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Abstract—Mobile ad hoc networks (MANETs) represent a
crucial alternative to deploy applications in urban areas. In
those networks, it is inevitable that all nodes are aware of the
current system state to adapt their behavior according to the
varying conditions. However, existing decentralized monitoring
solutions for MANETs only locate the required information at
a set of nodes, which are in charge of serving the remaining
network, while the availability of information depends on the
accessibility of those nodes. To avoid these limitations, BlockTree
is a novel, fully decentralized monitoring approach for MANETs
that leverages each node’s resources to capture and distribute the
system state to all nodes. Exploiting its hierarchical structure,
BlockTree introduces the concept of location-aware monitoring
delivering detailed as well as aggregated information. Through
robust communication paired with the stateless design, BlockTree
provides accurate results in the presence of fast moving nodes
or over an error-prone communication medium.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) provide the opportunity
to exchange information between handheld communication
devices without the need for a communication infrastructure.
Equipped with a communication module that offers an ad hoc
mode (e.g., Wi-Fi), the devices directly interact with each
other and contribute their resources to enable the deployment
of applications in place. Especially in urban areas, MANETs
represent a viable alternative to infrastructure-based networks
and are particularly useful for applications, where the locality
of interaction can be exploited. Examples comprise mobile
social networks [14], where the interaction takes place between
a group of users, as well as location-based services (e.g.,
Foursquare or academic approaches [3], [20]), where users
consume and generate information about nearby locations [4].

To cope with the varying conditions resulting from the
dynamic nature of the environment, it is essential that the
participating nodes in a MANET obtain the current system
state to adjust the network and the application accordingly.
For example, a monitoring mechanism (i) monitors the access
frequency of the exchanged content to adjust the replication
factor [5], (ii) monitors social metrics [21] or available node
resources [14] to identify highly connected or powerful nodes
for content placement, or (iii) monitors the node density
to identify sparsely populated places [9], as examined in
Section V-C. In contrast to a centralized approach, where a
server processes the monitored data and reacts on the obtained

results, MANETs must cope with the challenge that the data
is distributed over the entire network, while no dedicated
component is in place to capture the monitored data. Once
collected, the dissemination of the generated results among
the interested nodes, which require the information to adjust
their behavior, constitutes another challenge.

Decentralized approaches addressing those challenges al-
ready exist, e.g., for static peer-to-peer (P2P) networks (cf. [8],
[11], [27], [28]). However, those approaches are not applicable
to MANETs, where (i) mobility leads to a highly dynamic
network, (ii) the communication range is limited, and (iii)
the communication medium is error-prone. To tackle those
additional challenges, dedicated monitoring approaches have
been developed for MANETs (cf. [2], [14], [22], [23]). They
all rely on a small subset of nodes, which are in charge of
collecting and storing the monitored information. The data
collection, limited to this subset, leads to the situation that
the information is only available at a few nodes and must
be disseminated to the remaining network. This rather cen-
tralized design reveals several drawbacks: (i) collecting nodes
including their generated results might become unreachable,
(ii) the constantly changing network increases the probability
that request or result messages get lost, and (iii) an election
of responsible nodes must be organized in a highly dynamic
environment.

To overcome these shortcomings of existing approaches, this
paper proposes BlockTree, a fully decentralized location-aware
monitoring mechanism for MANETs. Through its hierarchical
design, BlockTree scales both with the number of nodes and
the spatial network size, enabling to monitor information
in large areas with a varying node density. To address the
locality of interactions in MANETs, BlockTree introduces the
concept of location-aware monitoring, providing detailed in-
formation about a node’s vicinity, while summarizing views on
distant places. For communication, receiver-based contention
schemes [7], [29] are applied to provide reliable data transmis-
sion but avoid unnecessary flooding. Paired with its stateless
design, BlockTree exhibits high robustness and accurately
monitors the system state even in dynamic networks.

In the following, Section II addresses the requirements of
decentralized monitoring in MANETs. Afterwards, the related
work is presented in Section III. Given the required back-
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ground, BlockTree is presented in Section IV and evaluated
in Section V. Finally, Section VI concludes the paper.

II. DECENTRALIZED MONITORING IN MANETS

Given a MANET, which is populated with moving nodes, a
decentralized monitoring mechanism collects locally measured
data and subsequently provides meaningful system statistics
of the collected data as a final result. In contrast to a central-
ized approach, decentralized approaches leverage the nodes’
resources for collecting, processing, and disseminating the
data, as described in [25]. To monitor the data in the network,
attributes are specified, each node has to measure. Afterwards,
the nodes organize themselves to collect the measurements of
all nodes. Out of the collected data, statistics are generated and
distributed among the nodes in the MANET. To counteract the
otherwise huge load of monitored information, the data is ag-
gregated using data-dependent aggregation functions, such as
minimum, maximum, average, or standard deviation. In terms
of hierarchical or tree-based approaches, aggregation functions
can rely on the hierarchical computation property [18], [28],
where an aggregate at a certain hierarchy or tree level consists
of data from lower levels.

