
PeerfactSim.KOM: A Simulation Framework for
Peer-to-Peer Systems

Dominik Stingl, Christian Gross, Julius Rückert, Leonhard Nobach, Aleksandra Kovacevic, Ralf Steinmetz
Multimedia Communications Lab (KOM), Technische Universität Darmstadt

Rundeturmstr 10, 64283 Darmstadt, Germany
E-mail: {stingl,gross,rueckert,nobach,sandra,steinmetz}@kom.tu-darmstadt.de

Abstract—Since P2P systems have become popular in the late
nineties, simulation of these systems has always been a preferable
method of performance evaluation. Simulations facilitate the
development and evaluation of new protocols and mechanisms,
while enabling a comparison of existing solutions. In this paper,
we present PeerfactSim.KOM, a discrete-event P2P simulator
that is suitable for a wide range of varying scenarios in the area
of P2P. It consists of a layered architecture, provides a broad
selection of P2P protocols for the modeled layers, and easesthe
implementation of new components through its modular design.
In addition, the simulator provides helpful tools to configure and
evaluate a simulation scenario.

1. INTRODUCTION

During the last decade, the Peer-to-Peer (P2P) paradigm
attracted many researchers from Computer Science and mo-
tivated them to research and investigate new concepts and
mechanisms for P2P systems. Apart from the challenge to de-
sign and implement new ideas, the process to prove, evaluate,
and compare one or several approaches states a problem on
its own. Naicken et al. [19] identified that the P2P research
community applies three different techniques for performance
evaluation to tackle the analysis of one or several solutions.
The mentioned evaluation techniques cover analytical model-
ing, simulations, and experiments. Based on the characteristics
of these evaluation techniques, which were summarized and
compared by Jain [11], simulations turned out to be the most
popular and adequate tool to evaluate and test concepts in
the area of P2P, as observed in [20]. The reasons for the
popularity of simulations might result from the simplification
and unification in analytical modeling, while the executionof
experiments in testbeds suffers scalability, reproducibility and
requires existing prototypes.

With PeerfactSim.KOM, we present our solution for a P2P
simulator that tackles the previously sketched shortcomings of
analytical modeling and experiments. The simulation frame-
work already provides a variety of P2P protocols addressing
overlays, decentralized services, and applications, which can
be used to implement, test, or compare new protocols. Besides
its suitability for a wide range of scenarios, the simulator
includes a separate logging and statistics architecture that
alleviates the crucial process of data capturing of ongoing
simulations, as stated by Naicken et al. [20]. Furthermore,
the integrated visualization allows to illustrate and debug
the communication process of executed simulations. Besides

these features, PeerfactSim.KOM addresses the general re-
quirements of P2P simulators, as identified by [3] and [20].
Therefore, the simulator consists of a modular and flexible
architecture with a set of interfaces for the different compo-
nents. Below the P2P-relevant layers, the simulator comprises
an underlying network model to simulate the transmission
of data. Besides the modular architecture, PeerfactSim.KOM
focuses on scalability to execute simulations in a reasonable
amount of time, while preserving computational resources.

The next section of this paper details the related work of
P2P simulators. Afterwards, Section 3 describes the modular
architecture and underlying concepts of the simulator, whereas
Section 4 copes with the options that a user has before,
during and after a simulation. Section 5 gives insights about
the performance of our simulation framework, while the last
section presents the conclusion of the paper.

2. RELATED WORK

The popularity of simulation as evaluation technique has
resulted in a vast amount of overlay and network simula-
tors. Network simulators, such as NS-31, simulate network
protocols and examine the protocols’ characteristics through
realistic models, covering aspects such as network topology or
congestion. For the evaluation and analysis of P2P systems,the
sketched network models are out of scope, because they come
with inherent computational costs, hindering the simulation of
P2P mechanisms at a larger scale. Therefore, as identified by
Naicken et al. [19], the majority of P2P simulators that consists
of a layered architecture, which is oriented at the ISO-OSI
model, abstracts the lower layers of networks or completely
omits them. In the following, we describe a small fraction of
existing P2P simulators with their underlying concepts. For
this description, we subdivide the contemplated tools in two
classes. The first class contains the simulators that are limited
to simulations.

