
Benchmarking Decentralized Monitoring
Mechanisms in Peer-to-Peer Systems

Dominik Stingl1, Christian Gross1, Karsten Saller2, Sebastian Kaune, Ralf Steinmetz1

Multimedia Communications Lab1, Realtime Systems Lab2

Technische Universität Darmstadt
Email: {stingl,chrgross,kaune,steinmetz}@kom.tu-darmstadt.de

saller@es.tu-darmstadt.de

Abstract—Decentralized monitoring mechanisms enable ob-
taining a global view on different attributes and the state of
Peer-to-Peer systems. Therefore, such mechanisms are essential
for managing and optimizing Peer-to-Peer systems. Nonetheless,
when deciding on an appropriate mechanism, system designers
are faced with a major challenge. Comparing different existing
monitoring mechanisms is complex because evaluation method-
ologies differ widely. To overcome this challenge and to achieve
a fair evaluation and comparison, we present a set of dedicated
benchmarks for monitoring mechanisms. These benchmarks
evaluate relevant functional and non-functional requirements
of monitoring mechanisms using appropriate workloads and
metrics. We demonstrate the feasibility and expressiveness of
our benchmarks by evaluating and comparing three different
monitoring mechanisms and highlighting their performanceand
overhead.

I. I NTRODUCTION

In the last decade, monitoring of Peer-to-Peer (P2P) systems
has gained much research interest resulting in a plethora
of different monitoring approaches, each providing different
performance characteristics. All approaches have in com-
mon, that they reveal general insights about the network
and application [24], or summarize the characteristics of the
participants [7].

Given the multitude of existing solutions, a fair comparison
between several solutions is hard to achieve, if not impossible.
This lack of comparability results from the widely differing
evaluation methodology for decentralized monitoring mecha-
nisms: (i) although designed for the same purpose with similar
functionality, the addressed non-functional requirements vary,
(ii) the applied workloads to evaluate the quality of a mech-
anism differ widely in their composition, and (iii) different
metrics are used to quantify the quality of the system.

To overcome this lack of comparability, we present the
following contributions:

(i) We identify the relevant non-functional requirements for
decentralized monitoring mechanisms for P2P systems, such
as scalability and robustness. Given these requirements, we
propose a set of benchmarks that investigate how decentralized
monitoring mechanisms meet these non-functional require-
ments. Therefore, each developed benchmark consists of one
or several workloads, which evaluate a specific non-functional
requirement by a predefined set of appropriate metrics. Based
on the provided benchmarks, the quality of decentralized

monitoring mechanisms can be evaluated and compared in a
reproducible and unbiased way. Furthermore, our benchmarks
can be applied to tune the parameter setting of a system to
identify an optimal configuration for a particular workload
scenario.

(ii) To exemplify our methodology, we present a case study
and discuss the benchmarking results of three monitoring
approaches (a gossip-based and tree-based approach as well
as a simple centralized approach as reference). Thus, we are
not interested in declaring one approach “better” or “worse”
than another as denoted by Rhea et al. [19], but in showing the
applicability and expressiveness of our presented benchmarks.

The rest of this paper is structured as follows: Section II
provides the background on decentralized P2P monitoring
mechanisms followed by Section III presenting our bench-
marking methodology. The benchmarking results are presented
in Section IV. Subsequently, we discuss related work in
Section V, summarize this paper in Section VI and give an
outlook on future work.

II. D ECENTRALIZED MONITORING

MECHANISMS

In this section, we give a brief overview on decentralized
monitoring mechanisms highlighting their offered function-
ality and composition. For the design of benchmarks, it is
indispensable to understand, which functionality is provided
by the considered class of mechanisms, because it influences
the identification of the relevant non-functional requirements
for this class. Based on these requirements, the different
benchmarks can be defined, as outlined in Subsection III-A.
Moreover, the offered functionality serves to design an inter-
face for the class of mechanisms to access and execute the
relevant operations during a benchmark.

A. Functional Description

A decentralized monitoring mechanism [12], [16], [23],
[24] gathers different types of data from the whole system
to assess and calculate theglobal stateof the system and
its participants. The information to collect is represented by
a set of attributes, measured by every participating peer.
Depending on the focus of a monitoring mechanism, the
gathered attributes range from the transmitted traffic [18], over

rst
Textfeld
Dominik Stingl, Christian Gross, Karsten Saller, Sebastian Kaune, Ralf Steinmetz: Benchmarking Decentralized Monitoring Mechanisms in Peer-to-Peer Systems. In: Proceedings of the third joint WOSP/SIPEW international conference on Performance Engineering, p. 193-204, ACM, April 2012. ISBN 978-1-4503-1202-8. 

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



application-related information [23], to the user and its utilized
communication device [7].

Due to the large number of users, the transmission of the
measured attributes and its subsequent collection at one or
several data sinks results in a high amount of data, consuming
a considerable amount of bandwidth resources in the system.
Existing approaches, therefore, apply aggregation of the moni-
tored attributes to compress the size of the data and to save the
bandwidth of the participating peers. Using this aggregation,
a monitoring mechanism calculates the so-calledglobal view
of a monitored attribute, which can be subsequently used to
deduce the aforementioned global state of the whole system.
Typical aggregates that are used for the calculation of a global
view cover functions, such as minimum, maximum, sum,
average, or standard deviation [3], [16]. After the computation
of a global view for a set of aggregates, each participating peer
in a P2P system can retrieve the newly created information.

B. Architectural Description

In the following, we present the architecture of a decentral-
ized monitoring mechanism, which provides the previously
mentioned functionality. We sketch how a decentralized mon-
itoring mechanism is composed and integrated into a P2P
system. In contrast to the functional description, the infor-
mation about a mechanism’s composition is not mandatory
for the design of benchmarks, because we evaluate the whole
mechanism and do not study the impact of internal components
on the overall behavior. The overview, however, justifies the
choice of a tree- and gossip-based approach for the case study
in Section IV, because it becomes apparent that the topology
mainly influences the behavior of the monitoring mechanism.
In the following, we present the three basic components, every
monitoring mechanism can be reduced to.

a) Topology Construction and Maintenance:In litera-
ture, trees[16], [24] andmeshes[11], [12] constitute the two
prominent topologies for a decentralized monitoring mecha-
nism. Within a tree topology, information is only exchanged
between children and parents. Within a mesh topology, one or
several neighbors are randomly chosen to exchange monitored
information [5]. This results ingossip-basedcommunication,
which is often used as a synonym when describing the
communication within mesh-based monitoring mechanisms.
Furthermore, there are several hybrid approaches, combining
gossip-based aggregation in trees [23] or creating trees of
mesh-based networks [2], [18].