Out of the relevant non-functional requirements for decen-
tralized monitoring mechanisms in fixed networks [25], the
herein considered non-functional requirements are derived:
• Accuracy The key task of a monitoring mechanism

is the provisioning of accurate results, meaning that
the monitored system state should not deviate from the
effective state but represent it as accurate as possible.

• Timeliness A monitoring mechanism must provide the
calculated results in a timely manner to reflect the current
state and not provide stale information.

• Scalability The monitoring mechanism must be scalable
and provide accurate and timely results while (i) the
spatial network size increases or decreases and while (ii)
the node density inside the network varies.

• Robustness The assumed node mobility paired with the
limited communication range of Wi-Fi ad hoc, results in
a constantly changing topology with frequently changing
neighbors. A corresponding monitoring mechanism must
be robust to cope with these characteristics, while pro-
viding its services even in the presence of fast moving,
newly arriving or leaving nodes.

III. RELATED WORK

Related approaches of decentralized monitoring mecha-
nisms exist for static P2P networks and MANETs as discussed
in the following.

A. Decentralized Monitoring in Static P2P Networks

In static P2P networks, the topology of a decentralized
monitoring mechanism constitutes a good criterion to classify
existing solutions [19]. Hence, existing approaches can be
divided into tree- and mesh-based approaches.

Tree-based approaches [8], [28] rely on a hierarchical
structure to collect the locally measured attributes, while the

root proactively disseminates the calculated results or reacts
on requests. To create and organize the tree, each peer can
autonomously identify its parent or determine if it is the root.
Especially in MANETs, where the mentioned relation between
two nodes is only valid if both nodes are within range, the tree
must be continuously reorganized, resulting in a state, where
neither data can be collected nor valid results can be provided.

Mesh-based monitoring mechanisms [11], [12], [27] work
on arbitrary topologies and are applicable in dynamic net-
works, because a peer does not require a fixed set of neighbors
to communicate with and the gossip-based communication
scheme is highly robust for data exchange. On the contrary,
these approaches require long-range connectivity between the
peers [11], [12] to synchronize them and to disseminate the
collected data in the network. In MANETs, this long-range
connectivity is hardly obtainable, which leads to a decreasing
performance especially in larger networks.

B. Decentralized Monitoring in MANETs

Among existing decentralized monitoring mechanisms for
MANETs, approaches are discussed herein, which operate on
clusters, as classified in [2]. The approaches integrate all nodes
into the monitoring process but divide them into measuring
and collecting entities, which are arranged in a hierarchy. To
establish the hierarchy, Kwak et al. [14] create proximity-
based clusters, where the elected heads are organized in an
overlay. HMAN [2] uses a mathematical function to create the
hierarchy, incorporating several aspects of a node (e.g. number
of neighbors). Riggio et al. [23] present an approach, where
measuring nodes become collecting sinks if the distance to
other sinks exceeds a certain threshold. In contrast to these
autonomous approaches, DAMON [22] relies on a predefined
number of dedicated sinks, which must be provided by a
network operator. Within the created hierarchy, the measuring
nodes are affiliated to one collecting node, which collects the
measured data and responds to result requests.

Although claiming to implement decentralized monitoring,
only dedicated nodes act as sinks, which receive and manage
the data, whereas the majority of nodes must query the sinks to
obtain the results. The selected subset must handle all data and
requests of the whole network, which results in an increased
load especially in dense networks. If a collecting sink becomes
unreachable or leaves the network, the collected knowledge
is lost. Moreover, the affected nodes must detect this failure
and agree on a new sink in a highly dynamic environment.
BlockTree differs from those approaches in that it does not
elect sinks. Instead, it treats each node equally and provides
each node with the information about the system state to avoid
that the information is reserved to a subset of nodes.

IV. SYSTEM DESIGN OF BLOCKTREE

BlockTree is a novel decentralized monitoring mechanism
for MANETs, which relies on a hierarchical topology to (i)
adequately arrange the nodes, (ii) collect and manage data,
and (iii) provide location-aware results. BlockTree abstains
from creating a hierarchy based on child-parent relations



between single nodes, but relies on relations between dedicated
areas to obtain a robust topology. Any node in an area at a
lower level of the hierarchy can exchange information with
any node in the corresponding area at the next higher level,
leading to multiple connections between the two areas. For
the autonomous definition of the areas and their relations,
BlockTree partitions the MANET into blocks that are arranged
in a hierarchy. Each node just has to know its current location
to deduce the ID and level of its current block. Sent messages
contain further information so that each receiving node knows
how to process the information. Exploiting the hierarchical
structure, BlockTree relies on the hierarchical computation
property to aggregate data [18], [28] and implements the
concept of location-aware monitoring: results from lower
levels incorporate fine-grained information from a small area
of the network, whereas results from higher levels incorporate
coarse-grained information but from a larger area.