PeerSim[18], which constitutes a prominent example of
the first class, is a Java-based simulator with a modular
architecture to simulate different P2P mechanisms on top of
an underlying configurable network model. The available P2P
mechanisms range from overlay protocols to algorithms for
aggregation or management. PeerSim offers a discrete-event
engine to simulate experiments with detailed protocols (e.g. for

1http://www.nsnam.org/

DSt
Textfeld
Dominik Stingl, Christian Groß, Julius Rückert, Leonhard Nobach, Aleksandra Kovacevic, Ralf Steinmetz: PeerfactSim.KOM: A Simulation Framework for Peer-to-Peer Systems. In: Waleed W. Smari (Edit): Proceedings of the 2011 International Conference on High Performance Computing & Simulation (HPCS 2011), p. 577-584, IEEE, July 2011. ISBN 978-1-61284-382-7. 

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



the underlying network) and a cycle-based engine to simulate
simplified models at a larger scale.

In contrast,PlanetSim[22] is a pure discrete-event sim-
ulator, which is also written in Java. It consists of three
different layers, that model the network, the overlay and the
application. For the implementation of new protocols, the
simulator offers two different approaches. The algorithm-based
approach implements the complete functionality of a protocol
within a single component, while the behavior-based approach
divides the separable aspects of a protocol and implements
them in separate components.

The second class of P2P simulators addresses and supports
the development process from initial simulation models of a
mechanism to prototypical implementations for real networks.
A simulator of this class targets the complete re-usage of
code without modifications for real experiments in testbedsby
replacing the underlying network model and the event-driven
simulation engine with a real network interface and timers.

ProtoPeer[6] is a Java-based simulator, where a user can
switch between simulations and real world experiments to
evaluate his P2P system. The layered architecture of ProtoPeer
can be subdivided into three layers. The layer on top includes
the components for an application and the P2P protocol. The
layer below consists of the networking and time APIs, which
are implemented through the components of the lowest layer.
This layer either models the network or constitutes the network
interface with real timers for network experiments.

OverSim[3] states a further approach that belongs to the
second class of P2P simulators but that is written in C++.
The architecture of the simulator consists as well of three
layers, covering an application, overlay and network layer.
The overlay and network layer offer interfaces, such as a
KBR [5] or UDP interface, to the layers above and allow for
a transparent exchange of the implementing components. Just
as in ProtoPeer, the user can choose between different models
for the network layer or replace the model with a network
interface to execute real world experiments.

3. SIMULATOR ARCHITECTURE

PeerfactSim.KOM is a Java-based simulator for investigat-
ing large-scale P2P systems. The architecture of the simulator
comprises a discrete-event simulation engine that manages
the simulated peers, which communicate with each other by
exchanging messages. The main objective of the simulator is
to be applicable to different use cases and to facilitate the
simulation of a wide range of varying scenarios in the area of
P2P. Therefore, the simulator consists of a layered architecture
that tries to cover the diverse aspects of a P2P system through
the provided layers, as depicted in Figure 1.

For each of the depicted layers, one or more interfaces
exist that offer their functionality to the remaining layers. The
interfaces alleviate the development of new components fora
layer and facilitate the exchange of a component with other
implementations. Based on these interfaces, the simulator
provides the concept ofdefaultandskeletal implementations.
A default implementation represents an implementation of

Network Layer:

Modular Network Model

Transport Layer:

UDP

Overlay Layer:

CAN, Chord, C-DHT, Gia, Gnutella 0.4,

Gnutella 0.6, Globase.KOM, Kademlia,

Pastry, pSense, VON

Service Layer:

Monitoring: Tree-based, Gossip-based

Management: SkyNet.KOM

Application Layer:

File-Sharing

S
im

u
la

ti
o
n

 E
n

g
in

e

Churn Model:

KAD,

Exponential,

Constant

V
is

u
a

liz
a
ti
o

n
G

n
u
P

lo
t

..
.