The topology maintenance depends on the network environ-
ment and its network topology. Monitoring approaches that are
deployed in static and structured environments, such as in the
area of grid computing [18], heavily differ from approaches
for autonomous systems with highly dynamic users. The
herein considered mechanisms for P2P systems must actively
maintain the monitoring topology and additionally manage the
arrival and departure of peers [1], [2]. Therefore, they rely
on additional mechanisms, such as Distributed Hash Tables
(DHT) or membership protocols [10].

b) Data Collection:This component sketches how mon-
itored data is exchanged. Typically, gossip-based monitoring
approaches actively send data to neighboring peers [12], also
denoted aspush. If the message sent triggers the transmission
of an answer at the receiver, the gossip-based approach applies
push-pull-based data collection [11]. Tree-based approaches
can decide to eitherpush data [7] or to alternativelypull
data from neighbors [16], [18]. To trigger the collection of
measured data, monitoring mechanisms rely on a periodic or
event-based collection. For the latter case, the activating event
may be, for example, (i) a newly measured value of an attribute
at a peer, (ii) a query for the global view of an attribute, (iii) or
the attempt of the system to generate a snapshot of an attribute
at a certain point in time.

c) Result Dissemination:This component highlights the
possibilities to disseminate the global view of the monitored
attributes. The existing strategies compriseproactiveandreac-
tive result dissemination. While proactive dissemination trans-
mits the created global view to all or only a subset of peers,
reactive dissemination sends the global view of attributes
only to requesting peers. Tree-based monitoring approaches
allow choosing between the different dissemination strategies,
whereas proactive dissemination is implicitly integratedin
gossip-based monitoring, due to the push-based collectionof
data.

III. B ENCHMARKING DECENTRALIZED

MONITORING MECHANISMS

In this section, we describe the design of our benchmarks,
which will be used for the comparison of the different mon-
itoring mechanisms in our case study. The designing process
for a particular benchmark consists of the following three
aspects: (i) The system specification provides the basis for
the definition of benchmarks (Section III-A). It illustrates the
functional and non-functional requirements, each system has
to fulfill. (ii) Given the requirements, appropriate workload
schemes to benchmark a system are identified (Section III-B).
(iii) To quantify the obtained results of an applied workload, a
set of metrics is created (Section III-C). Finally, SectionIII-D
outlines the combination of the three mandatory aspects in one
or several benchmarks.

A. System Specification

Our system under test (SUT) consists of a decentralized
monitoring mechanism, which is set up on top of a P2P
system. To benchmark the SUT, it provides an interface to
apply different workloads on the system and to measure the
produced results. In case that the class of mechanisms being
benchmarked does not provide a predefined interface, it must
be derived based on the functional requirements of that class.
To cover a wide range of existing approaches, the common
functionality must be carefully analyzed and merged in a set
of methods within the interface.

Due to the fact that neither an interface nor the provided
functionality of a decentralized monitoring mechanism is spec-
ified, we examined existing approaches to highlight the key



aspects. As outlined in Section II, a decentralized monitoring
mechanism calculates and provides the global view for a set of
attributes. For that reason, each participant locally measures
and stores the specified attributes for the overall collection.
When the collection process is finished, the global view of
attributes can be retrieved by the participating peers. Based on
this description, the common functionality of a decentralized
monitoring mechanism can be defined within the following
interface.

• setLocalValue(String name, double
value) stores a locally measured value of an
attribute for the latter collection.

• getGlobalViewOfAttributes() returns the
global view of all monitored attributes.

Every monitoring approach, applying our benchmarks, must
provide this functionality and implement the specified interface
in order to be evaluated or compared to another solution. Thus
to apply the different workloads and to measure the produced
results, the resulting interface of the SUT is located at each
peer, which participates and monitors the system.

Besides the architecture and the design of the interface,
the system specification also outlines the non-functional re-
quirements of a system. Therefore, we identified the follow-
ing quality aspects, representing the relevant non-functional
requirements of decentralized monitoring mechanisms. These
requirements build the basis for the subsequent identification
of workloads and metrics.

• Performance characterizes the quality of the provided
functionality of a mechanism. In the context of monitor-
ing, we divide performance intovalidity and timeliness.
With validity, we address the accuracy of the delivered
results, which can be characterized through the difference
between the measured and the actual global view of an
attribute. Since the provisioning of correct information
is the primary function of a decentralized monitoring
mechanism, validity represents a central aspect. Besides
the delivery of correct results, timeliness covers the aspect
how fast the monitoring mechanism captures the global
view and how fast it can deliver or distribute this view
in the system.

• Costscomprise the communication or computation over-
head produced by the monitoring mechanism to perform
its task with a certain performance.

• Fairness can be evaluated with respect to performance
and costs. On the one hand, a fair system should offer the
same access to the provided services and avoid starving
peers. On the other hand, a fair system should distribute
the operational costs that peers are not overloaded.

• Scalability refers to the ability of a monitoring mech-
anism to preserve its performance at reasonable costs,
while increasing the number of participating nodes or
monitored attributes. A threshold for acceptable per-
formance or costs must be defined by the application
scenario.

• Robustnessdeals with the behavior of the whole P2P sys-

tem in the presence of external and unpredictable events.
These events mainly comprise massive fluctuations of
participants due to, e.g., a network collapse or flash crowd
behavior.

• Stability characterizes the ability of a decentralized mon-
itoring mechanism to deal with the random behavior of
autonomous peers in a P2P system. We consider the
random behavior in terms of churn, which describes the
varying frequency of arriving and leaving peers.

The identified non-functional requirements can be divided
into two classes of quality aspects. On the one hand, there
are quality aspects, such as performance, costs, and fair-
ness, which can be quantified by metrics. Based on these
metrics, it is possible to estimate if a mechanism meets
these requirements. In contrast, the second class of quality
aspects cannot directly be assessed by individual metrics,but
is quantifiable by metrics, which are related to the first class
of quality aspects. Instead, the second class of quality aspects
characterizes the properties of a workload.

B. Workloads

For benchmarking decentralized monitoring mechanisms,
we elaborated several workloads to address the identified
quality aspects. These workloads are applied on the SUT,
while the participating peers perform their tasks and measure
a set of predefined attributes. Using the captured attributes,
the monitoring mechanism calculates the global view for each
attribute, as described in Section II-A. Afterwards, this global
view is disseminated to the peers. To examine validity of
a monitoring mechanism under the specified workloads, the
measured global view is compared to the so-calledcorrect
global view. In contrast to the global view obtained by the
monitoring mechanism, the correct global view of an attribute
is calculated based on a snapshot of the system at a certain
point in time. Except for the peer count of a monitoring
mechanism, we do not measure common system attributes
(e.g., network traffic or number of messages) nor domain-
specific attributes (e.g., lookup-rates or file-downloads for file-
sharing systems) to evaluate validity. Instead, the peers in
our benchmark obtain their monitored values from avalue
generator, as presented by Graffi [6]. This generator calculates
a new value for each monitoring peer based on the current
time and on the defined function. Afterwards, the calculated
global view is compared with the actual value retrieved from
the value generator to assess the validity of the monitoring
mechanism.

The value generator facilitates a more detailed analysis,
because we can define functions with differing complexity,
which refer to constant or highly varying attributes. It is
possible to design individual functions that exhibit desired
characteristics, such as steep slopes or periodicity, in order to
estimate to which extent a monitoring mechanism is able to
capture a varying signal. For example, it is easier to capture
the values of a slightly increasing linear function than of a
sine or a rectangular function. Moreover, the value generator
improves the comparability of results in terms of validity.