The following sections describe the utilized routing pro-
cedures, the logical network partitioning, and present two
approaches of BlockTree, which implement the just introduced
concepts in different ways.

A. The Routing Procedures

Similar to geographic routing [16], the herein consid-
ered routing procedures receiver-based position unicast and
receiver-based area dissemination rely on geographic coordi-
nates and locations to define the destination of a message.
To reliably route a message from a source to the targeted
location, both routing procedures are inspired by receiver-
based contention schemes [7], [29]. A sending node does
not make any decision about the receiver, but broadcasts the
message. Each receiving node estimates if it is the most
suitable candidate among others to forward the message. In
the following, the term receiver-based refers to this strategy.
To avoid the creation of consent among the candidates, a
hesitation time is introduced as proposed in [7], [29], which
is computed as follows:

hesT ime := hesFactor ∗maxForwardT ime (1)

In this equation, maxForwardT ime is a constant factor
defined by the routing procedure, while hesFactor represents
the hesitation factor, which varies between 0 and 1 depending
on an underlying formula. Through the hesitation time, better
suited candidates obtain a smaller value for an earlier trans-
mission. Hesitating nodes, which receive messages from other
nodes during the next hop, drop their delayed messages.

In addition to the payload, a message contains further
information so that a receiving node knows how to handle a
message. Besides the sender’s position ~src and the destination
~dest, it always contains the position of the last hop. To

avoid duplicate message transmissions, each message contains
a unique identifier uid with a corresponding timer timeout
that specifies how long a receiving node drops incoming
messages with the same uid. Therefore, each node maintains
a message forwarding cache, which contains all uids of
previously initiated and received messages. If the specified

Figure 1. Computation of the distance progr to calculate the hesitation
factor

time has elapsed, the uid is removed from the cache and a node
can again receive messages with that uid. For the remaining
calculations, a two-dimensional Cartesian coordinate system
is assumed, where the distance is calculated in meters.

1) Receiver-Based Position Unicast: This routing proce-
dure routes messages to a certain position specified by ~dest.
The message is intended for nodes, which are currently located
next to the defined position. For the correct mode of operation,
the routing procedure requires a definition of the assumed
maximum communication range of the devices. For BlockTree,
this range is specified as system parameter and denoted as r.

A node that wants to send a message to a certain position
~dest broadcasts the message in the network. During each

hop, a receiving node ph first checks if it already received
a message with that uid. If the message is further processed,
the node verifies if it belongs to the receiver set using (2),
where ~ph denotes ph’s current position.

rcv( ~ph, ~dest) :=

{
true if || ~dest− ~ph|| < r

false else
(2)

In any case, the node subsequently calculates the hesitation
time using (1). The corresponding hesitation factor hesFactor
depends on the routing direction between the position ~src of
the message initiator and the destination ~dest as well as on the
position ~ph−1 of the last hop ph−1. Therefore, ph determines
the normalized vector ~β indicating the routing direction from
~src to ~dest. Orthogonal to ~β, an imaginary line is placed

through ph’s current position ~ph, represented by the dashed
line in Figure 1. Afterwards, the distance progr between ph−1
and the dashed line is determined to calculate the hesitation
factor hesFactor:

hesFactor(progr) :=


∞ if progr < 0

0 if progr ≥ r
1− progr

r else
(3)

In case that the previous hop ph−1 is on the same side as
the destination, the message is not forwarded. Otherwise,
hesFactor decreases with an increasing distance between
ph−1 and the dashed line. If the distance between ph−1 and
the dashed line exceeds r, hesFactor is set to 0. The routing
procedure favors nodes that minimize the distance to the target
along the routing direction.



