. A participant wishing to do so inust ask for permission from thc

moderator as shown in figure I la. The moderator will subsequcntly receive a message

indicating the participant's request to interact (figure l lb) which the moderator can allow

or refuse. Upon moderator's acceptance of the user's request, the User will receive a green

light, which indicates that lie or she can now send events to the session (figure 1 lc). The

moderat01 can also dynamically "cut off" a user's permission to interact if needed (figure

1 ld). In JASMNE, we allow only one User at a time to have permission to send events,

although this number can be increased based on the application.

d

Figure 11. Moderation capabilities in JASMINE.

4. Performance Evaluation

JASMINE can be considered a real-time tool in the sense that its updating response time,

in a network environment capable of supporting real-time applications, is within the

acceptable parameters of human quality of service for desktop collaboration, as we shall

see. But as with any TCP based multiuser system, there is an upper-bound to the number

of sirnultaneous users before those Parameters are violated. This "maximum users" limit

depends on the resources utilized by the system, such as processing power, graphics

power, memoIy, network bandwidth and network delay, as well as the design of the

communication part of the system.

Dependiig on the quality desired, the application level end-to-end delay between two

users should be less than 1000 milliseconds, with 200 milliseconds recommended for

tightly-synchronized tasks [l l] . However, these numbers are valid only if the shared

application is used in conjunction with some type of media that provide a sense of

presence such as video and audio. The reason is that if audio or video or both are present,

users have a sense of "awareness" of each other, which in turn requires the shared

application to respond within a time that maintains that awareness. For example, imagine

thee engineers who are collaboratively designing a bndge in a live session. One of them

highlights a section of the bndge and says: "I think this part should bc redesigned". If they

are using real-time audio confcrencing (end-to-end audio delay of 100 msec), then the

delay of the shared application must comply with the above numbers in order for the other

two engineers to receive the audio message and the event update in such a way as to

maintain the real-time quality of the session. This is usually the case in controlled IP

environments such as local networks or corporate IP networks.

In the case of typical Internet comechons, where audio and video delays are not

controllable, or in the absence of audio or video, resirict delay Parameters make little sense

bccause the users have no time-wise perception of one another. In such instances, when a

User receives an update message, the User has no way of knowing when an actual action

occurred. So, even a delay of 5 seconds or more might be acceptable depending on the

nature of the application under such circumstances.

Our perfonnance evaluations are done for a controllable environment, where real-time

charactenstics are requircd and can be supported.

4 . 1 Parameters of Interest

The most common parameter that measures the quality of a collaborative application is the

Client-to-Client Delay (CCD). CCD tries to measure the average time it takes for an

update message to reach other users. It includes all layers between the two clients,

including application, transport, nehvorking, and physical layer delays. However, at the

application level, it only measures the time it takes for a sender to send or a receiver to

receive the update at the application layer. It does not include the delay caused by what

the application does with the update because that is application-dependent. For example,

when a line is drawn in a shared whiteboard, CCD measures the average delay from the

time the sender application assembles and sends the update message until the time the

receiver receives the message and extracts the data from it, just before it makes a graphics

call to actually draw the line. Hence, for an overall delay, one must also add the average

on-the-screen drawing time, referred to as Rendenng Delay, which really depends on the

capabilities of the graphics, memory and processing power of various client machines and

therefore not constant for all clients. As another example, if one User Opens an image in a

whiteboard, what we measure is how long it takes for the "open-image" message to reach

all clients. We don't measure how long it takes for the receivers to actually download the

image from a given URL and show it on their screen, because we can't control those

delays and they are not related to the collaboration system shown in figure 1.

As mentioned earlier, the server processing time per packet increases with increasing

number of simultaneous users. This is due to one-to-one TCP connection-onented nature

of the system; the server needs to send the update info to each client one by one. This

Server Processing Delay (SPD) adds to the overall end-to-end delay of the system and

must be taken into account when calculating maximum number of users supported by the

system.

As mentioned in section 3.3, Another interesting Parameter is the Floor Control Delay

(FCD). This is the average time for a User to take control or be denied taking control of an

application and measures how intuitive a system is. A system with a smaller FCD is more

'hatural" and behaves more naturally than a system with a larger FCD.

4 . 2 Testing and Results

We tested CCD, SPD, and FCD of JASMINE over both local area network (LAN) and

telephone modem access. During the testing, all machines were running their usual

background processes related to the network and the operating System. The testing

configuration is shown in figure 12.

pentiurn 333- 11 H
Pentiurn I1 Peniium I[

h4hz 333 Mhz

Figure 12. Network configuration for LAN tests

All machines were mnning JDK 1.2 on Windows NT 4.0 Workstation. In addition, two

133 Mhz Pentium machine mnning Windows 95 were used to dial-in into the LAN with

28.8 kbps rnodems over phone lines. The result of the tests are shown next.