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0  20  40  60  80  100  120  140  160  180

A
ttr

ib
ut

e 
V

al
ue

 [u
ni

ts
]

Time [min]

Figure 1. Sine reference signal with a period of 30min.

The monitored values of a function are independent from the
enclosing P2P system (e.g., P2P file-sharing application) and
current workload scenario (e.g., churn), thus, the values are not
biased. In order to evaluate validity within our benchmarks,
we implement a sine function, as displayed in Figure 1.

Besides this function for the value generator, we propose a
set of workloads. These workloads are not application-related
but synthetic workloads. They are domain-specific and model
typical scenarios that are common for P2P system, such as
churn or an increasing number of peers. We decided to apply
synthetic workloads (i) to provide application-independent
results and (ii) to stress a system regarding a particular,
isolated quality aspect.

d) Baseline: The baseline workload represents ideal-
ized conditions and provides insights on the behavior of the
monitoring mechanism under these conditions. In contrast to
the remaining workloads, this workload does neither include
message loss, which is enabled for the rest of workloads, nor
consider churn, which is addressed in a separate workload.
Moreover, other workload parameters, such as the number of
peers or the amount of monitored attributes, are fixed during
this workload. This results in a static workload scenario with
a fixed number of peers and perfect network conditions.

e) Churn: In this workload scenario, we evaluate stabil-
ity of a monitoring mechanism in the presence of churn. As
underlying model, we employ an exponential churn model,
which assumes an exponentially distributed mean session time
per peer. The workload consists of several runs, which model
the peers with different mean session times per run.

f) Massive join/crash:The massive join workload con-
sists of one run. During this run, we assume that a predefined
fraction of new peers simultaneously joins the system. Within
the context of a massive crash, the workload consists of a
single run as well and covers the ungraceful departure of a
predefined fraction of peers. These workloads evaluate the
robustness of a decentralized monitoring mechanism, sinceit
has to deal with a sudden change in the system state as well
as in the amount of peers. For both workloads, one has to
differentiate between a collapse of the monitoring mechanism
due to the breakdown of the whole P2P system or due to the
inability of the monitoring mechanism to reorganize itself.

Symbol Description

T The set of time samples
P (t) The set of online peers at timet ∈ T

A(t) The set of attributes being monitored at timet
Xm(a, t, p) The measuredglobal aggregateX of an attribute

a ∈ A(t) at time t ∈ T available at a peerp ∈

P (t)
Xc(a, t) The correct global aggregateX of an attribute

a ∈ A(t), which is calculated based on a snapshot
of the system at timet ∈ T

τmin(X(a, t, p)) The time of the oldest sample being included into
an aggregate

τmax(X(a, t, p)) The time of the most recent sample being included
into an aggregate

∆tagg(X(a, t, p)) The aggregation time considers all included values
for a global view and is calculated as
∆tagg(X(a, t, p)) = τmax − τmin

∆tprop(X(a, t, p)) The propagation time for a global aggregate from
a data sink to a peer

∆treq(X(a, t, p)) The time to answer a request for a global aggre-
gate

Table I
L IST OF MATHEMATICAL SYMBOLS

g) Increasing number of attributes:In this workload
scenario, we investigate scalability of a monitoring mechanism
by scaling the amount of transmitted and processed data.
We denote this type of scalability asvertical scalability. The
workload consists of several runs. For each run, we increase
the number of monitored attributes, which results in a higher
amount of transmitted and processed data.

h) Increasing number of peers:With the linear increase
of peers in the system, this workload investigates another type
of scalability of a monitoring mechanism, which we denote as
horizontal scalability. In contrast to the previously described
workload, which addresses vertical scalability, this workload
increases the number of peers to an upper bound during one
run and not during several runs.

C. Metrics

In this subsection, we introduce the metrics being measured
to evaluate a decentralized monitoring mechanism. In orderto
describe the metrics below, we use the set of symbols shown
in Table I.

1) Per peer metrics:The following metrics are measured
on a per peer basis for each participant of the P2P system.
They can be mapped onto the quality aspects performance
and costs.

Performance Metrics:
• tstale(X(a, t, p)) denotes the staleness or age of an ag-

gregate in seconds, observed at peerp ∈ P (t) and is
calculated as

tstale(X(a, t, p)) = ∆tagg+∆tprop+∆treq

• ǫX(a, t, p) represents the relative monitoring error in
percent for an aggregateX of on attributea ∈ A(t) at



peerp ∈ P (t) at time t ∈ T and is defined as:

ǫX(a, t, p) =
|Xm(a, t, p)−Xc(a, t)|

Xc(a, t)
∗ 100%

Cost Metric:
• l(t, p) represents the total traffic inkB

s at peerp ∈ P (t)
at time t ∈ T . It comprises the up- and download traffic
and is calculated as follows:

l(t, p) = lup(t, p) + ldown(t, p)

2) Global Metrics: Based on the per peer metrics the
following global metrics can be calculated:

• The mean of a metricx over the set of peers at time
t ∈ T :

x(t) =
1

|P |

∑

p∈P

x(p, t).

• The mean of a metricx over the set of time samples per
peerp ∈ P :

x̃(p) =
1

|T |

∑

t∈T

x(p, t).

• The total mean of a metricx:

x̂ =
1

|T ||P |

∑

t∈T

∑

p∈P

x(p, t).

D. Benchmark Implementation

Having introduced the system specification, workloads, and
metrics, we present the benchmark implementation. This im-
plementation combines the three components and creates the
different benchmarks to evaluate the SUT. We have derived
four different benchmarks that investigate and evaluate the
system in a baseline, robustness, stability, and scalability
benchmark. Before presenting all benchmarks, we describe the
basis for each benchmark, which consists of three different
phases as shown in Figure 2: (i) the setup phase of 60min
in which 1,000 peers join the system, (ii) the stabilization
phase of additional 20min, which ensures that the whole P2P
system is set up correctly and stable, and (iii) a workload and
measurement phase of 180min, where the different workload
schemes are applied and where the benchmarking metrics are
captured.

a) Baseline Benchmark:The baseline benchmark pro-
vides insights on performance and costs in an idealized
environment without message loss or peer churn. Using the
baselineworkload, this benchmark represents a reference for
the remaining benchmarks regarding (i) the examined quality
aspects of a particular monitoring mechanism as well as (ii)
the comparison between the different monitoring mechanisms.

b) Scalability Benchmark:To examine the scalability of
a decentralized monitoring mechanism, we divide scalability
into horizontal and vertical scalability. Horizontal scalability
is benchmarked by the workload with anincreasing number
of peers. Within this workload the number of peers is linearly
increased from 1,000 to 10,000 peers during the workload and
measurement phase. In contrast, the workload with anincreas-
ing number of attributesbenchmarks vertical scalability. The

Figure 2. Schematic drawing of the schemes for varying the number of peers:
(1) constant number of peers, (2) massive join, (3) massive leave, (4) linear
increase, and (5) regular churn.

workload consists of three runs and covers scenarios with 10,
100, and 1,000 attributes, which are monitored by the system.

c) Stability Benchmark:For investigating the stability of
the system, we apply the workload forchurn. The workload
consists of three runs, which model peers with a mean session
time of 60, 30, and 15min. With the increasing frequency of
arriving and leaving peers per run, this workload examines the
stability of a decentralized monitoring mechanism.

d) Robustness Benchmark:In the robustness benchmark,
we investigate the system behavior in two different scenarios
defined by themassive joinand massive crashworkloads.
We look at the system behavior when (i) 50% of the peers
simultaneously leave and (ii) 100% new peers simultaneously
join the system. We consider a system to be robust if these
metrics reach predefined levels after a crash or a massive join.
While the levels must be defined by the application scenario
in which the particular monitoring approach should be used,
we restrict the evaluation of robustness to a comparison of the
three different systems.