2) Receiver-Based Area Dissemination: This routing proce-
dure disseminates a message to all nodes that currently sojourn
in an area defined by dest. To use this routing procedure,
a node must be situated in the area, it wants to address. A
receiving node first checks if it already received the message,
given the obtained uid. If the uid is not cached and the node is
in the addressed area, it automatically belongs to the receiver
set and calculates the hesitation time to forward the message.
Equation (4) calculates the corresponding hesFactor, which
linearly decreases for an increasing distance between the
receiver ph and the last hop ph−1 until r is reached. The
routing procedure prefers distant nodes to cover a large area,
while reducing the propagation time.

hesFactor( ~ph−1, ~ph) :={
0 if || ~ph−1 − ~ph|| ≥ r
1− || ~ph−1− ~ph||

r else
(4)

B. Logical Network Partitioning

BlockTree depends on a logical partitioning of the network
into blocks to create a hierarchical topology with relations
between different blocks. Unlike other approaches, which
partition the network to organize the replication [15] or to
determine location servers for geographic routing [16], Block-
Tree uses the blocks to collect and disseminate monitored data.
The size of a block depends on the provided maximum com-
munication range r, since BlockTree requires that all nodes
of the same block are reachable within one hop. Therefore,
the length of a block’s edge s is calculated based on (5). In
contrast, the communication between nodes of different blocks
can take place over several hops.

s =
r√
2

(5) , blockID(~p) :=
(
bpx
s
c, bpy

s
c
)

(6)

Given its current position ~p in the network, a node p can
determine the ID of the block it is currently in. Therefore,
(6) assigns a unique two-dimensional identifier to each block,
resulting in the logically partitioned network, consisting of
unique blocks.

The partitioning of the environment into blocks is performed
without any central control or coordination. Instead, it is
assumed that the whole environment, which is represented in
a two-dimensional Cartesian coordinate system and can have
its origin at the intersection of the equator with the prime
meridian, is completely divided into blocks. Based on the
logically partitioned environment, each node autonomously
calculates the ID of the block it is currently in. To calculate
the block ID, a node must identify its current position in
the underlying two-dimensional Cartesian coordinate system
of BlockTree. Therefore, a node determines its geo-location
specified by latitude and longitude coordinates using, e.g.,
the Global Positioning System (GPS). Afterwards, common
projection techniques, such as Lambert’s Conformal Conical
Projection [10], can be used to transform the geo-location into
the two-dimensional Cartesian coordinate system.

(a) Hierarchy of C-BlockTree (b) Data flow inside the hierarchy of
C-BlockTree

Figure 2. Hierarchy and data flow of C-BlockTree

C. BlockTree: The Concentrating Approach

The concentrating approach of BlockTree, denoted as C-
BlockTree, consists of two phases. During the first phase,
the data is collected from each node and distributed among
the nodes during the second phase. For the collection, a
hierarchical structure is created with dedicated locations at
each level of the hierarchy, represented by the grey blocks
in Figure 2(a). The concentrating blocks are located in the
middle of their corresponding areas to guarantee that they are
equally accessible from the whole area. At each level (except
at Level 0), the data from a level beneath is concentrated
at these blocks, which in turn are responsible to forward the
data to the next higher level. Based on these design decisions,
the resulting hierarchy resembles a tree, where the data of
lower levels is concentrated in the middle of outer regions
until all data is collected at the highest hierarchy level in the
middle of the whole MANET. Finally, the dissemination of
the results is simply broadcasted from the highest level to the
whole network.

1) Creating the Hierarchy: To create the hierarchy (cf.
Figure 2(a)), a level is calculated for each block. Starting at
the bottom of the hierarchy, a block at Level 0, abbreviated as
H0, only consists of nodes. Every block at H1 is surrounded
by eight blocks of H0. Together, the nine blocks form a
responsibility area at H1, which is maintained by the light
grey block, also denoted as responsibility block. To form a
responsibility area at H2, a responsibility block is surrounded
by eight blocks of H0 and in addition by eight responsibility
areas of H1. Further levels above are defined accordingly.
This iterative creation either ends if the predefined maximum
level of the hierarchy is reached or if the populated area is
covered by the created hierarchy. Given the assumptions for
the logical network partitioning (cf. Section IV-B), each node
can autonomously calculate the level for each block.

2) Protocol Behavior: The protocol of C-BlockTree works
completely unsynchronized, thus, the periodically executed
operations of the protocol can be started at any time. The
interval between two consecutive executions of the operations
is defined by the system parameter Update Interval. The
protocol consists of the following three operations.

a) Leaf Broadcasting: Leaf Broadcasting is an operation,
where each node in the network periodically broadcasts its
locally measured values. This broadcast requires no routing
to a certain point or area, but is used to inform all nodes
inside the block about the recently monitored values. A node



only processes this information from nodes of the same block.
It stores the received sender ID and the monitored values
in the leaf information table. The table holds all values of
nodes inside the same block and provides each node with
sufficient information to initiate the Aggregating Up operation.
If the information of a node is not regularly updated, the
corresponding entry is purged.

b) Aggregating Up: Every node periodically triggers the
Aggregating Up operation to provide a responsibility block
with recently aggregated values. Using receiver-based position
unicast, a message is sent to all nodes in the responsibility
block at the next higher level, as displayed on the left-hand
side in Figure 2(b). Even nodes that are currently located at
the highest level must send their partial aggregation result to
a destination at the next level. This can either result in an
unsuccessful attempt to deliver the message, as the destination
is not populated or a new node at the next higher level is
discovered, thus, increasing the hierarchy.

