
Resource Management for Multimodal

and Multilingual Adaptation of User Interfaces
in Ambient Assisted Living Environments

Carsten Stocklöw1, Andrej Grguric2, Tim Dutz1, Tjark Vandommele,
and Arjan Kuijper1

1 Fraunhofer Institute for Computer Graphics Research,
Fraunhoferstr. 5, 64283 Darmstadt, Germany

2 Research and Innovations Unit, Ericsson Nikola Tesla d.d.,
Krapinska 45, 10002 Zagreb, Croatia

{carsten.stockloew,tim.dutz,arjan.kuijper}@igd.fraunhofer.de,
andrej.grguric@ericsson.com, tjark vandommele@gmx.de

Abstract. Providing multimodal user interfaces in Ambient Assisted
Living scenarios is a challenging task due to large variety of modalities
and languages that can be used as well as impairments and preferences of
end users. Creating an application that can cope with this multitude of
presentation possibilities is highly complex. However, by separating the
application from the presentation layer and representing the dialog in
an abstract form, it is possible to perform adaptations according to the
output parameters. In this work, we present the concept for a Resource
Server for multimodal and distributed systems which is capable of stor-
ing different kinds of resources and associated metadata, and adapting
abstract dialogs. We propose the introduction of a presentation identi-
fier as placeholder for a set of concrete resources, a two-stage mapping
between identifiers, and a selection algorithm to cope with the problem
of multiple matching resources.

Keywords: Ambient Assisted Living, User Interaction, Resource Server.

1 Introduction

Ambient Assisted Living (AAL) comprises methods, technologies, products, and
attendances applied to improve the quality of life for people of all ages. Consider-
ing predictions of the demographic changes in western societies, AAL particularly
focuses on elderly and differently abled people. These user groups often suffer
from a large variety of impairments, which makes it necessary to provide highly
adaptive user interfaces [1]. By separating the application from the presentation
layer and describing the user dialogs in an abstract and modality-independent
way, it is possible to perform adaptations in accordance with a user’s needs
and preferences. By allowing descriptions of user interfaces in declarative and
abstract terms much flexibility is gained, which especially becomes useful in
multimodal systems. In such a scenario, the modality with which a dialog is

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2013, Part III, LNCS 8011, pp. 97–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

rst
Textfeld
C. Stocklöw, A. Grguric, T. Dutz, T. Vandommele, A. Kuijper: Resource Management for Multimodal and Multilingual Adaptation of User Interfaces in Ambient Assisted Living Environments. In: C. Stephanidis, M. Antona: Universal Access in Human-Computer Interaction. Applications and Services for Quality of Life - 7th International Conference, UAHCI 2013, Held as Part of HCI International 2013, Springer, July 2013. ISBN 978-3-642-39193-4. 



98 C. Stocklöw et al.

presented is not chosen by a specific application, but by an underlying system
that has access to information about the user’s profile and about the system’s
contextual state. A presentation of this dialog is then created by the system
according to the selected modality. Thus, the developer of an application can
entirely focus on the application’s functionality and does not need to devote
energy to the problem of how to handle different modalities.

However, this approach has one major drawback. The resources (such as im-
ages, texts, audio files, etc.) needed to create a presentation of an abstract dialog
have to be provided by the application. As a software developer for the AAL
domain, it is almost impossible to predict the available devices and the required
modalities upfront. Therefore, the developer has two options. Firstly, he could
offer large amounts of different resources and try to cover each modality, device,
and language. Or secondly, he could focus on covering only a few, specific use
cases and only provide the necessary resources for those; thereby reducing the
addressed group of end users that can use the application. Both options are not
suited for AAL environments, because they either require too much work on the
developer’s site, or might render the application practically useless.

As a consequence, we propose the introduction of a Resource Server for man-
aging the individual resources of user interfaces in AAL systems. This new com-
ponent is capable of storing different kinds of resources and associated metadata,
integrating additional resources, and providing resources to components of the
system. Furthermore, we propose the idea of using unique identifiers (Uniform
Resource Identifiers, URIs) for elements in the abstract dialog description for
referencing a set of resources independently of specific modalities. This iden-
tifier (presentation-URI ) is used to adapt the dialog according to the concrete
modality, possible access restrictions and preferences of the end user. A two-stage
mapping is used to map the identifier to a set of concrete resources to provide
the possibility to map the identifiers themselves in case that two or more dif-
ferent identifiers are used by different applications to describe the exact same
resource. This way, our approach also provides the option to reuse resources of
other applications easily in order to further simplify the development of new
products. The mapping can be changed and extended at any time even while
the system is running - the changes applied will then be taken into account for
all subsequent dialogs.

