
Component-based framework for effective visualization of
educational algorithms

Abdulmotaleb El Saddik1, Stephan Fischer1, Ralf Steinmetz1,2

Introduction

A vast amount of animations has been generated in
the last few years, caused by the rapid growth of the
WWW in combination with languages like Java and
VRML. However, these animations often have some
major drawbacks, such as:

• Video-like nature of animations. Most of the
animations being used to visualize complex
algorithms and techniques cannot be influenced
by the user. S/he can only watch the ongoing
animation and try to understand the underlying
theory. As the only available form of interaction
most animations use parameters to change the
output.

• Experiments. The user cannot change the
behavior of applets by omitting certain steps or
by adding or exchanging components.

• Connection of animations. Most applets
available nowadays are running in a stand-alone
mode. The user, e.g. cannot connect an
animation of a video decoder to that of a
network and study the resulting effects.

• Reusability. Many animations have been devel-
oped without regard to software engineering in
terms of reusability. The animation of JPEG [4]
and MPEG [2] serves as a good example: Even
though both compression schemes use the
Discrete Cosine Transform (DCT), and the
Huffman encoding, a reuse of a component
coming from an already finished animation of
JPEG can in most cases not be used to visualize
a step of the MPEG-compression process.

• Hierarchical structure. Most applets do not deal
with changing user requirements. Beginners, as

well as intermediate students and experts
become nowadays the same animation.

Offering support through interaction

Before presenting the architecture of the ItBeanKit
the requirements for such a toolkit must be
identified: namely interaction and support of the
learner.

Interaction implies that the learner is guided in the
sense that he can get feedback if problems emerge.
Assuming that the handling of the toolkit itself is
intuitive such problems can only result from the
difficulty of the topics to be learned. The difficulty
of an algorithm to be animated can result either from
the knowledge of the learner which might not be
sufficient to understand the topic or from the amount
of information presented by the animation. If the
user’s knowledge is not sufficient to understand
parts of an algorithm we offer two possibilities to
create the corresponding knowledge: a user can read
a short explanation of the part of the algorithm he
currently executes or he can invoke the chapter of
the textbook explaining the underlying theory in
depth. The latter includes search functions to get a
more specific way of explanation.

The processing of an insufficient knowledge of a
learner is performed in a traditional way by using
hyperlinked multimedia documents. The second
problem however, the density of the presented
information has to be dealt with by another
approach, the use of levels of complexity. The idea
behind a level of complexity is that a user can
reduce the information density of a part of an
algorithm by splitting the part of an animation
he/she is currently using into a particular number of
steps which can be understood easier equivalent to a

1 2
Industrial Process and System Communications GMD IPSI
Dept. of Electrical Eng. & Information Technology German National Research Center
Darmstadt University of Technology for Information Technology
Merckstr. 25 • D-64283 Darmstadt • Germany Dolivostr. 15 • D-64293 • Darmstadt • Germany

{abed, Stephan.Fischer, Ralf.Steinmetz }@kom.tu-darmstadt.de

In: H.-J. Bullinger, P. H. Vossen (Eds.): Adjunct Confernce Proceedings of HCI International '99.
Stuttgart:Fraunhofer IRB Verlag, 1999.

smaller information density. This process is shown
in Figure 1. While C stands for complexity, the
upper index denotes the level, the lower the number
of a component.

Figure1: Levels of complexity

We distinguish between two kinds of interactions the
user is provided with: content dependent interactions
and content independent interactions.

Content-Dependent Interaction
Model
These interactions are strongly bounded with the
topic to be visualized:

• Variation of parameters of a running (interactive
teaching Bean) itBean

Ø Visualization (level of complexity)
Ø Animation (speed, background color, fore-

ground color,..)
Ø Simulation (interactions by the user inter-

face)

Content Independent Interaction
Model

Figure2: User interface of component beans

This model represents those interactions, almost all
developed applications will have in common:

• Guiding the user

Ø Help function
Ø Guided tour
Ø Step function

• Language (at the moment we are supporting:
English, German, Spanish)

• Explanation (Errors, Hints, Audio)
• Look And Feel (Java, Windows, Motif)

Conclusion and outlook
In this paper we described a component-based archi-
tecture for animations using JavaBeans. Our
approach extends other concepts by the use of
hierarchies thus supporting the learner in an efficient
way. To achieve a common look-and-feel we
separate the graphical output from the itBean itself.

At the moment we study how the itBeankit can be
integrated in a test environment. Instead of using
multiple choice students can experiment with
components. If these are given the student has to
prove his knowledge by finding the right order in
which the components have to be placed. It is thus
immediately possible to observe if the answer is
correct or not because the result is presented
graphically. If a learner places the entropy encoding
of the JPEG-compression in front of the DCT the
result will change significantly.

References

1. Land, B. R.: Teaching computer graphics and
scientific visualization using the dataflow, block
diagram language Data Explorer. In proceedings
of the IFIP WG 3.2 Working Conference on
Visualization in Scientific Computing, Uses in
University Education, Irvine, USA, pp.33-36,
1994.

2. Joan L.Mitchell, William B. Pennebaker, Chad
E. Fogg, and Didier J. LeGall: MPEG video
compression standard. ISBN 0-412-08771-5,
Chapman &Hall 1997.

3. Wernert, E.: A unified environment for pre-
senting, developing and analyzing graphics
algorithms. Computer Graphics, 31(3), pp. 26-28,
1997

4. Steinmetz Ralf, and Nahrstedt Klara: Multimedia
computing, communications, and applications.
ISBN 0-13-324435-0, Prentice Hall 1995.

C
1
1

C
1

2 C
2

2 C
3

2

C
1

3 C
2

3 C
3

3

Level1

Level2

Level3