4.2.1 CCD Test

For the CCD test, we had a "sender" applet send an event to a "receiver" applet. Upon

receiving the event, the receiver applet extracts all necessary data ftom the packet,

reassembles the event, and sends the event back to the sender. The sender does the sarne

hing and resends the event, and so On. This is repeated for a given duration, which was 10

minutes in our tests. The result of this test was an average CCD of 150 msec on the LAN,

and 370 msec between the clients behind 28.8 kbps modern. It is worth mentioning that

the transmission delay of the very first event took 750 msec and 2.5 sec on the LAN and

modem, respectively. We believe this to be attributed to the Just-in-Time compiler (JIT)

utility of JDK 1.2 which cornpiles the interpreted bytecode of a given rnethod into native

code, the first time that rnethod is called, causing a one-time-only larger than usual delay.

0 50 100 150 200 250 300
Packet Size (inlegsrr)

Figure 13. JASMINE CCD results (packet-based),

As argued in section 2.2.2, the System must also be able to send data between clients in

addition to the event updates. It is interesting to know the delay of sending such data. We

therefore repeated the CCD test for data exchange, this time for data different packet

sizes. The result is shown is figure 13. The packet size is measured in number of integers

sent per packet. Even though it is very unlikely that a synchronization or control rnessage

of size 500 integers is sent in one packet, we did extend our test to that limit to see the

effect of very large update messages. Figure 14 shows the same test performed over 28.8

Kbps modern access instead of 100 Mbps Ethemet.

Figure 14. JASMINE CCD results over modem line (packet-based).

4.2.2 SPD Test

For the SPD test, we had the sender applet flood the server with event updates. Then we

had the receivers (up to 45) calculate the average delay behveen receiving adjacent

packets from the server. As expected, this delay increases with increasing number of users

as Seen in figure 15. Figure 16 shoas the Same test performed for data updates. Note that

due to floor control and moderation, no more that one client at a time can send events to

the server, a Scenario, which is typical of collaborative applications.

Figure 15. JASMINE Server Processing Delay.

Figure 16. JASMINE Server Processing Delay (data).

We can see that the delay increases linearly. This is due to the fact that the server spends

equal amount of processing time per packet per client; therefore it increases linearly with

increasing number of clients.

4.2.3 FCD Test

For the Floor Control Delay, we had a client constantly ask for control, and release it upon

receipt, for a given amount of time. The average FCD turned out to be less than 5 msec,

which afirms the intuitiveness of the floor-control mechanism of the System.

4 . 3 Subjective evaluation

We also tested a few applets, including a typical whiteboard application, as seen in figure

7, with up to 5 users sitting next to each other and able to See one another's screens. The

applications responded in a natural manner in terms of the feel and interactionlperception

of the whiteboard. The visual updating delay between the screens of the workstations was

very small yet detectable by the naked eye.

4 . 4 Analysis

As mentioned before, the recommended overall end-to-end delay is less than 1000 msec,

with less than 200 msec required for closely-coupled collaboration. This delay includes the

CCD, the SPD, and the on-screen renderinddisplay delay corresponding to the

application's GUI. As argued previously, the rendering delay (RD) is not constant and it

depends on the hardware/OS/platform used.

From the CCD and SPD tests, we can approximate the overail delay as:

delay = CCD + SPD + RD;

kam figure 15: SPD = 0.142* N, where N is the number of users;

hence:

I
delay = CCD + 0.142* N + Rü

which roughly represents the delay expenenced from the time an event is generated due to

a client's interaction until that interaction is shown on the screen of all other clients.

Figures 17 shows achievable nurnber of users based on the expected overall delay, for

different r e n d e ~ g delays @D).

6000

5000

4000

B
3000

j
2000

I000

0
0 100 ZOO 300 100 600 000 700 800 900 3000

Dsls" lrnrec)

Figure 17. Number of users supported by the system.

Figures 18 shows the same thing with focus on tightly-synchronized tasks (delayc200

msec).

MBXlmYm "Umber 01 U6818 S~pp011BOIs On LAN IIighlly-eynchroniiedJ
350

1

Dclsy (nrcc)

Figure 18. Number of users supported by the system (delay < 200 msec).

Finally, figure 19 illustrates number of users supportable with 28.8 Kbps modem access.