Furthermore, we incorporate a selection algorithm to cope with the problem
of more than one matching resource. This algorithm uses different classes of
restrictions to compare them to the available resources for each presentation
identifier and selects the most suitable of them. With those restrictions, it is
possible to map the situation in which a dialog will be presented. Specifically the
user’s preferences, the chosen modality, the features of the selected output device
and the capabilities of the component that creates the dialog’s presentation can
be modelled by those restrictions.



Resource Management for User Interfaces 99

2 Related Work

The idea of a resource server for intelligent, multimodal and distributed systems
was also proposed by Zimmermann and Wassermann and was implemented by
the URC-Consortium1[2]. They define a resource server as “a platform for the
storage, processing and retrieval of information related to user interfaces for
service environments”[3]. To access the resources the software developer can
either use a web front-end or a HTTP-Protocol, which was specifically created
for this system [4]. However, this system is focused on the provision of complete
user interfaces which limits the re-usability of individual resources.

Ponnekanti et al. [5] propose a system called iCrafter to automate the creation
of user interfaces for distributed systems. For that purpose they use specialized
Interface-Generators, that are capable of creating an interface for a previously
defined functionality. In order to select which generators are used, the user has
to specify the funtionalities that will be used. This is done with the help of
a designated device that runs an Interface-Manager, which has knowledge of
the available functionalities. Therefore, this Interface-Manager is the link be-
tween the hardware the user wants to use and the functionalities of the system.
When the user has chosen the desired services, suitable Interface-Generators
are selected and the corresponding interfaces are created. In that process a
Generator-Database is used by the generators to obtain information about the
functionalities, like the positions of the respective hardware.

The Personal Home Server, discussed by Nakajima et al. [6], is another con-
cept for creating personalized user interfaces autonomously. This approach uses
a beacon, such as a mobile phone or a special watch, to store information about
user interaction related preferences. The user has to carry this beacon so that it
can send information about the user’s preferences to any device in the vicinity
that might use a user interface. This way, the interface can be personalized for
the user. Using this system as a resource server, however, is not feasible. As this
system is decentralized, it is costly to integrate new resources into the system.
Furthermore, because of the use of wireless technology, bandwidth shortages
might occur. This can slow the system down if it is used in an environment that
contains many output devices, such as an AAL-system.

3 Concepts

3.1 Architecture

Figure 1 shows the overall architecture of the system. By separating the applica-
tion layer from the presentation layer and representing the dialog in an abstract
form it is possible to provide adaptions to the dialog. The idea for such a separa-
tion is not new, the most prominent example is the World Wide Web which uses
a webserver as UI Provider, a browser as a UI Handler, and HTML as format

1 http://www.myurc.org

http://www.myurc.org


100 C. Stocklöw et al.

for dialogs. The Resource Server can then be integrated in this system as a com-
ponent that can be called from the UI Handler because only the UI Handler has
knowledge about the concrete capabilities of the output device. In the follow-
ing sections we will describe the different components of this architecture and
section 4 will detail the integration of the Resource Server in an AAL platform.

UI-HandlerUI-Handler UI ProviderUI-HandlerUI-Handler Network

Output
Device

12

4

Resource
Server

3

Fig. 1. Architecture

3.2 Presentation-URI

In a system without a Resource Server, the resources needed for a user dialog
are being provided by its corresponding application. When developing such an
application the programmer specifies which resource to use for which element
of the dialog in the abstract description of that dialog. As these resources are
not abstract but concrete, the dialog description is not truly abstract itself. As a
consequence, such a dialog can only be used for output devices that support all
the used resources, which greatly reduces its flexibility. Moreover, in a distributed
system the software developer has no information about the location of the
resources once they are managed by the Resource Server.

For these reasons we propose the usage of a presentation-URI. Such a
presentation-URI is the abstract description of a resource which is associated
with a set of concrete resources. This set contains resources that all represent
the same data in different ways. For example there could be an audio file in
which a person says ‘sunny’, several text files with the word ‘sunny’ in different
languages or multiple image files of different resolutions with a sun and even
images containing text in different languages.

When developing an application for a system with a Resource Server the
developer uses the presentation-URIs in the abstract dialog description instead of
concrete resources. As no concrete elements are left in the dialog description it is
truly abstract and can be used for any output device. Which concrete resource is
used to present a dialog has to be determined by the Resource Server, which uses
information about the user, the chosen output device and the current context to
find the most suitable resource for each presentation-URI.