IV. B ENCHMARKING RESULTS

In order to evaluate our benchmarks, we chose three
different monitoring mechanisms and implemented them in
the P2P simulation framework PeerfactSim.KOM [21]. We
benchmarked all three systems using the previously defined
benchmarks. Before presenting the results for each benchmark
and outlining the most important conclusions, Subsection IV-A
summarizes the simulation setup and details the three chosen
monitoring mechanisms.

A. Simulation Setup

We simulate each of the three monitoring mechanisms on
top of a Chord overlay [22], since the tree-based approach
requires a DHT to build its monitoring topology. Out of
the four presented benchmarks, each benchmark is simulated
with its corresponding workloads and metrics. During the
workload phase, which lasts 180min (cf. Subsection III-D),
we periodically measure the produced data of the simulation
with an interval of a minute. The data comprises the produced
results of the monitoring mechanism and the traffic of the



whole system, including the overlay as well. After sketching
the basis for our simulations, we detail our selected monitoring
mechanisms and briefly justify our choice.

Based on the description of decentralized monitoring mech-
anisms in Section II, it becomes apparent that the selectionof
the topology heavily influences the decisions for the remaining
two components of a monitoring mechanism. Thus, the topol-
ogy constitutes the main decision criterion for a monitoring
mechanism, as outlined by Makhloufi et al. [17]. Therefore,
we select two decentralized monitoring approaches, which
rely on different topologies, while their mechanisms for data
collection and result dissemination are similar. Data collection
and result dissemination are part of the discussion for future
work (cf. Section VI). For the benchmark, we selected (i) a
tree-based approach, (ii) a gossip-based approach, and (iii)
a centralized monitoring solution as reference, which are
detailed in the following.

1) A Tree-Based Monitoring Mechanism:The monitoring
mechanism, introduced by Graffi et al. [7], relies on the
lookup-functionality of the underlying DHT to build its tree
topology based on the given peer IDs. Using the created
topology, every participating peer, either leaf or inner node of
the tree, periodically sends its set of attributes towards the root,
which calculates the global view of all monitored attributes.
This results in a push-based data collection mechanism. Si-
multaneously, the root regularly sends the information down
the tree to every inner node and leaf, leading to a proactive
result dissemination. We set both update intervals to 60s as
proposed by Graffi et al. [7].

2) A Mesh-Based Monitoring Mechanism:To evaluate our
benchmark on mesh-based systems, this subsection details the
approach by Jelasity et al. [11], which relies on gossip-based
communication to monitor the P2P system. For this type of
communication, the underlying overlay network must only
allow for the retrieval of neighbors to periodically communi-
cate with a randomly chosen subset of them. The mesh-based
monitoring mechanism divides the time intoepochs, which in
turn consist of a predefined amount ofcyclesto calculate the
global view of the monitored attributes. We set the amount
of cycles per epoch to 30 with a cycle length of 10s, which
correspond to the values indicated by Jelasity et al. [11]. In the
beginning of a new epoch, every participating peer measures
its attributes and periodically sends the current values toa
randomly chosen neighbor. Through the aggregation of the
measured attributes at each peer, the values converge to the
average at the end of an epoch. Besides periodically pushing
the own data to a neighbor, every peer that receives such a
message, replies to this message with its own data. Thus, the
system implements apush-pull-baseddata propagation.

3) A Centralized Monitoring Approach:In order to have
a reference for decentralized monitoring mechanisms, we
implemented a centralized monitoring approach, which is set
up on top of the overlay. All participating peers of the central-
ized monitoring mechanism periodically push their measured
attributes to a central server, which calculates the globalview
of the monitored attributes. Afterwards, the server proactively

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30  35  40

C
um

ul
at

iv
e 

F
ra

ct
io

n

Mean Relative Monitoring Error
Sine Function [%]

Tree
Gossip

Centralized

(a) CDF of the mean relative moni-
toring error for the sine function

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

C
um

ul
at

iv
e 

F
ra

ct
io

n

Mean Relative Monitoring Error
Peer Count [%]

Tree
Gossip

Centralized

(b) CDF of the mean relative moni-
toring error for the peer count

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  200  400  600  800  1000

C
um

ul
at

iv
e 

F
ra

ct
io

n

Mean Staleness [s]

Tree
Gossip

Centralized

(c) CDF of the mean staleness

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
um

ul
at

iv
e 

F
ra

ct
io

n

Mean Traffic [kB/s]

Tree
Gossip

Centralized

(d) CDF of the mean traffic

Figure 3. Per peer results for performance and costs, measured during the
baseline workload.

disseminates the computed global view to all peers in the
system, resulting in a proactive result dissemination. Similar to
the tree-based approach, we set both update intervals to 60s.
In the following evaluation, the statistics of the centralized
approach represent an optimal monitoring solution and serve
as reference. Therefore, we mainly detail the comparison of
the decentralized solutions and only refer to the centralized
approach where appropriate.

B. Baseline Benchmark

We first study the performance and costs of the different
approaches under idealized conditions within the baseline
benchmark. Starting with performance in terms of validity,
Figure 3(a) and 3(b) show the cumulative fraction of the mean
relative monitoring error per peer averaged over a simulation
denoted as ˜ǫavg(a, t, p). Both plots outline that the tree-based
approach outperforms the gossip-based approach and in terms
of the relative error for the peer count even catches up with
the centralized approach. Although, each mechanism is ableto
capture the total amount of peers, the gossip-based approach
exhibits a small deviation. Dealing with fairness, every par-
ticipating peer of the gossip-based approach is provided with
a similar monitoring error. Contrary to this, the error of the
tree-based approach is spread over a larger interval, due toits
hierarchical topology and the stepwise data propagation down
the tree.