L
o

g
g

in
g
 &

S
ta

ti
s
ti
c
s

Figure 1. The Modular Architecture Of PeerfactSim.KOM

a component, whose offered functionality can be explicitly
defined and implemented, and which may serve other simula-
tions without modifications (e.g. the component for the event
scheduler). On the contrary, if the functionality of a component
cannot be clearly identified, the simulator offers a skeletal
implementation that can be extended by the user. The skeletal
implementation already includes an abstract implementation
base, such as the integration in the simulator and the interac-
tion with other simulation components, relieving the user from
these tasks.

In the following subsections, we describe the underlying
concepts for each of the five layers shown in Figure 1 and
list existing implementations for them. Section 4 subsequently
covers the remaining layers.

A. Network Layer

PeerfactSim.KOM focuses on the simulation of P2P sys-
tems. Therefore, it does not model the underlying network
topology for data transmission between peers. Instead, the
network model applies mathematical functions as well as
data from Internet measurement projects (e.g. CAIDA2 or
PingER3) to simulate data transmission between arbitrary
peers. Depending on the level of detail, the model can include
influencing factors for a transmission, such as latency, jitter,
or peer positioning.

Our network model, forming the basis for the sketched
approach, consists of two components, theNetwork Layer
and theSubnet. A separate instance of the Network Layer is
installed at every simulated peer and is responsible for sending
and receiving messages from the modeled network and for
passing them to the Transport Layer above. The additional
component Subnet abstracts the network and simulates the
transmission of data through the network. In contrast to the

2http://www.caida.org/projects/macroscopic
3http://www-iepm.slac.stanford.edu/pinger



No Fragmenting

IPv4 Fragmenting

No Jitter

Lognormal Jitter

PingER Jitter

Static Latency

PingER Latency

Geographical Latency

GNP Latency

No Header

IPv4 Header

No Packet Loss

Static Packet Loss

PingER Packet Loss

Torus Positioning

Geographical

Positioning

GNP Positioning

Bounded

Traffic Queue

No Traffic Control

Fragmenting Jitter Latency Packet Sizing Packet Loss Positioning Traffic Control

Fundamental

Easy

PingER

Geo

GNP

No measurement data requiredRequires measurement data

Preset Name

(no preset) Uniform Jitter Infinite Traffic Queue

Figure 2. An Overview Of Different Strategies, Grouped IntoDifferent Strategy Types (Columns) And Recommended Settings (Rows)

numerous instances of the Network Layer, which comply with
the number of simulated peers, a simulation just comprises
one instance of the Subnet, which connects all peers with
each other. For these two components that form the basis
of our network model, PeerfactSim.KOM provides skeletal
implementations, which can be used as starting point for user-
specific network models.

At the moment, PeerfactSim.KOM provides a default net-
work model for simulations, comprising an implementation for
the Network Layer and the Subnet. Instead of creating multiple
implementations for different network models with varying
levels of detail, we tried to identify and separate the important
aspects of a network model, which affect the transmission
of data during a simulation, and which can be independently
modeled with varying levels of detail. Based on the identified
aspects, we developed the Modular Network Model, which
consists of the separable components calledstrategies. With
the described Modular Network Model, we aim at providing
a network model, which allows for a flexible configuration of
the Network Layer and the Subnet, and which comes with a
comfortable extendability for future strategies.

The identified strategies of the modular model cover dif-
ferent aspects for the transmission of data. The Subnet com-
prehends theLatencyandJitter strategy to model the varying
latency of data transmission between two peers, as proposed
by Kaune et al. [13]. ThePacket Lossstrategy calculates
the probability that a sent message gets lost. In addition, the
Fragmentingstrategy specifies how a message is fragmented,
whereas thePacket Sizingstrategy determines how the size
of a message is calculated. For the sender and receiver, the
Modular Network Model offers two strategies that comprise
the peer position (Positioningstrategy) and how sending and
receiving of a message is processed at a peer (Traffic Control
strategy).