The message consists of the sender’s level nsnd and the
partial aggregation result, which comprises current values of
the hierarchy table (described below) and the leaf information
table. The uid of the message consists of the sending node’s
block ID. Relying on the block ID, only one node per block
sends the message per interval, while any further attempt from
a node inside the block is suppressed for a certain time.

On every received Aggregating Up message, the receiver
first checks if it is a parent of the sender based on nsnd. If so,
the block ID and the partial aggregation result are stored in
the hierarchy table. The hierarchy table of a node holds partial
aggregation results with the corresponding block ID (i) of the
eight surrounding child blocks if the node belongs to a level
≥ 1 and (ii) of every responsibility area beneath if the node
belongs to a level > 1. Similar to the leaf information table,
stale values are purged.

c) Disseminating Down: This operation is only executed
by nodes that currently sojourn in the highest responsibility
block. As displayed on the right-hand side in Figure 2(b), the
final aggregation results are flooded to the whole network and
comprise all values from the hierarchy and leaf information
table. To disseminate the aggregated results, receiver-based
area dissemination is used. To avoid that the network is flooded
with the results several times, the uid of the message consists
of the sending node’s block ID and is used to block further
flooding attempts for a certain time.

On a received message, the receiver stores the results with
the corresponding block ID in its result table. C-BlockTree
can also be configured that every node at a level greater than
zero, additionally, executes the Disseminating Down operation.
In this case, a receiving node stores the obtained results in
the specified slot for the level in the result table. While this
modification results in higher bandwidth consumption, the
nodes obtain an overview on the different hierarchy levels.

D. BlockTree: The Planar Approach

The planar approach of BlockTree, denoted as P-BlockTree,
modifies some key aspects of C-BlockTree. It simplifies the

(a) Hierarchy of P-BlockTree (b) Data flow inside the hierarchy of
P-BlockTree

Figure 3. Hierarchy and data flow of P-BlockTree

communication and creates a more flexible hierarchy to handle
sparsely populated or empty blocks and networks of arbitrary
spatial shapes. The main differences between P- and C-
BlockTree are the following: (i) nodes are part of all hierarchy
levels (cf. Figure 3(a)), (ii) only area dissemination is used to
communicate, (iii) data is broadcasted to federations of blocks
instead of single blocks, as the concentration of data in single
blocks might lead to data loss in sparsely populated or empty
regions, and (iv) P-BlockTree just consists of one phase to
collect and already disseminate the data (cf. Figure 3(b)).

1) Creating a Hierarchy: In contrast to C-BlockTree, where
a responsibility block of a higher level is surrounded by
blocks and responsibility areas of lower levels, an area at
level n consists of several areas of level n − 1. The data is
not concentrated any longer in the middle of a certain area,
but exchanged among several areas of the same level. This
property facilitates the creation of (i) a flexible hierarchy,
which adapts to arbitrary shapes of the network and (ii)
handles sparse or empty blocks due to the collection of data
at federations of blocks

Starting from the bottom, the area at H0 corresponds to
a block. Together with a set of neighboring blocks at H0
they form H1. These neighboring blocks are also denoted as
sectors. Several sectors of H1 in turn form H2 and so on until
either a predefined level is reached or the whole network is
covered.

Since a node is a member of each level, it only has to
know (i) the dissemination area at level n, given its position
and (ii) the sector ID of the corresponding level n, where the
node currently sojourns. Given n and blockID(~p), sectorID
is defined as

sectorID(blockID(~p), n) :=(
b
(
idx
dn−1

)
c mod d, b

(
idy
dn−1

)
c mod d

)
, (7)

where d is the number of sectors along a dimension. Through-
out this paper, d is set to 2 resulting in four sectors per level.

2) Protocol Behavior: P-BlockTree works completely un-
synchronized and relies as well on the system parameter Up-
date Interval to trigger the periodic operations. It only consists
of Leaf Broadcasting and Aggregating Up. Leaf Broadcasting
is implemented in the same way as for C-BlockTree, whereas
Aggregating Up differs, as explained in the following.



Figure 4. The hierarchy table of P-BlockTree

a) Aggregating Up: A node triggers the operation not
only once, but for every active level of the hierarchy. A level
n is denoted as active if it consists of at least two sectors of
level n − 1, so that at least one message from a neighboring
sector at the same level can be received. Given the example
with four levels (H0 to H3) in Figure 3(a), a node periodically
starts this operation for level H1 to H3.