Considering the mean staleness per peer ˜tstale(X(a, t, p)),
as displayed in Figure 3(c), we observe that the tree-based ap-
proach only partially outperforms the gossip-based approach,
because a larger fraction of peers obtains older results in
contrast to the gossip-based approach. This results in a mean
staleness of 462s for the gossip-based and 501s for the tree-
based approach. The obtained results for staleness lead to the
interesting finding that the provided validity of the tree-based



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 2000  4000  6000  8000  10000

M
ea

n 
R

el
. M

on
ito

rin
g 

E
rr

or
S

in
e 

F
un

ct
io

n 
[%

]

Number of Peers [#]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for the sine
function

 0

 200

 400

 600

 800

 1000

 1200

 2000  4000  6000  8000  10000

M
ea

n 
S

ta
le

ne
ss

 [s
]

Number of Peers [#]

Tree
Gossip

Centralized

(b) Mean staleness of monitored data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2000  4000  6000  8000  10000

M
ea

n 
T

ra
ffi

c 
[k

B
/s

]

Number of Peers [#]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 4. Per peer results for performance and costs, measured during the horizontal scalability workload. The x-axes show the actual number of peers in
the system, which increases from 1,000 to 10,000 peers over an interval of 180min.

 0
 2000
 4000
 6000
 8000

 10000

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Tree
Reference Signal

 0
 10000
 20000
 30000
 40000

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Gossip
Reference Signal

 0
 2000
 4000
 6000
 8000

 10000

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Centralized
Reference Signal

Figure 5. Actual vs. monitored number of peers over time during the
horizontal scalability workload.

approach is slightly higher than of the gossip-based approach,
whereas the staleness does not support this trend. Dealing
with the distribution of staleness among the peers, the same
characteristics as for the previously presented error distribution
in Figure 3(a) can be observed.

Considering the costs of a peer in terms of the mean total
traffic ˜l(t, p) (Figure 3(d)), the produced communication over-
head of the tree-based approach nearly reaches the minimum
overhead of the centralized approach. In contrast, the tree-
based approach does not evenly balance the load among the
peers. The gossip-based approach produces the highest traffic
due to a shorter update frequency of the mechanism. Compared
to the other monitoring approaches, the distribution of costs
is even worse, because the traffic depends on the amount of
neighbors in the network, which differs among the peers and
is not limited as for the tree-based and centralized approach.

C. Scalability Benchmark

At first, we study performance and costs of the consid-
ered monitoring mechanisms during thehorizontal scalability
workload. Looking at validity, displayed in Figure 4(a), we
notice that the tree-based monitoring mechanism produces a
higher mean errorǫavg(a, t, p) than the gossip-based approach.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

10 100 1000
M

ea
n 

R
el

. M
on

ito
rin

g 
E

rr
or

S
in

e 
F

un
ct

io
n 

[%
]

Number of Attributes

Tree-based
Gossip-based

Centralized

(a) Mean relative monitoring error
for the sine function

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 100 1000

M
ea

n 
R

el
. M

on
ito

rin
g 

E
rr

or
P

ee
r 

C
ou

nt
 [%

]

Number of Attributes

Tree-based
Gossip-based

Centralized

(b) Mean relative monitoring error
for the peer count

 0

 2000

 4000

 6000

 8000

 10000

 12000

10 100 1000

M
ea

n 
S

ta
le

ne
ss

Number of Attributes

Tree-based
Gossip-based

Centralized

(c) Mean staleness of monitored data

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000

M
ea

n 
T

ra
ffi

c 
[k

B
/s

]

Number of Attributes

Tree-based
Gossip-based

Centralized

(d) Mean traffic

Figure 6. Per peer results for performance and costs, measured during the
vertical scalability workload.

This results from the fact that the dynamic and growing system
has a higher impact on the tree than on the mesh topology. Due
to the arrival of new peers, the continuous reorganization of the
monitoring tree delays the result calculation and dissemination,
because the data remains longer in tree. In contrast, we observe
a smaller impact on the mesh topology, because the arrival of
new peers does not require a reorganization of the underlying
topology. Instead, new peers can be inserted anywhere into the
mesh.

Figure 4(b) outlines the results for the mean staleness
tstale(X(a, t, p)) and confirms the previous statements re-
garding the mean monitoring error for the reference signal.
Due to the reorganization and the resulting delay, the tree-
based approach exhibits a higher mean staleness of results
with values up to 967s, whereas the gossip-based approach
performs better, but exhibits highly fluctuating values, which
vary between 146s and 805s.

In contrast to the results for the mean error of the mon-
itored function, the drawn conclusion does not hold for the



 0

 10

 20

 30

 40

 50

 60

 70

15min 30min 60min

M
ea

n 
R

el
. M

on
ito

rin
g 

E
rr

or
S

in
e 

F
un

ct
io

n 
[%

]

Mean Session Time

Tree
Gossip

Centralized

(a) Mean relative monitoring error for the sine
function

 0

 200

 400

 600

 800

 1000

 1200

 1400

15min 30min 60min

M
ea

n 
S

ta
le

ne
ss

 [s
]

Mean Session Time

Tree
Gossip

Centralized

(b) Mean staleness

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

15min 30min 60min

M
ea

n 
T

ra
ffi

c 
[k

B
/s

]

Mean Session Time

Tree
Gossip

Centralized

(c) Mean traffic

Figure 7. Per peer results for performance and costs, measured during the churn workload.

monitored number of peers. Figure 5 shows that the tree-
based approach outperforms the gossip-based approach, which
exhibits considerable outliers. The opposed outcome in terms
of the peer count originates from the underlying peer counting
procedure of the considered gossip-based approach. Contrary
to the measurement of other attributes, e.g., the reference
signal, peer counting is more susceptible to the dynamic of
the system.

Dealing with the mean total trafficl(t, p) (Figure 4(c)), we
observe a similar trend as for the baseline benchmark. While
the tree-based approach nearly produces as less traffic as the
centralized approach, the gossip-based approach causes the
highest amount of traffic. However, it becomes apparent that
both decentralized monitoring approaches scale well with the
increasing number of peers.

Next, we study the results for thevertical scalability work-
load. The plots show the truncated mean after discarding the
values, which are below the 10- and above the 90-percentile.
For each mechanism, Figure 6(d) shows that the total traffic
per peer increases with the growing number of monitored
attributes. While the mean relative monitoring error for the
sine function in Figure 6(a) still indicates that the decentralized
alternatives are able to handle the increased traffic, the mean
relative error for the peer count (cf. Figure 6(b)) as well asthe
mean staleness of the provided results (cf. Figure 6(c)) outline
contrary results. In terms of the peer count error, the underly-
ing procedure for the peer count of the gossip-based approach
reveals again its weakness in the presence of dynamic and
unreliable environments. Although there are several paths
between two peers inside a mesh, whereby bottlenecks, such
as overloaded or slow peers, can be bypassed, the peer count
procedure does not benefit from the mesh topology. Dealing
with staleness, the age of the provided results of the tree-based
approach significantly increases with a growing number of
attributes. The reason for the degrading performance in terms
of timeliness originates from the underlying tree-topology: If
a path from the root to a sub-tree, or the other way round, is
congested, the information cannot be forwarded. It residesat
an inner node, leading to a bottleneck in the tree topology.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 80  100  120  140  160  180  200  220  240  260

N
um

be
r 

of
 P

ee
rs

Time [min]

Tree 15min
Tree 30min
Tree 60min

Reference Signal

 0

 500

 1000

 1500

 2000

 2500

 3000

 80  100  120  140  160  180  200  220  240  260

N
um

be
r 

of
 P

ee
rs

Time [min]

Gossip 15min
Gossip 30min
Gossip 60min

Reference Signal

Figure 8. Actual vs. monitored number of peers over time witha mean peer
session time of 15, 30, and 60 minutes.