For the mentioned strategies, PeerfactSim.KOM provides
the implementations, which are displayed in Figure 2, and
which can be independently chosen or selected through presets
to configure the Modular Network Model. The included strate-
gies comprise simple concepts based on probability functions
(e.g. Lognormal Jitter strategy) or on static functions, for
example adding a constant amount of time to every data
transmission. On the contrary, the Modular Network Model
offers more realistic strategies, which rely on data from
Internet measurement studies. ThePingER Jitter, PingER La-

tency, andPingER Packet Lossstrategies apply measurement
data from the PingER project to implement the strategies.
The calculation of the latency in theGNP Latencystrategy,
employing the measurement data from the CAIDA project,
follows the approach proposed by Kunzmann et al. [16]. The
strategy is based on an euclidean embedding of the peers
in a multidimensional space, using the technique of Global
Network Positioning (GNP) [21].

In order to model the heterogeneity of the simulated network
devices, the Network Layer consists of an additional compo-
nent, which is separated from the chosen network model and
specifies the characteristics of the simulated network devices.
Currently, PeerfactSim.KOM offers two implementations for
this component to assign different upload and download ca-
pacities to the network devices. The first approach randomly
chooses a value from a defined interval to determine the
network device capacities. The second approach selects the
network devices and their capacities based on a report from
the OECD [1].

B. Transport Layer

The main task of the Transport Layer in PeerfactSim.KOM
is to provide an end-to-end communication service to higher
layers, including P2P overlays or applications. Since the
Transport Layer, just as the Network Layer, belongs to the
condensed lower layers of a P2P simulator, the detailed
mechanisms provided by an ordinary Transport Layer (e.g.
connection-oriented data streams or flow control) are most of
the time not the focus of P2P simulations. The implementation
of this layer, therefore, abstracts over the correct implemen-
tation of most services and mainly supports the transmission
of UDP-messages. For future versions, we plan to integrate a
model that simulates simplified TCP for the transmission of
data.

C. Overlay Layer

The Overlay Layer represents an important layer in Peer-
factSim.KOM, because it contains the implementations of the
different P2P overlay models. Based on these overlays, diverse
applications or additional distributed services (e.g. application
layer multicast or monitoring) can be set up. In the following,
we list the existing overlays in PeerfactSim.KOM and divide
them into different classes. Currently, the bunch of overlays
can be classified into unstructured and structured overlaysas



Table 1
IMPLEMENTED P2P OVERLAYS

Overlay Class Implementation
Unstructured Gnutella 0.4 [2], Gnutella 0.6 [14], Gia [4]
Hybrid Globase.KOM [15]
Structured CAN (2-dim.) [23], Chord [27], C-DHT,

Kademlia [17], Pastry [24]
IDOs VON [10], pSense [25]

well as into overlays for spatial information dissemination.
While the use cases for the first two classes of overlays are al-
ready well known, the latter class can support Network Virtual
Environments (NVE) as known from Massively Multiplayer
Online Games (MMOG). Table 1 lists the implemented over-
lays and groups them into the aforementioned three classes.

Instead of detailing the implemented overlays in our simu-
lator, we focus on the given structure and underlying concepts
of the layer. Due to the varying functionality of overlays,
we refrain from designing an interface that incorporates all
methods of an overlay node. Instead, we provide a class
hierarchy, allowing the developer to choose, which func-
tionality the own overlay node should at least provide (see
Figure 3). Based on the sparseOverlayNode-interface that
defines how the overlay has to be integrated in the simulator,
the extendingJoinLeaveOverlayNode-interface defines
methods for joining and leaving an overlay. At the mo-
ment, this class hierarchy only provides an additional marker-
interface for unstructured overlays as well as two interfaces
for structured overlays. The latter two interfaces addressthe
common functionality of structured overlays, as outlined by
Dabek et al. [5]: The capabilities of Key-Based Routing
(KBR) are defined in theKBR-interface, whileDHTNode
integrates the functionality of Distributed Hash Tables (DHT).
In addition, PeerfactSim.KOM offers further components that
many overlay protocols comprise and that we consider to
be important. These range from an overlay routing table,
over the bootstrapping mechanism to the overlay ID and
key. Besides the interfaces, the Overlay Layer includes two
skeletal implementations, which shall relieve the developer
from integrating a new overlay into the layered architecture
and the simulator. These skeletal implementations comprise
the abstract definition of a node within the overlay as well
as a base message type that can be used as basis for further
messages of the overlay protocol.