In order to provide for an easy reuse of resources provided by other appli-
cations, the presentation-URIs can also be associated to one another. This way
multiple applications that use the exact same resources but address them with
different presentation-URIs can access the same resources. Therefore, it is suffi-
cient to store each resource once and maintenance of the resources is simplified.



Resource Management for User Interfaces 101

The mapping of resources to presentation-URIs as well as the mapping of
presentation-URIs to each other can be changed and extended at any time while
the system is running. These changes will then be taken into account for all
subsequent use of the resources.

3.3 Server Component

The core of the Resource Server is its Server Component. It stores and man-
ages the resources of all applications and distributes them to the elements of the
system that intends to use them. For that purpose it receives requests by the
system which it answers by sending either information about resources or the
resources themselves. The requirements for the server component are:

Storing Resources: This is the core functionality of the server component.
As it is not possible to predict which kind of resources will be used by the
applications, the Resource Server must be able to store resources in all common
formats as well as newly defined file types. Furthermore, the Resource Server
has to prevent resources from accidentally being altered by other components of
the system.

Storing Metadata: In addition to the resources themselves, the Resource
Server also needs to store metadata that describe the contents of the resources.
This metadata is important for determining which resource to use if there are
multiple resources from the same file type for one presentation-URI. Due to the
fact that it is not known which property distinguishes two resources of the same
set, the system has to be designed in a way that allows the developer to de-
fine new metadata categories. However, for compatibility reasons some common
categories like ‘lang’ for language should be defined by default.

Searching for Resources: In order to provide a maximum flexibility in the
usage of the resources, the server component has to be able to search for re-
sources. In other words it has to be possible to find a resource not by addressing
it with its presentation-URI, but by defining a set of properties and filtering the
metadata of all resources for those properties.

Aggregating Resources: For the purpose of reducing the delay caused by
transmitting the resources to the different elements of the system, the Resource
Server should be able to aggregate multiple resources before they are sent. Es-
pecially when many small resources like text snippets for buttons, labels etc.
are requested, it is inefficient to deliver each resource separately. Preferably, the
system would request all those resources at once and the resource component
would aggregate them either in one file or with the help of an archive file. While
combining several resources in a single file is simple and intuitive, it only works
if all resources are of the same type and if that file type can be aggregated at
all. More flexible is the use of an archive file, which may contain all kinds of
resources. On the other hand, that approach needs some additional computing
of the server component as well as the component that requests the resources.
Therefore, there can be cases in which aggregating resources cannot reduce the
transmission delay.



102 C. Stocklöw et al.

There are several server technologies that can be used to fulfill the require-
ments mentioned above. The easiest way would be to use the file system of
the underlying operating system. The resources would be stored in a specific
folder and for each resource a text file would be created which would contain the
metadata of that resource. However, when searching resources by their proper-
ties, each of those text files would have to be opened and analyzed which is very
inefficient. A better approach would be to use a relational database to store
the metadata. In that case, a database with three tables would be created to
provide a maximum of efficiency when searching for resources.

The first table, called resources, contains mandatory information about every
resource stored on the server component. The primary key, which is needed
in every table of a relational database, would be an automatically generated
resource ID (R ID). Furthermore, there are fields that save which application
stored the resource (bundle), its file name (filename), the corresponding file
extension (fileextension), the path in the file system where the resource is stored
(path) and its presentation-URI (uri).

The second table contains the metadata of all resources and therefore is called
metadata. In this case the primary key is a combination of the field’s resource ID
(R ID) to specify which resource this property belongs to, the category of the
property (category) and a field called (value no). The third component of the
key is necessary because it is possible that a category of metadata has several
values simultaneously. The last field of this table is called value and contains the
actual information about the resource.

If any resource is used by more than one application the different presentation-
URIs for that resource are associated with each other, as mentioned above. The
presentation-URI which is already connected to the resource will become the
‘master’-URI while the other will be called ‘slave’-URI. This information will
then be stored in a table called URI-mapping, which consists only of the fields
slave (primary key) and master.