At any level, a sector disseminates its partial aggregation
results to all nodes in its neighboring sectors, as displayed
in Figure 3(b). In turn, all nodes in the disseminating sector
receive the partial aggregation results from the neighboring
sectors. For the data exchange, a node does not send sepa-
rate messages but uses receiver-based area dissemination to
distribute the partial aggregation result in the whole sector of
the next higher level. For the identification of the message,
the uid is a tuple, consisting of the sector ID and the level
nsnd of the sending node. Using this tuple, the number of
disseminations per sector is reduced, because the majority of
sending attempts is blocked for a certain time.

If such a message is received, the partial aggregation result
is stored in the hierarchy table. As displayed in Figure 4,
the table consists of a row for each active level and of a
column for every sector the receiving node is currently in.
Sector ID and nsnd are used to identify the corresponding
cell in the table. The results from the neighboring sectors at
the same level are stored within the same row and yield to
the partial aggregation result of a sector at the next higher
level. Exploiting this hierarchical table structure, P-BlockTree
implements the concept of location-aware monitoring, because
the table contains fine-grained results at a lower level and
coarse results from a higher level, which cover a larger area.

V. EVALUATION

The evaluation is targeted at answering the question how
BlockTree meets the identified non-functional requirements
scalability and robustness (cf. Section II), while providing
accurate and timely results at ideally low costs. Therefore, the
evaluation starts with a comparative analysis (cf. Section V-B)
comparing both approaches of BlockTree with respect to scal-
ability. Afterwards, Section V-C details the evaluation of the
most promising approach in terms of robustness and focuses
on the provisioning of location-aware monitoring results.

A. Simulation Setup

The evaluation of this paper is based on simulations using
a modified version of PeerfactSim.KOM [24] for mobile
networks [26]. The parameters for the default scenario are
listed in Table I. During each set of experiments, one of these

parameters is varied, while the rest is fixed. The parameters
model a quadratic area, which is populated with nodes that
move with the specified maximum speed using the Gauss-
Markov movement model [17]. The mean session length
defines the mean for the exponentially distributed session
length, which models the sojourn time of an active node in
the area.

The simulated wireless communication module for Wi-Fi
is oriented towards the IEEE 802.11b standard. It bases on
measurements by Anastasi et al. [1], modeling (i) a communi-
cation range that varies between 110-130m for a transmission
rate of 1Mbps and (ii) a message loss probability of 10%.
For the identification of neighboring nodes and potential
communication partners, the model relies on a unit disc graph.

To configure BlockTree, Update Interval and the assumed
maximum communication range r must be defined. Update
Interval, which triggers the periodic operations of BlockTree
and defines different timers to purge message- and aggregation
tables, is set to 15s. Relying on the measured communication
range of Anastasi et al. [1], r is set to 120m, resulting in a
block size of approximately 85m.

Each experiment is simulated for two hours. The first hour
is used to reach a steady state so that the number of nodes
levels out at the given value. After reaching the steady state,
measurements are taken during the second hour.

Table I
DEFAULT VALUES FOR THE SCENARIO PARAMETERS

Parameter Value Parameter Value
edge length 2500m maximum movement speed 2m

s
# of nodes 2400 mean session length 16min

B. Comparative Evaluation

For the evaluation of scalability, the first set of experiments
examines how a growing spatial network size influences the
approaches given a fixed node density. The second set of
experiments varies the number of nodes for a fixed spa-
tial network size and evaluates the effect of node density.
To quantify how the considered approaches meet the non-
functional requirements, the delivered monitoring results are
evaluated in terms of accuracy and staleness, while measuring
the arising costs. To examine accuracy, the number of active
nodes is monitored, since the determination of active nodes
constitutes a representative problem for collecting network
statistics, as denoted by Kostoulas et al. [13]. The relative error
| x̂x − 1| quantifies the accuracy of the returned results, where
x̂ represents the monitored and x the effective node count.
Dealing with staleness, tnow − tavg represents the age of a
monitoring result, where tavg is the average age of all included
monitored values and tnow is the point in time of receiving the
result. To quantify the costs, the average power consumption
is calculated based on measurements by Feeney [6]. Each
experiment is repeated five times. The corresponding plots
display the mean and the 95% confidence interval.

1) Varying the Spatial Network Size: Table II lists the
values for the edge length of the quadratic area. The number



(a) Mean result accuracy in terms of node count (b) Mean staleness of the provided results (c) Mean power consumption for communication

Figure 5. Comparative evaluation for different spatial network sizes

of nodes is modified as well to obtain a comparable density
for all experiments. Four values (85, 255, 765, and 2295m) are
chosen according to the hierarchy of C-BlockTree to evaluate
how it performs in scenarios, where its hierarchy can be
properly established (cf. Figure 2(a)). The experiments are
completed with two arbitrary values (1250 and 2500m) to
evaluate performance and cost in networks of an arbitrary
spatial size. The lower part of Table II shows the resulting
maximum hierarchy level for both approaches.