Figure 3. Class Diagram For The Functionality Of A Peer Within A P2P
Overlay

D. Service Layer

The Service Layer is intended for components that offer
additional services to an application or to the whole system.
The services can range from application layer multicast over
publish/subscribe mechanisms to monitoring and management
approaches. Like overlays, the services of the Service Layer
mainly operate in a decentralized fashion and depend on the
underlying overlay to provide the additional functionality. For
this reason, we decided to place them as an external layer
between the Application and Overlay Layer. To implement
new services, we use the same basic building blocks as for
the Overlay Layer.

Currently, the Service Layer contains the tree-based mon-
itoring solution SkyEye.KOM proposed by Graffi et al. [7],
which is set up on top of DHTs. It provides a global view for
a predefined set of attributes, which are monitored at different
layers of the P2P system. In addition, the monitoring mecha-
nism is used in the management framework SkyNet.KOM [8]
that maintains and improves the underlying overlays based
on the collected data and preset quality intervals. The second
monitoring solution in the simulator was presented by Jelasity
et al. [12] and uses a gossip-based approach to monitor the
attributes from the P2P system.

E. Application Layer

On top of the layered architecture, the Application Layer
can host P2P applications. Currently, PeerfactSim.KOM only
provides a file-sharing application for the Application Layer.
During the simulation of the application, the peers can publish
their files and seek further files of other peers based on a
given probability distribution. The application currently runs
on Kademlia and Chord as well as on Gnutella 0.6 and Gia.
The evaluation of the simulator presented in Section 5 defines a
scenario with this application on top of Kademlia and Gnutella
0.6.

4. PEERFACTSIM .KOM IN USE

Having detailed the layered architecture and the modular
design of PeerfactSim.KOM, this section covers the creation of
scenarios in the following subsection. Afterwards, we examine
the logging and statistics architecture for the produced data
of a simulation (see Subsection 4-2) and finally highlight the
visualization of a simulated experiment and its statisticsin
Subsection 4-3.

A. Running A Simulation

For the creation of a simulation in PeerfactSim.KOM,
a XML-based configuration file is used. This file denotes,
which layers are included, which implementation represents
a single layer (e.g. Chord for the Overlay Layer), and how
they are configured (e.g. theGNP-preset for the Network
Layer). Moreover, the general setup comprises the number of
simulated peers, the duration of a simulation, the responsible
classes for collecting data, the churn generator, and an action
file. The action file is written in a script-like language and
specifies when a certain action should be executed by a host



or a group of hosts. If required by the executed method, several
parameters can be passed.

To model the dynamics of the whole system comprising the
autonomic arrival and departure of peers, PeerfactSim.KOM
provides a churn generator. Based on a mathematical func-
tion, the generator chooses a peer and determines the next
point in time when the peer will go on- or offline. The
churn generator works at the Network Layer of a peer and
connects or disconnects the layer of a peer with or from
the Subnet. Consequently, the Overlay Layer of that peer is
responsible to join the existing overlay during the connection
establishment, while the rest of the peers must handle the
ungraceful departure of that peer, when it is disconnected.We
denote the time between arrival and departure assession time,
while the time between departure and arrival is denoted as
intersession time. Currently, PeerfactSim.KOM supports three
churn models: (i) the constant model provides a static session
and intersession time for each peer, (ii) the exponential model
uses an exponential distribution to calculate the session and
intersession time, and (iii) the KAD model is based on a
Weibull distribution that was derived from measurements in
a real KAD overlay by Steiner et al. [26].