Figure 2 shows an example of a resource and its metadata stored on the server
component.

sun.jpg

Metadata:
hpixel = 50
vpixel = 60
color = true
lang = de
keywords = sun, sonnig

resources
R_ID
1

bundle filename fileextension path
weatherForecast sun .jpg mypath

metadata
R_ID
1
1
1
1
1
1

category value_no value
hpixel 1 50
vpixel 1 60
color 1 true
lang 1 de

keywords 1 sun
keywords 2 sonnig

uri
myuri

Fig. 2. Storing metadata of a resource in a relational database

3.4 Client Component

Although multiple servers are possible, the typical realization of this scenario
contains only one server in an intelligent environment. If this environment is
designed as an open distributed system then potentially multiple nodes can



Resource Management for User Interfaces 103

access the functionalities of the server. To simplify the integration of different
UI Handlers with the Resource Server, a client component can be integrated
into the system which takes care of mapping the presentation-URIs to concrete
URLs used by the UI Handler. It ensures the connection between the system and
the server component and mediates the requests and responses between them.
Thus, only little changes to the UI Handler have to be performed to include
functionalities of the Resource Server.

Another benefit of this approach is that it is possible to use specialized client
components. For example, if a component of the system is written in a different
programming language, a client component that is capable of processing requests
from this component can be used. This way access to the Resource Server is
flexible and it can be used by every component in the system.

3.5 Selection Mechanism

In most cases each presentation-URI will be associated with more than one
resource, which yields the necessity of a selection mechanism. Although other
approaches are possible, this selection will take place in the client component, as
mentioned above. This is due to the flexibility in the usage of specialized client
components, which can be exploited to implement different selection strategies.

We propose a universal selection mechanism to select resources for a user dia-
log, which can be altered to meet the needs of different scenarios. This mechanism
uses information about the current context, the capabilities of the UI-Handler
and the output device to create restrictions. Additional restrictions may be sup-
plied by the application that wants to display the dialog. Those restrictions are
then compared with the metadata of each resource to determine if it is suitable
for the dialog.

The most important information is which types of resources can be processed
by the UI-Handler and its output device. This constraint is heavily dependent
on the modality that was chosen for the dialog but can also be influenced by
the UI-Handler and the output device. For example, if the dialog shall be pre-
sented visually, all acoustic resources can be ignored. In addition to that the
UI-Handler might not be able to render HTML files, thus those can be omit-
ted as well. Therefore, the UI-Handler has to submit information about which
MIME-types can be processed (whitelisted) and which cannot (blacklisted). Due
to the importance of this information, the server component uses the file exten-
sion of each resource to determine its MIME-type automatically and saves it as
a property in the metadata table. This ensures that the MIME-Type is set for
every resource and can be used for the selection.

To ensure an efficient comparison of the resources and the restrictions, the
latter should be divided into three classes:

1. Must have: Those restrictions define properties that a resource has to con-
tain in order to be selected. Otherwise, the resource will be ignored.

2. Must not have: Properties that are described in this class are not allowed
to be present in the metadata of a resource.



104 C. Stocklöw et al.

3. Nice to have: Restrictions in this class do not reduce the number of can-
didates for a presentation-URI. Instead, they are used to rate the remaining
resources if more than one meets the restrictions of the other classes. In that
case a resource is awarded one point for each nice-to-have-restriction it ful-
fills. Afterwards the resource with the highest score is chosen unless there
is more than one resource with a top rating, in which case one of those is
randomly picked.

Although it is possible to select a resource with those three classes of restrictions,
this system is very inflexible and cannot cope with the variety of properties that
can be stored in the metadata of the resources. Therefore, an additional attribute
that describes the type of a restriction has to be applied. Possible attributes are:

– if set: This attribute states that the restriction shall only be evaluated for
resources that contain a value for the corresponding property. For example, a
resource might not contain any information regarding its language, because
it is an image that does not contain words in any language. Naturally, such
a resource should still be selectable even if a restriction is given that requires
the language to be English.

– in range: By using this attribute it is possible to define a restriction that
does not expect a specific value of a property, but allows the value to be in an
interval. This can be used to select images with a resolution in an acceptable
range. In addition to the interval boundaries, information whether those
boundaries are inside or outside the interval have to be given.

– x of: This attribute can be used if a set of properties is given and it does not
matter which of those are met, as long as a certain amount is. For example,
it is possible to ask for resources that contain three of five keywords.

– no attribute: Restrictions that do not contain an attribute are still possible
and are evaluated as discussed above.

Further attributes can be defined and are particularly useful for more specialized
selection mechanisms. Consequently those mechanisms can adopt to the diversity
of different resources.

4 Implementation

The concepts described in this work have been applied to the open AAL platform
universAAL [7] which is supposed to become a standardized general-purpose
platform for AAL environments. The universAAL platform is a consolidated
combination of prior work, not following a completely new approach but rather
integrating approved concepts from a variety of projects in this area. By default,
this platform uses an OSGi container (although different containers are possible),
making it easy to integrate additional modules such as the resource client.