Maximum n u m b i r 01 ussrri aupportabla an 28 .8 m o d m
5000

1600

1000

3100

3000

3 2500 0
f 2000

1600

1000

500

0
300 100 100 600 700 800 800 1000

oa lay (mrir]

Figure 19. Number of users supported by the system (modern access).

By looking at the above graphs, we can conclude that the system can support "many"

users. Even though the plots suggest that theoretically thousands of users can be

supported, the fact is that the actual number of users supportable is less. The reason is that

the linear behavior of the system diminishes as the number of users increase: the

performance of the machine running the server decreases substantially as we approach the

limit of maximum allowable socket connections on the m a c h e , also the underlying

physical network becomes slower with increasing number of users. So the hardwareIOS of

the server machine and the network either cannot support so many simultaneous users, or

their performance decreases significantly. Nevertheless, this shows that the underlying

communication module of JASMINE can support small-size and medium-sized

collaboration sessions of hundreds of users, resource permitting.

5. Related Work

There are many Java-based collaboration systems, none of which offer a management or

moderation feature similat to ours. Kuhmünch [10] at the University of Mannheim

developed a Java Remote Control Tool, which allows the control and synchronization of

m~ q .paaarqx s! uo!)e~oqe1103 AEM aqi s! msvi pm mi uaawaq a3uaIajjF

aq1 'suoge3!~dde lasn-al%u!s jo uo!le1oqe1103 lwledsmq aw :aa!parqo sp jo suua]

ur q3eoldde mo 01 le[nurs . . s! qqm 'uralsAs e SI [8] (mi) lasnrfn~ ap~ sla~ddv eher

.aageloqeIIo3 I! ayew 01 laplo U! qqel3s wog uo!]e3![dde

mau E luaura~dw! pm uä~sap 01 10 J! %uguawa1dw!-a~ 'uo!le3!1dde ur? jo apo3-a3mos

aql %?A~!pow jo po3 aq seq q3g~ '~fl m jo asn aqi asodo~d saq3eoldde asaq

'[E] sluauodwo:,

MV-3 8u!puodsauo3 aw Lq pa3e1da~ aq lsnw sluauodwo3-~~v q3eoldde s!ql

q '(MV-3) LMV a~!1e~oqe1103 pa11e3 [zl LMV-e~ei aqljo uo!slaA papuaixa m qrn\

dn %u!w03 (LSIN) L%olouq3aL pm splepm]~ jo alnIgsuI ~euo!le~ arl)]E pado~aaap uaaq

seq (331)]uauruol!hu3 aqeloqe[[o3 EAE~ .al!s luaq3 aql uo paIIe]su! pur? papolurnop

aq 01 JasMoJq hlaudo~d e paau q3rq~ "sla1dde~,, palp-OS sasn walsAs olamqeH aq)

'las~o~q hha lsouqe u! pappaqura aq m3 q3g~ 'slaldde 8u!sn jo pealsuI '4!1euo!puy

aAgeloqeIlo3 Mau aq aleBalu! 01 paqpow aq 01 seq q3g~ uo!le3!1dde lasn-a~%u!s %ugs!xa

m %uuap Lq 10 q:,lel:,s wog auo Mau E %u!do[a~ap Aq laq!a 'suo!le:,!~dde paleqs alea13

01 sladolaaap sdlaq le~ y1oMamg E smia] SI! U! s! o1amqeH .siuamuol!hua aa!]eloqello:,

jo iuamdo1ahap aq] s~oddns leq q:,eoidde m s! [L] olamqeH '[SI] ylon\ami?g

paseq-1fl m osle s! UoSeAei wog (Lag) lqoo~ elea paleqs eher aqL .sla~dde

alomalo]/ wog siuar\a puas 10 pm aAra:,aJol Japro U! paqpow aq lsnw laldde aq u!~!M

8u!lpmq ~uaha aq) oslv .ia[dde aql jo ~opnqsuo:, arl) U! auop A11ensn s! q:,g~ 'l3arqo

~ua!l3-loquo3-alou1a~ e ale!lp! lsnw laldde h~a smaw 'ah!]i?loqello:, I! ayew 01

laplo U! slaldde 10 uo!~e:,r[dde aql jo apo:, a:,mos 1eu!%uo arl) 01 ssa:,:,e aheq 01 hssa:,au

SI . 11 . leq s! q3eo1dde sw jo y:,eqMeIp au .slaldde pm suo!le:,!ldde eher palnqgslp

[6] , the set of applications that can be shared is constrained to those that are developed

using Swing User interface components as part of Java Foundation Classes, which are part

of the standard JDK since version 1.2. JAMM's set of applications is furthermore

restricted to those which implement the Java serializable interface.