B. Logging And Statistics Architecture

PeerfactSim.KOM provides its own architecture for gath-
ering data of ongoing simulations. The architecture can be
divided into a logging and a statistics part. While logging is
mainly used to trace and debug a simulation, the simulator
offers the statistics architecture to grab the important data
for on-the-fly statistics or for later post-processing. It is not
possible to predict all kinds of data that might be important
for the evaluation. Hence, we integrate a separate statistics
architecture in the simulator that addresses the collection of
basic data types from which composite data types can be
derived. The core of the monitoring architecture consists of
two elements: A system-wide Monitor (available as default
implementation) and theAnalyzer-interface. To collect data
from a simulation, the simulator defines a set of interception
points that are used by the Monitor to grab the data. A user
who is interested in some specific type of data, implements
the Analyzer or one of its nested interfaces and registers itat
the Monitor, which in turn is responsible for the notification of
an Analyzer depending on the type of monitored data. Besides
the basic Analyzer that only defines methods for starting and
stopping an analyzer, nested analyzers for specific components
exist. For example, they can monitor data from the Network
Layer, from the Churn Generator or from KBR-based overlays.

C. Visualizing A Simulation

After the execution of a simulation with PeerfactSim.KOM,
the simulator offers the possibility to visualize the executed
simulation. The integrated visualization component, as dis-
played in Figure 4, allows for the visualization of the topology
and the exchanged messages of the simulated P2P system.
Dealing with the presentation of the topology, the visualization
can organize the peers based on the provided coordinates of

Figure 4. The Visualization Component Of The Simulator

the Network Layer or arrange them in a ring-like topology.
Through the varying thickness of a displayed peer or an edge
between two peers, metrics, such as the amount of neighbours
or of transmitted messages, can be represented.

5. PERFORMANCEEVALUATION

Within this section, we examine the performance of Peer-
factSim.KOM for simulating different P2P overlays on top
of the provided underlay models. Regarding the evaluation
of the performance, we measure the simulation duration and
the maximum consumed amount of memory. In addition, we
show that simulation time and memory consumption do not
necessarily depend on the amount of transmitted messages,
but on the complexity of the respective protocol that runs on
each peer.

We simulate a file-sharing application on top of Gnutella
0.6 and Kademlia. While Gnutella 0.6 is an unstructured P2P
overlay, which uses a simple but robust gossip-based commu-
nication protocol, Kademlia is a structured P2P overlay, which
applies sophisticated mechanisms to manage routing tablesand
to replicate the sharable objects. The general simulation setup
is displayed in Table 2. Dealing with the scenario, the peers
are equally divided into four groups, which successively join
the overlay during the first 80 minutes. Afterwards, each peer
publishes its files before the random lookup for a file starts.
The latter two actions are only executed by half of the peers,
while the deployment of churn, starting after two hours, is
applied to all peers.

Every simulation was run five times, each time with a
different seed. The graphs, depicted in Figure 5, display the
mean and the 95% confidence interval for each metric. The
described scenarios are simulated on a server with Ubuntu
10.04 (64bit) and the JDK 6. The hardware consists of four
processors (two Dual-Core AMD Opteron Processors 2214)
with 2200MHz and 64GiB of main memory. The maximum
amount of memory that a simulation may consume is limited
to 20GiB.

Considering the simulation duration of the four scenarios



Table 2
SIMULATION SETUP

Simulation Component Setup
Modular Network Model Easy-, GNP-preset Churn generator Exponential model
P2P overlay Gnutella 0.6, Kademlia Simulation duration 180min
Application File-Sharing Number of peers 500, 1,000, 5,000, 10,000, 50,000

depicted in Figure 5(a), we observe an increase of the simula-
tion duration that exceeds a linear growth, irrespective ofthe
chosen P2P overlay or network preset. The evaluation of the
impact of different underlay presets on the simulation duration
outlines that simulations, using the Easy-preset, are faster
than simulations with the detailed GNP-preset. The increased
simulation duration mainly results from the additionally sched-
uled events for the simulation of a transmission between two
peers. The influence of the P2P overlay on the simulation
duration does not only depend on the message overhead of
a protocol, but on its computational complexity simulated at
each participating peer. While the produced message overhead
of Gnutella always exceeds the one of Kademlia (Figure 5(c)),
larger simulations with Kademlia (>5,000 peers) are more
time consuming, due to the higher complexity of the protocol,
which becomes the predominant factor for the simulation
duration.