D. Stability Benchmark

Examining the different monitoring approaches with respect
to stability, we start with the evaluation of performance.
Figure 8 shows the monitored number of peers averaged
over all currently participating peers in the system. We omit
the outcome of the centralized approach, since the results
are accurate and do not significantly differ for the different
mean session lengths. Instead, we plot the results for the
two decentralized approaches dependent on the mean session
time. Based on the displayed results, it becomes apparent
that the tree-based approach suffers from the increasing peer
fluctuations, because it cannot handle the resulting dynamic
of the P2P system and degrades in terms of the provided
performance. In contrast, the gossip-based approach manages
the increasing dynamic of the system in a better way. Although
exhibiting some outliers, whose occurrences increase witha
decreasing mean session time, the gossip-based approach is
capable of monitoring the current number of peers in the
system.

A similar trend can also be observed, when looking at
performance of the tree-based approach in terms of validity
and timeliness. Figure 7(a) and 7(b) show an increase of the



 0

 20

 40

 60

 80

 100

 90  120  150  180  210

M
ea

n 
R

el
. M

on
ito

rin
g 

E
rr

or
S

in
e 

F
un

ct
io

n 
[%

]

Time [min]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for the sine
function

 0

 200

 400

 600

 800

 1000

 1200

 90  120  150  180  210

M
ea

n 
S

ta
le

ne
ss

 [s
]

Time [min]

Tree
Gossip

Centralized

(b) Mean staleness

 0

 1

 2

 3

 4

 5

 6

 7

 90  120  150  180  210

M
ea

n 
T

ra
ffi

c 
[k

B
/s

]

Time [min]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 9. Per peer results for performance and costs over time, measured during the massive crash workload.

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Tree
Reference Signal

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Gossip
Reference Signal

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Centralized
Reference Signal

Figure 10. Actual vs. monitored number of peers over time during the
massive crash workload.

mean relative monitoring error ̂ǫavg(a, t, p) as well as of the
mean staleness of results ̂tstale(X(a, t, p)), whereas the gossip-
based approach outperforms the tree-based approach in terms
of validity and reduces the age of monitored results. Dealing
with costs, as displayed in Figure 7(c), the increasing churn
rate shows little effect on the mean total traffiĉl(t, p) of the
decentralized monitoring mechanisms.

E. Robustness Benchmark

Starting with themassive crash workload, Figure 10 dis-
plays the peer count to examine validity for the considered
monitoring mechanisms during this workload. The gossip-
based approach handles the sudden change in the system,
settles down after 10min at the correct number of peers, and
delivers stable results over time. Figure 9(b) and 9(a) reveal
as well the robust behavior of the gossip-based approach.
Irregardless of the sudden change in the system, the mean stal-
enesststale(X(a, t, p)) oscillates around 481s, while the mean
relative monitoring error for the sine functionǫavg(a, t, p)
retains its characteristic oscillation. In contrast, the tree-based
approach is not able to recover from the crash and delivers
incorrect and fluctuating results, especially in terms of the
mean error for the peer count. The reason for this failure

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Tree
Reference Signal

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Gossip
Reference Signal

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
um

be
r 

of
 P

ee
rs

Time [min]

Centralized
Reference Signal

Figure 11. Actual vs. monitored number of peers over time during the
massive join workload.

originates from the collapse of the underlying Chord overlay.
The monitoring topology cannot be created and maintained
without the lookup-functionality of the overlay.

Examining the costs during and after the crash, Figure 9(c)
displays a highly varying mean trafficl(t, p) for each ap-
proach. The highly fluctuating traffic originates from Chord’s
maintenance mechanisms, which react on the departure of
peers and calm down after a certain amount of time.

For themassive join workload, Figure 11 displays the pro-
vided results of the three alternatives in terms of the monitored
number of peers. Contrary to the previously discussed results
of the massive crash workload, each mechanism manages the
sudden increase of peers in the system and returns to its normal
state after a period of time. This trend can also be observed,
when looking at other metrics that quantify the performanceof
our alternatives: (i) In terms of validity, Figure 12(a) outlines
that all mechanisms recover and provide similar results. (ii)
Figure 12(b) shows that the mean stalenesststale(X(a, t, p))
of the provided results does not degrade due to the massive
join and the sudden increase in the system size. Dealing with
costs, Figure 12(c) shows that the mean total traffic does not
change and levels off after short fluctuations.



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 90  120  150  180  210

M
ea

n 
R

el
. M

on
ito

rin
g 

E
rr

or
S

in
e 

F
un

ct
io

n 
[%

]

Time [min]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for the sine
function

 0

 200

 400

 600

 800

 1000

 1200

 90  120  150  180  210

M
ea

n 
S

ta
le

ne
ss

 [s
]

Time [min]

Tree
Gossip

Centralized

(b) Mean staleness

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 90  120  150  180  210

M
ea

n 
T

ra
ffi

c 
[k

B
/s

]

Time [min]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 12. Per peer results for performance and costs over time, measured during the massive join workload.

F. Discussion of Results

Having presented the benchmark of the different monitor-
ing approaches, this section summarizes the obtained results.
Subsequently, we discuss and compare the initial performance
evaluation of the respective papers that introduced the herein
utilized monitoring mechanisms.

Under idealized conditions, the tree-based monitoring ap-
proach outperforms the gossip-based approach in terms of
validity, while producing less traffic, which is balanced more
regularly among the peers. Regarding the mean monitoring
error for the peer count, the tree-based approach even catches
up with the centralized approach. In contrast, the hierarchical
structure results in a biased distribution of results, because
leaves or distant nodes from the root obtain inaccurate and
old results. In the presence of churn, the performance of
the tree-based approach significantly decreases dependenton
the mean session time of the peers in the system. On the
contrary, the underlying mesh topology of the gossip-based
approach exhibits a better stability and is capable of handling
the increasing dynamic in the system, still providing validand
fresh results. Nevertheless, the peer count procedure shows
its susceptibility to the altering mesh topology. In terms of
extreme peer fluctuations, which characterize the robustness
of a mechanism, the corresponding benchmark outlines that
the gossip-based approach is robust enough to handle sudden
changes in the system and even provide results on top of a
crashed overlay. Due to the intensive application of the lookup
functionality of the overlay by the tree-based approach, the
monitoring mechanism collapses during the crash. Although,
it is capable of handling a sudden increase of peers in
the P2P system. Dealing with scalability of a decentralized
monitoring mechanism, the horizontal workload outlines that
the decentralized mechanisms scale with a growing number
of peers. The increased amount of peers has only a negligible
influence on performance and costs, except for the underlying
peer count procedure of the gossip-based approach, which
exhibits considerable outliers. Dealing with the verticalscal-
ability workload, the resulting traffic of both decentralized
monitoring mechanisms increases and leads to a decreasing
validity and increasing staleness of the monitored attributes.
We observe that the tree-based approach already suffers from

a smaller increase in traffic regarding its performance, while
the participants in the gossip-based approach must handle a
considerable amount of traffic.