Figure 3 illustrates how the Resource Server is, in general, used to provide
resources for an output dialog sent by an application.



Resource Management for User Interfaces 105

UI-HandlerUI-Handler

Dialog
Manager

23

Client
Component

Server
Component File system

Database

5

6

7

UI ProviderUI-HandlerUI-Handler UI Bus

Output
Device

14

8

Fig. 3. Transmission of a dialog from application to output device

1. The application forwards an abstract dialog to the UI-Bus. Since the sys-
tem contains a Resource Server, no concrete resource is used in this dialog.
Instead, the corresponding presentation-URIs are used.

2. The UI-Bus transmits the dialog to the Dialog Manager. This component
adds information about the current context to the dialog and assures that
no other dialog has higher priority.

3. As soon as the Dialog Manager releases the dialog for presentation, it is
returned to the UI-Bus. Using the attached context information, the UI-Bus
decides which UI-Handler will create the output.

4. The UI-Bus sends the dialog including the context to the chosen UI-Handler.
5. The UI-Handler realizes that the dialog contains one or more presentation-

URIs and thus forwards it and the context to the client component. Addi-
tionally the UI-Handler sends information about the capabilities of itself and
its associated output device to the client component.

6. The client component needs four steps to process the request from the
UI-Handler:
(a) First it extracts the presentation-URIs contained in the dialog.
(b) Then it requests the available information about all resources associated

with those presentation-URIs from the server component, using a HTTP-
request.

(c) Afterwards, if any of the presentation-URIs is associated with more than
one resource, the client component uses the information about the con-
text and the UI-Handler to choose the most suitable resource.

(d) Lastly it integrates the path of each selected resource into the dialog.
7. The client component submits the altered dialog to the UI-Handler, which

creates a presentation of the dialog.
8. This dialog is sent to the output device, where it is presented to the user.

5 Future Work

Security: While the operating system can provide some security against attacks
from outside of the system, no protection is provided against malicous applica-
tions that run inside the system itself. These applications can access or alter



106 C. Stocklöw et al.

any resources or metadata, which can result in various problems. Accordingly,
a security protocol with access rights and encryption should be designed for the
Resource Server.

Compression: The aggregation of resources, as discussed in chapter 3.3, has
neither been implemented nor tested yet. This is due to the fact that this concept
requires a major redesign of the components that use resources. In addition to
those changes it has to be evaluated under which circumstances the compression
of resources results in a reduction of the transmission delay.

Web-Frontend: For easy administration of the resources and their metadata
a web-frontend for the server component should be developed. As the nature
of such a component enables it to influence many aspects of a system, special
attention should be paid to its security and privacy features.

Acknowledgements. This work is partially financed by the European Com-
mission under the FP7 IST Project universAAL (grant agreement FP7-247950).

References

1. Hawthorn, D.: Possible implications of aging for interface designers. Interacting with
Computers 12(5), 507–528 (2000)

2. Zimmermann, G.: URC Technical Primer 1.0 (DRAFT). Technical report, Universal
Remote Console Consortium (2008)

3. Zimmermann, G., Wassermann, B.: Why We Need a User Interface Resource Server
for Intelligent Environments. In: Schneider, M., Kröner, A., Alvarado, J.C.E.,
Higuera, A.G., Augusto, J.C. (eds.) Workshops Proceedings of the 5th International
Conference on Intelligent Environments, pp. 209–216. IOS Press (2009)

4. Zimmermann, G.: Resource Server HTTP Interface 1.0 (DRAFT). Technical report,
Universal Remote Console Consortium (2009)

5. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., Winograd, T.: ICrafter: A Service
Framework for Ubiquitous Computing Environments. In: Abowd, G., Brumitt, B.,
Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 56–75. Springer, Heidelberg
(2001)

6. Nakajima, T., Satoh, I.: A software infrastructure for supporting spontaneous and
personalized interaction in home computing environments. Personal and Ubiquitous
Computing 10(6), 379–391 (2005)

7. Furfari, F., Tazari, M.R., Eisemberg, V.: universaal: an open platform and reference
specification for building aal systems. ERCIM News (2011)

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



	Resource Management for Multimodal and Multilingual Adaptation of User Interfaces
in Ambient Assisted Living Environments

	1 Introduction
	2 Related Work
	3 Concepts
	3.1 Architecture
	3.2 Presentation-URI
	3.3 Server Component
	3.4 Client Component
	3.5 Selection Mechanism

	4 Implementation
	5 Future Work
	References