Conclusion

We presented the architecture and implementation of our transparent collaboration

frarnework for Java applets and applications. We developed this architecture in order for

users to be able to collaborate via collaborative-unaware applications and applets without

modifying the source code. Our architecture enables us to use almost all single-user

applets and applications in a collaborative way. We have successfully tested our system on

a number of applets. We also observed that using the TCP-client-server approach of our

comrnunication module can suppori relatively large number of users. However, when

reliable multicasting becomes more practical in the future, it would be more logical to

replace the current comrnunication module with one which is RM based.

There are two outstanding issues remaining. These issues are not directly related to

JASMINE but are research areas of the transparent collaboration paradigm. The first issue

is that of latecomer-support. When a User starts a session later than other participants,

there is a need to bring this User up-to-date as opposed to start from scratch. This can be

acheved either by sending the entire object state of the shared application to the

newcomer using object senalization, or by sending all the events occurred up to now to

the new User so that it follows the same sequence of events that other participants have

gone through [I 21. We're currently using JASMINE to expenment with these methods.

Another issue was brought up in 2.2.2: multimedia inter-client synchronization and

control. Transparent collaboration cannot address t h s issue alone and we believe that

using an API is necessary to achieve such iünctionality for multimedia applications.

Today, computing environments where Java applications and applets are running over IP

have become very popular and widespread. Our architecture helps people to collaborate in

such environments easier.

Acknowledgments

The authors achowledge the financial assistance of the Voikswagen Stifftung, Germany,

as well as the Teleleaming Network of Centers of Excellence Canada (TL-NCE) and the

Natural Sciences and Engineering Research Council Canada (NSERC).

References

[I] A. Chabert et al, , "Java Object Sharing in Habanero", Communications of the ACM,

Volume 41, No. 6, June 1998, pp. 69-76.

[2] H. Abdel-Wahab et al "An Intemet Collaborative environment for Shanng Java

Applications" IEEE Computer Socieiy Workshop on Future Trends of Distributed

Computing Systems (FTDCS197), October 29 - 31, 1997, pp. 112-1 17.

[3] H. Abdel-Wahab et al, "Using Java Jor Multimedia Collaborative Applications "

Proc. PROMS'96, Madnd, Spain, 1996.

[4] Handheld ZP Connectivity for 1998, IEEE Intemet Computing, Vol. 2, No. 1,

JanuaryiFebniary 1998, pp. 12-14.

[SI International Data Corporation, "IDC's Forecast of the Worldwide Information

Appliance Marketplace 1996-200lW, IDC Bulletin #w15080, December 1997, (screen

phone revisions 5/7/98).

[6] Abdulmotaleb E1 Saddik, Oguzhan Karaduman, Stephan Fischer, and Ralf Steinmetz.

"Collaborative Worhng with Stand-Alone Applets". In Proc. of the 12th International

Symposium on Intelligent Multimedia and Distance Education (ISIMADE'99), August

1999.

[7] J. Begole et al, "Leveraging Java Applets: Toward Collaboration Transparency in

Java", IEEE Intemet Computing, March-April 1997, pp. 57-64.

[SI J. Begole et al, "Transparent Sharing of Java Applets: A Replicated Approach". Proc.

Symposium on User Interface Software and Technology, ACM Press, NY, 1997, pp.

55-64.

[9] J. Grudin, "Computer-Supported Cooperative Work: History and Focus", IEEE

Computer, Vol. 27, No. 5, May 1994, pp. 19-26.

[10] Kuhmünch et al, "Java Teachware - The Java Remote Control Tool and its

Applications", Proc. ED-MED1A198, 1998.

[I 11 Multimedia Communication Fomm Inc., "Multimedia Communication Quality of

Service", MMCF document MMCFl95-010, Approved Rev 1.0, September 24, 1995.

[12] S. Shirmoharnmadi et al, "Applet-Based Telecollaboration: A Network-Centric

Approach", IEEE Multimedia, Vol. 5, No. 2, April-June 1998, pp. 64-73.

[13] Stephan Fischer and Abdulmotaleb E1 Saddik, Open Java: Von den Grundlagen zu

den Anwendungen. Springer-Verlag, ISBN: 3540654461 (1999).

[14] K. Obraczka, "Multicast Transport Protcols: A Survey and Taxonomy", IEEE

Communications, Vol. 36, No. 1, 1998, pp. 94-102.