In the following, we discuss and compare the initial perfor-
mance evaluation for the gossip- and subsequently the tree-
based approach. Jelasity et al. [11] evaluate their approach
with respect to scalability, robustness, and stability. Interms
of scalability, the paper only addresses horizontal scalability,
which is evaluated based on mathematical analysis. The paper
omits an evaluation in terms of vertical scalability. While
the authors rely on validity, or accuracy as denoted by the
authors, to characterize the performance of the presented
approach, costs are not considered during the simulative and
experimental evaluation. Consequently, the drawn conclusions
in terms of scalability, stability, and robustness cover only
performance. Using our presented methodology, we have
shown in Section IV-C and IV-E that the resulting costs in
terms of traffic are not influenced by peer-related workloads,
e.g., horizontal scalability, massive crash or join. Instead,
we could show in Section IV-E, that a growing amount
of monitored attributes results in a considerable increaseof
traffic and that the produced traffic influences the provided
results (cf. Section IV-B). In terms of accuracy, Jelasity et
al. only consider the peer count as measurable attribute in
their evaluation, because it represents a “worst-case” dueto
its sensitivity to failures. The assessment of accuracy based on
“normal” attributes, such as modeled by our value generator, is
omitted. Based on our methodology, we showed the increased
susceptibility of the peer counting procedure in contrast to
the robust calculation of “normal” attributes (cf. SectionIV-C
and IV-D). Dealing with the experiments on stability and
robustness, Jelasity et al. present an exhaustive evaluation,
which examines the effect of peer crashes, different message
loss rates and churn on the performance of the mechanism.
Within these experiments, the authors only concentrate on one
epoch of the protocol, while long-term effects are ignored.
Thus, out of the presented results, it is not obvious if the
presented approach can recover and how long this might take.

In contrast to the previous and our methodology, the tree-
based approach [6], [7] is just evaluated in terms of scalability
and stability, but set up on two different overlays. With



respect to stability, the corresponding workload consistsof
different churn levels, which are applied on the system during
one run. In terms of scalability, the decentralized monitoring
mechanism was evaluated under a varying amount of peers
in separate runs. Similar to our methodology, Graffi et al.
evaluate the performance of the presented approach in terms
of validity and timeliness, which they denote as precision
and freshness. On the contrary, they evaluate validity and
timeliness of the obtained results only at the root, while
dissemination of results back to the remaining peers is not
taken into account. Dealing with validity, they look at the peer
count and other attributes, which are either measured by the
peers or modeled by their implemented value generator. While
examining the resulting costs and their distribution amongthe
peers, they do not evaluate how validity of the obtained results
differs among the peers. In this regard, Section IV-B outlines
that the topology of the tree heavily influences validity and
timeliness. Moreover, we showed that the tree-based approach
provides a similar performance as the centralized approach
under idealized conditions. On the contrary, Section IV-C
outlines that the approach suffers from an increasing amount of
attributes, while it cannot handle massive crashes, in contrast
to massive joins (cf. Section IV-E), and that performance
degrades if peer fluctuation increases (cf. Section IV-D).

Based on the two examples of performance evaluation, it
becomes apparent that there is no standardized way for the
evaluation of decentralized monitoring mechanisms. Moreover,
the examples outline that a comparison of several mecha-
nisms based on the differing initial evaluations is hard to
achieve. The presented evaluations only agree on a fraction
of quality aspects, such as validity, costs, or scalability, which
are examined. On the contrary, other important aspects, e.g.,
robustness, or fairness are neglected. The resulting workloads,
evaluation scenarios, and setups differ widely and cannot
be compared. Besides a standardized set of quality aspects
or workloads, a unified approach must be established to
capture the measurements for the evaluation. As shown by
the examples, measurements can be taken at all peers, while
other evaluations rely on measurements at single peers, such
as the root.

V. RELATED WORK

The related work in the area of benchmarks for decentral-
ized systems details the methodology and aspects as well as
existing implementations for the performance evaluation.The
considered implementations range from distributed hash tables
(DHT) [15], over networked virtual environments [8], [13],to
decentralized monitoring mechanisms [3], [4].

Haeberlen et al. [9] discuss the general benefits of a
benchmark for decentralized systems, leading to an improved
comparability between different approaches and a better clas-
sification of the obtained results. In addition to the positive
features of a standardized methodology, their paper also high-
lights common dangers of a benchmark, which might originate
from inappropriate or false standardization, incomplete tests
or ossification of a standard. Besides this general description

of benchmarks in decentralized systems, we already focus
on a benchmarking methodology in the area of P2P systems
in our previous work [14]. We outline the specifics for the
design of a P2P benchmark and give a concrete definition
for benchmarking search overlays and overlays for networked
virtual environments.

Apart from the description of the benchmarking methodol-
ogy, several approaches exist that present the implementation
of a benchmark for a P2P system. Li et al. [15] develop
a methodology to evaluate the efficiency of different DHTs
by examining the trade-off between performance and cost.
Therefore, they define different types of workloads to test the
overlays under varying conditions and to investigate overlays
with different parameter settings. Kovacevic et al. evaluate
in [13] the suitability of DHTs in networked virtual environ-
ments. They develop a dedicated benchmark that addresses the
investigation of relevant quality aspects for these environments
by defining appropriate metrics. An extended version of the
benchmark has been proposed by Gross et al. [8], which allows
for the comparison of arbitrary overlays for networked virtual
environments implementing a certain interface definition.

Regarding the benchmark for decentralized monitoring
mechanisms, Bawa et al. [3] present a benchmark for three dif-
ferent aggregation approaches ranging from a tree-based over
a gossip-based to a hybrid topology to monitor a P2P network.
Given the made assumptions for the benchmark (e.g., network
topology, distributed state, and communication failures), the
paper compares the three approaches regarding different qual-
ity aspects, covering flexibility, generality, termination, and
correctness. Our presented benchmarks extend the work by
Bawa et al. concerning the examination of the identified non-
functional requirements. For the evaluation of accuracy, we
define a detailed analysis for a monitoring mechanism and its
produced monitoring error based on reference signals of the
value generator, besides peer count. Moreover, we identified
different workloads to stress the monitoring mechanisms under
different conditions for the examination of quality aspects,
such as robustness. In [4], Cappos and Hartman compare
their developed tree-based monitoring mechanism with another
tree-based approach [24] and a centralized solution, using
analytical models, simulations, and experiments. We extend
the extensive evaluation in their work by including the ex-
amination of accuracy for decentralized monitoring mecha-
nisms. In addition, we add the investigation of robustness for
decentralized monitoring mechanisms by massive join/crash
workloads.

The problem of missing comparability becomes even more
clear in a survey of decentralized aggregation mechanisms by
Makhloufi et al. [17]. While giving a good overview about
different schemes for aggregation protocols, highlighting the
different design decisions, the concluding table, which lists the
performance of the considered approaches, does not enable a
fair comparison between them. This results from the fact that
the summary only summarizes the results of the respective
papers.