Table II
PARAMETER VARIATION OF THE SPATIAL NETWORK SIZE AND THE

RESULTING MAXIMUM HIERARCHY LEVELS FOR BOTH APPROACHES

Parameter Value
edge length [m] 85 255 765 1250 2295 2500
# of nodes 3 27 243 600 2187 2400
P-BlockTree [H] 0 2 4 4 5 5
C-BlockTree [H] 0 1 2 3 3 3

Figure 5(a) displays the mean relative node count error.
Based on the results for 85, 765, and 2295m, it can be
observed that the accuracy of C-BlockTree decreases for an
increasing spatial network size. The deterioration results from
the concentration of data at single blocks, which often fails
if the blocks are sparsely populated or even empty. In larger
areas, this problem accumulates, since the data is concentrated
at multiple blocks over several steps. The negative impact
of an arbitrary spatial network size becomes apparent by the
low accuracy for 1250 and 2500m. The high error for 1250m
results from the positioning of the highest responsibility block
at the border of the map. This area is sparsely populated,
thus, concentration and dissemination of data often fail in
that responsibility block. For 2500m, the highest responsibility
area of C-BlockTree does not cover the entire network but
only a part of it. The remaining nodes try to concentrate
the monitored data out of the modeled area, leading to the
increased relative error. This problem can be denoted as outer
branches. The high relative error for 255m results from an
overestimation of active nodes. C-BlockTree does not purge
the leaf information and hierarchy table in time. Thus, older
values are propagated, even if a node left the block. The
same effect can be observed for P-BlockTree, which attains its
maximum relative error of 7.3% in the same scenario. Apart
from this, the displayed results show that P-BlockTree does
not suffer from an increasing spatial network size but provides
accurate results even in large areas. P-BlockTree omits the
collection of data at single blocks, but disseminates the data

to federation of blocks so that sparsely populated blocks do
not decrease the accuracy. Due to (i) the information exchange
between any sectors at the same level and (ii) the omission
of a concentrating block on top, the flexible topology of P-
BlockTree even copes with arbitrary spatial network sizes.

Figure 5(b) shows that the staleness of results highly de-
pends on the height of the hierarchy of C- and P-BlockTree.
Given the maximum hierarchy levels in Table II, it can be
observed that a larger spatial network size leads to an increased
staleness, if the height of the hierarchy increases. In contrast,
the staleness nearly remains constant for the same height. The
high staleness of C-BlockTree for 1250m results from the
positioning of the highest responsibility block in the sparsely
populated area at the border of the map.

Given the utilized energy model [6], which assumes that
the communication module consumes 808mW in the idle
state, the results in Figure 5(c) display the additional mean
power consumption, induced by each approach. Similar to
staleness, the results show that an increasing spatial network
size significantly raises the mean power consumption, if the
height of the hierarchy increases as well. Moreover, it becomes
apparent that the constantly high accuracy of P-BlockTree
comes at the expense of increased power consumption, due
to the redundant communication.

2) Varying the Number of Nodes: In the following, the
effect of node density is considered. The number of nodes is
set to 1200, 1800, 2400, 3600, and 4800 nodes, which results
in a density of 192, 288, 348, 576, and 768 nodes/km2 for
an edge length of 2500m. In terms of accuracy, Figure 6(a)
shows that a sparsely populated network leads to a larger
relative error, whereas a higher node density is beneficial for
the accuracy of results. Especially C-BlockTree suffers from
sparsely populated networks. Due to empty or unreachable re-
sponsibility blocks, C-BlockTree considerably underestimates
the number of nodes, which yields to the displayed high error.
With an increasing density, the occurrence of such blocks
decreases and leads to higher accuracy. The remaining error
for C-BlockTree in the dense scenarios originates from outer
branches due to the arbitrary spatial network size.

Figure 6(b) displays the impact of node density on the
staleness of monitoring results. Based on the outcome, it
can be observed that (i) both approaches are able to serve
more nodes with fresh results and (ii) a higher density even
accelerates the collection and dissemination of data. The



(a) Mean result accuracy in terms of node count (b) Mean staleness of the provided results (c) Mean power consumption for communication

Figure 6. Comparative evaluation for different node densities

receiver-based position unicast of C-BlockTree leverages the
increasing density to select nodes that maximally shorten
the distance to the target. This effect leads to a reduced
number of hops and becomes apparent by the constantly
decreasing staleness. For P-BlockTree, the positive impact
is not that strong, because a density above 288 nodes/km2

already suffices to select well located nodes, which maximally
reduce the number of hops to reach all nodes. On the other
hand, the results in Figure 6(c) show that a higher node density
leads to an increased mean power consumption. Although both
approaches rely on receiver-based contention schemes, which
try to reduce the number of transmissions while being robust,
the higher node density increases the probability that a node
receives the same information several times.