The memory consumption of the simulator resembles the
trend of the simulation duration. Figure 5(b) outlines the linear
increase of the memory consumption with the number of peers.
In this regard, smaller simulations (<1,000 peers), which use
an underlay preset that requires measurement data, e.g. GNP,
are an exception, because the memory consumption is mainly
influenced by loading the required data for the underlay model.
Dealing with the impact of overlays on the consumed memory,
it becomes apparent that the message overhead of an overlay
is not necessarily the predominant factor for the memory
consumption. Instead, comparing 5(b) and 5(c), we observe
for the comparison of different overlays that state-intensive and
complex protocols mainly account for the consumed memory
of larger simulations with PeerfactSim.KOM.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented PeerfactSim.KOM, a simulation
framework for P2P systems, which already offers existing
implementations for a variety of P2P protocols. The simulator
consists of a modular architecture that can be subdivided into
components. The functionality of these components is defined
by interfaces to alleviate the development of new solutionsand
to enable the exchange of different implementations for one
component. Besides the architecture, we introduced flexible
tools to configure simulation setups and to create scenarios.
Using the provided logging and statistics architecture, simu-
lations can be easily debugged, while important information
and statistics of a simulation are collected. The additional
visualization component of PeerfactSim.KOM illustrates an
executed simulation. Regarding the performance and scala-
bility of PeerfactSim.KOM, our evaluation shows that the
simulator allows to execute experiments with tens of thousands

of peers in a reasonable amount of time, while minimizing
the memory consumption. Moreover, the presented analysis
sketches the influence of chosen components, such as overlay
or underlay presets, on the simulation duration and memory
consumption. For the future, we plan to extend the Transport
Layer with an efficient model for TCP. Furthermore, we want
to test and improve the interaction with the Common Simulator
Interface [9] and examine its applicability with new imple-
mentations of existing P2P overlay protocols. Information
about PeerfactSim.KOM and its source code are available at
http://www.peerfactsim.com.

ACKNOWLEDGEMENTS

This work has been supported in parts by the German
Research Foundation, Research Group 733, “QuaP2P: Quality
Improvement of Peer-to-Peer Systems” and by the German
Federal Ministry of Education and Research (BMBF) in the
Project “Premium Services” (support code 01IA08003A) and
in the Project “G-Lab VirtuRAMA” (support code 01BK0920).

REFERENCES

[1] “OECD Broadband Portal” http://oecd.org/sti/ict/broadband.
[2] “The Annotated Gnutella Protocol Specification v0.4” http://rfc-

gnutella.sourceforge.net/developer/stable/index.html.
[3] I. Baumgart, B. Heep, and S. Krause, “OverSim: A FlexibleOverlay

Network Simulation Framework” inIEEE Global Internet Symposium,
2007, pp. 79–84.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making Gnutella-like P2P Systems Scalable” inProc. of the Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2003, pp. 407–418.

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a Common API for Structured Peer-to-Peer Overlays” inProc. of the
2nd Int. Workshop on Peer-to-Peer Systems, 2003, pp. 33–44.

[6] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “ProtoPeer: A
P2P Toolkit Bridging the Gap Between Simulation and live Deploye-
ment” in Proc. of the 2nd Int. Conf. on Simulation Tools and Techniques,
2009, pp. 1–9.

[7] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz, “SkyEye.KOM: An
Information Management Over-Overlay for Getting the Oracle View on
Structured P2P Systems” inProc. of the 14th Int. Conf. on Parallel and
Distributed Systems, 2008, pp. 279–286.

[8] K. Graffi, D. Stingl, J. Rueckert, A. Kovacevic, and R. Steinmetz,
“Monitoring and Management of Structured Peer-to-Peer Systems” in
Proc. of the 9th Int. Conf. on Peer-to-Peer Computing, 2009, pp. 311–
320.

[9] C. Groß, M. Lehn, D. Stingl, A. Kovacevic, A. Buchmann, and R. Stein-
metz, “Towards a Common Interface for Overlay Network Simulators”
in Proc. of the 16th Int. Conf. on Parallel and Distributed Systems, 2010,
pp. 27–34.

[10] S.-Y. Hu, J.-f. Chen, and T.-H. Chen, “VON: A Scalable Peer-to-Peer
Network for Virtual Environments”IEEE Network, vol. 20, 2006, pp.
22–31.