VI. FUTURE WORK

In this paper, we have presented our approach for a set
of benchmarks, which establishes a standardized evaluation
of decentralized monitoring mechanisms to facilitate com-
parability of results. For the standardized evaluation, we
(i) defined a common interface for a unified access of the
provided functionality, (ii) identified relevant non-functional
requirements of the considered class of mechanisms, and (iii)
designed a set of workloads and metrics to evaluate and
quantify the non-functional requirements. We presented the
implementation of four different benchmarks (baseline, sta-
bility, robustness, scalability) for evaluating performance and
costs of decentralized monitoring mechanisms. Thereby, we
identified characteristic performance and cost profiles as well
as monitoring capabilities for two decentralized monitoring
mechanisms (a gossip-based and a tree-based approach) as
well as for a centralized approach, which served as a reference.

We plan to apply our benchmarks on different decentral-
ized monitoring mechanisms, since the presented application
of benchmarks only considered monitoring approaches with
push-based data collection and proactive result dissemination.
Therefore, we intend to benchmark pull-based and reactive
monitoring mechanisms as well, in order to determine the
trade-off between push- and pull-based data aggregation, or
proactive and reactive result dissemination, as already ana-
lyzed in our previous work [20].

In the future we plan to exchange the underlying overlay
with other well known overlays in order to investigate the
interdependencies in terms of performance and costs between
monitoring mechanisms and underlying overlays. Besides, we
will not only focus on the communicational overhead caused
by a decentralized monitoring mechanism, but also consider
the computational overhead, such as the resulting I/O- or CPU-
usage. Moreover, we plan to execute our benchmarks in larger
simulations, which exceed the capabilities of typical testbeds,
such as PlanetLab.

VII. A CKNOWLEDGMENTS

This work has been supported by the German Research
Foundation (DFG), Research Group 733, “QuaP2P: Quality
Improvement of Peer-to-Peer Systems”.

REFERENCES

[1] K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer,“Aggregating
Information in Peer-to-Peer Systems for Improved Join and Leave,” in
Proc. of the 4th Internat. Conf. on Peer-to-Peer Computing, 2004, pp.
227–234.

[2] M. S. Artigas, P. García, and A. F. G. Skarmeta, “DECA: A Hierarchical
Framework for DECentralized Aggregation in DHTs,” inLarge Scale
Management of Distributed Systems. Springer, 2006, vol. 4269, pp.
246–257.

[3] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating
Aggregates on a Peer-to-Peer Network,” Stanford InfoLab, Tech. Rep.
2003-24, 2003.

[4] J. Cappos and J. H. Hartman, “San Fermín: Aggregating Large Data Sets
Using a Binomial Swap Forest,” inProc. of the 5th USENIX Symposium
on Networked Systems Design and Implementation, 2008, pp. 147–160.

[5] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié,
“Epidemic Information Dissemination in Distributed Systems,” IEEE
Computer, vol. 37, no. 5, pp. 60–67, 2004.

[6] K. Graffi, “Monitoring and Management of Peer-to-Peer Systems,” Ph.D.
dissertation, Technische Universtiät Darmstadt, 2010.

[7] K. Graffi, D. Stingl, J. Rueckert, A. Kovacevic, and R. Steinmetz,
“Monitoring and Management of Structured Peer-to-Peer Systems,” in
Proc. of the 9th Internat. Conf. on Peer-to-Peer Computing, 2009, pp.
311–320.

[8] C. Gross, M. Lehn, C. Münker, A. Buchmann, and R. Steinmetz,
“Towards a Comparative Performance Evaluation of Overlaysfor Net-
worked Virtual Environments,” inProc. of the 11th Internat. Conf. on
Peer-to-Peer Computing, 2011, pp. 34–43.

[9] A. Haeberlen, A. Mislove, A. Post, and P. Druschel, “Fallacies in Eval-
uating Decentralized Systems,” inProc. of the 5th Internat. Workshop
on Peer-to-Peer Systems, 2006.

[10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen,
“The Peer Sampling Service: Experimental Evaluation of Unstructured
Gossip-Based Implementations,” inProc. of the 5th ACM/IFIP/USENIX
Internat. Conf. on Middleware, 2004, pp. 79–98.

[11] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-Based Aggregation
in Large Dynamic Networks,”ACM Transactions on Computer Systems,
vol. 23, no. 3, pp. 219–252, 2005.

[12] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” inProc. of the 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003, pp. 482–491.

[13] A. Kovacevic, K. Graffi, S. Kaune, C. Leng, and R. Steinmetz, “Towards
Benchmarking of Structured Peer-to-Peer Overlays for Network Virtual
Environments,” inProc. of the 14th Internat. Conf. on Parallel and
Distributed Systems, 2008, pp. 799–804.

[14] M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller, W. Effelsberg,
A. Kovacevic, and R. Steinmetz, “Designing Benchmarks for P2P
Systems,” inFrom Active Data Management to Event-Based Systems
and More. Springer, 2010, vol. 6462, pp. 209–229.

[15] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
Performance vs. Cost Framework for Evaluating DHT Design Tradeoffs
Under Churn,” inProc. of the 24th Annual Joint Conf. of the IEEE
Computer and Communications Societies, 2005, pp. 225–236.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A Tiny
AGgregation Service for Ad-hoc Sensor Networks,” inACM SIGOPS
Operating Systems Review, vol. 36, 2002, pp. 131–146.

[17] R. Makhloufi, G. Bonnet, G. Doyen, and D. Gaiti, “Decentralized Ag-
gregation Protocols in Peer-to-Peer Networks : A Survey,” in Modelling
Autonomic Communications Environments. Springer, 2009, vol. 5844,
pp. 111–116.

[18] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[19] S. Rhea, T. Roscoe, and J. Kubiatowicz, “Structured Peer-to-Peer Over-
lays Need Application-Driven Benchmarks,” inPeer-to-Peer Systems II.
Springer, 2003, pp. 56–67.

[20] K. Saller, D. Stingl, and A. Schürr, “D4M , a Self-Adapting Decentral-
ized Derived Data Collection and Monitoring Framework,” inWorkshops
der wissenschaftlichen Konferenz Kommunikation in Verteilten Systemen,
2011, pp. 245–256.

[21] D. Stingl, C. Gross, J. Rückert, L. Nobach, A. Kovacevic, and R. Stein-
metz, “PeerfactSim.KOM: A Simulation Framework for Peer-to-Peer
Systems,” inProc. of the Internat. Conf. on High Performance Com-
puting and Simulation, 2011, pp. 577–584.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in Proc. of the Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2001, pp. 149–160.

[23] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe:A Robust and
Scalable Technology for Distributed System Monitoring, Management,
and Data Mining,”ACM Transactions on Computer Systems, vol. 21,
no. 2, pp. 164–206, 2003.

[24] P. Yalagandula and M. Dahlin, “A Scalable Distributed Information
Management System,”ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 4, pp. 379–390, 2004.