C. Detailed Analysis of P-BlockTree

The detailed evaluation addresses robustness and examines
the influence of a varying node mobility, mean session length,
and message loss on the accuracy of P-BlockTree. To examine
accuracy, P-BlockTree monitors the node density, as proposed
in [9]. In addition, the node density is used to evaluate the
provisioning of location-aware monitoring results. Therefore,
a node uses the monitored number of nodes per hierarchy to
calculate the node density for the covered blocks. To measure
the accuracy, the relative error between the calculated and the
effective density is averaged over all covered blocks. At H0,
the mean relative error consists of the node’s current block.
At H1, it is averaged over the three neighboring blocks. At
H2, the result is averaged over the 12 blocks from the three
neighboring sectors and so on. For each set of experiments
one parameter is varied, while the remaining ones are set to
the default values (cf. Table I). Each experiment is simulated
five times. Box plots are used to summarize the periodically
captured results of all nodes. The whiskers are set to the 2.5th
and 97.5th percentile, the box and the line inside display the
first and third quartile as well as the median.

The three plots in Figure 7 outline that P-BlockTree delivers
location-aware monitoring results. The approach provides an
accurate view on a node’s current block, whereas the aggre-
gated monitoring information from distant places leads to a
decreasing accuracy for the estimated node density in distant
blocks. Moreover, the results highlight that the three parameter
variations have little impact on the results per level and that
P-BlockTree is robust, as detailed below. The low variability
of accuracy at higher levels, which becomes apparent by

shrinking boxes and whiskers, originates from averaging the
relative error per node over 48 (at H3) and 192 (at H4) blocks.

Figure 7(a) reveals that P-BlockTree is able to handle an
increasing mobility. For 0.5 and 1m/s more than 50% of the re-
sults from the own block are correct. Nevertheless, the results
for 2 and 4m/s indicate that fast moving nodes decrease the
accuracy, since they are not captured, while traversing a block.
At higher levels, this trend flattens, as it takes longer to traverse
a sector of a higher level. During this time, P-BlockTree is
able to capture the node. The results in Figure 7(b) underline
that P-BlockTree handles even short lived nodes. At H0, the
decreasing mean session time down to a value of 4min has
no influence on 75% of the results. At H1 the attenuated
trend can still be observed, but mitigates at higher levels.
Finally, Figure 7(c) shows that even an increasing unreliable
communication medium does not influence the performance
of P-BlockTree. The higher levels benefit from the high data
and node redundancy, because if one transmission fails, a
further transmission is started by a hesitating node. In contrast,
this redundancy does not exist at H0, because all nodes must
exchange their individually measured data. If one message is
dropped, no other node can replace the missing information.

VI. CONCLUSION

BlockTree is a novel decentralized monitoring approach
designed for MANETs. It implements the concept of location-
aware monitoring to provide detailed information about neigh-
boring blocks and summarized views on distant places.

Simulations have shown that especially P-BlockTree scales
with the spatial network size and provides accurate results
with a maximum mean relative error of 7.3% in terms of
the node count. Considering the impact of node density, the
approach works in sparsely populated scenarios as well, while
accuracy and freshness of the results even benefit from an
increasing density. The good performance of P-BlockTree
comes at the expense of a higher average power consumption
for an increasing spatial network size or node density. Due
to the redundant information exchange, the average power
consumption is twice as high as for C-BlockTree, which
operates on a more organized hierarchy with clearly defined
tasks per block. On the other hand, the results reveal that
C-BlockTree highly depends on the node density as well
as on the spatial network size. The results indicate that the
concentration of data at single blocks only works in dense
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Figure 7. Detailed analysis of location-aware monitoring with P-BlockTree

scenarios, while the highest level of the hierarchy must be
populated with nodes to avoid outer branches.

The detailed analysis of P-BlockTree outlines the character-
istics of location-aware monitoring. It shows that the provided
information enables a detailed and accurate view on the vicin-
ity, whereas the status of distant places can be approximated,
given the provided summarizing views. Through its robust
design, P-BlockTree handles the presence of fast moving as
well as short-lived nodes, which hardly influence the accuracy
of the results. Moreover, the obtained results reveal that P-
BlockTree even copes with an error-prone communication
medium, which drops 40% of sent messages.

For future work it is planned to improve BlockTree in
such a way that, e.g., the Update Interval varies between the
hierarchy levels to improve the accuracy at lower levels, while
saving resources at higher levels. In parallel, it is planned to
implement BlockTree on Android smartphones to show the
feasibility of the approach in practice.
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