[11] R. Jain,The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc, 1991.

[12] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-Based Aggregation
in Large Dynamic Networks”ACM Transactions on Computer Systems,
vol. 23, 2005, pp. 219–252.



 1

 10

 100

 1000

 10000

 100000

500 1000 5000 10000 50000

T
im

e 
[m

in
]

Number of Peers

Kademlia, GNP-Preset
Kademlia, Easy-Preset
Gnutella, GNP-Preset
Gnutella, Easy-Preset

(a) Simulation Duration

 10

 100

 1000

 10000

500 1000 5000 10000 50000

M
em

or
y 

[M
iB

]

Number of Peers

Kademlia, GNP-Preset
Kademlia, Easy-Preset
Gnutella, GNP-Preset
Gnutella, Easy-Preset

(b) Memory Consumption

 1e+06

 1e+07

 1e+08

 1e+09

500 1000 5000 10000 50000

S
en

t M
es

sa
ge

s

Number of Peers

Kademlia, GNP-Preset
Kademlia, Easy-Preset
Gnutella, GNP-Preset
Gnutella, Easy-Preset

(c) Message Overhead

Figure 5. Performance Evaluation Of PeerfactSim.KOM

[13] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, andR. Stein-
metz, “Modelling the Internet Delay Space Based on Geographical
Locations” in Proc. of the 17th Euromicro Int. Conf. on Parallel,
Distributed and Network-based Processing, 2009, pp. 301–310.

[14] T. Klingberg and R. Manfredi, “Gnutella 0.6” http://rfc-
gnutella.sourceforge.net/src/rfc-06-draft.html.

[15] A. Kovacevic, N. Liebau, and R. Steinmetz, “Globase.KOM - A P2P
Overlay for Fully Retrievable Location-based Search” inProc. of the
7th Int. Conf. on Peer-to-Peer Computing, 2007, pp. 87–96.

[16] G. Kunzmann, R. Nagel, T. Hossfeld, A. Binzenhofer, andK. Eger,
“Efficient Simulation of Large-Scale P2P Networks: Modeling Network
Transmission Times” inProc. of the 15th Euromicro Int. Conf. on
Parallel, Distributed, and Network-based Processing, 2007, pp. 475–
481.

[17] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric” inProc. of the 1st Int. Workshop
on Peer-to-Peer Systems, 2002, pp. 53–65.

[18] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator”
in Proc. of the 9th Int. Conf. on Peer-to-Peer Computing, 2009, pp. 99
–100.

[19] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “A Survey of
Peer-to-Peer Network Simulators” inProc. of The 7th Annual Postgrad-
uate Symposium, 2006.

[20] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers, “The State of Peer-to-Peer Simulators and Simulations”
SIGCOMM Computer Communication Review, vol. 37, 2007, pp. 95–98.

[21] T. S. E. Ng and H. Zhang, “Towards global network positioning” in
Proc. of the 1st ACM SIGCOMM Workshop on Internet Measurement,
2001, pp. 25–29.

[22] J. Pujol Ahullo and P. Garcia Lopez, “PlanetSim: An Extensible Simu-
lation Tool for Peer-to-Peer Networks and Services” inProc. of the 9th
Int. Conf. on Peer-to-Peer Computing, 2009, pp. 85–86.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A Scalable Content-Addressable Network” inProc. of the Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2001, pp. 161–172.

[24] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-scale Peer-to-PeerSystems” in
Proc. of the IFIP/ACM Int. Conf. on Distributed Systems Platforms,
2001, pp. 329–350.

[25] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. Buch-
mann, “pSense - Maintaining a Dynamic Localized Peer-to-Peer Struc-
ture for Position Based Multicast in Games” inProc. of the 8th Int.
Conf. on Peer-to-Peer Computing, 2008, pp. 247–256.

[26] M. Steiner, T. En-Najjary, and E. W. Biersack, “Analyzing Peer Behavior
in KAD” pp. 1–28, 2007.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions” in Proc. of the Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2001, pp. 149–160.




