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Decentralized Monitoring in Peer-to-Peer
Systems

Dominik Stingl, Christian Groß, Karsten Saller

From the early days, with the design of peer-to-peer overlays or with the decen-
tralized storage and retrieval of content [2], researchers began to investigate how
to control and manage these peer-to-peer systems. One important step towards the
control and management of them is the assessment of the system’s performance. For
this purpose, monitoring constitutes an inevitable and necessary element, because it
provides the required data basis comprising information about the system and its
participating peers. Given this information, the peers themselves or an overlay oper-
ator are able to adapt and improve the system according to changing parameters and
conditions. Examples for the utilization of monitored data are manifold: (i) Bub-
blestorm [32] or Viceroy [22] use the monitored number of peers to influence the
overlay construction, (ii) DASIS [1] improves a peer’s join process based on moni-
tored data, and (iii) InfoEye [19] even monitors the access frequency of monitored
data to reduce latency and cost for the provisioning of such information.

Due to the versatile applicability, a multitude of decentralized monitoring mech-
anisms for peer-to-peer systems have been developed to provide meaningful statis-
tics about the system and its participating peers. Each of these approaches satisfies
different requirements with a varying performance. They can range from heuristic
snapshots at low cost to detailed views of the system at higher cost, assuming static
or highly dynamic peer-to-peer systems. Out of this set of mechanisms, the deci-
sion for the selection of an appropriate monitoring mechanism is a problem. Due to
the varying requirements as well as achieved performance and resulting cost, a fair
comparison between different solutions is hard to achieve, if not impossible.

To overcome the lack of comparability between existing approaches, we present
a benchmarking methodology for decentralized monitoring mechanisms in peer-to-
peer systems, using our knowledge from previous work [28]. The methodology is
designed to enable comparable evaluation studies, which can serve as a reference
for future approaches. It covers (i) the identification of relevant non-functional re-
quirements, (ii) the selection of a set of respective workloads, and (iii) the definition
of appropriate metrics, including where they should be measured.
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To implement this specific benchmarking methodology, we rely on the general
benchmarking model and methodology, presented in Chapter 2 and 3. Section 6.1
sketches the functional requirements, from which an interface definition is derived.
The relevant non-functional requirements are detailed in Section 6.2. Afterwards,
the synthetic workloads are described in Section 6.3, while Section 6.4 details the
required metrics. Examples of existing implementations are given in Section 6.5.
Finally, we present the application of our benchmarking methodology in Section 6.6.

6.1 Interface Definition

Each implementation of a decentralized monitoring mechanism must implement a
predefined interface to apply the different workloads and to capture relevant met-
rics. Unfortunately, there is no de facto standard for an interface to access the pro-
vided functionality of a decentralized monitoring mechanism. Even the scope of the
functionality this class of systems should offer has not been defined. To design the
required interface in the context of our benchmarking methodology, we first analyze
the common functionality and then provide the interface.

6.1.1 Functional Description

Similar to monitoring in ordinary networks, the goal of a decentralized monitoring
mechanism in peer-to-peer systems is to collect information about the system and
the participating peers to reveal insights about the system’s state and characteristics
of its peers. In turn, the participating peers are able to use this information to adapt
or optimize their behaviour. In contrast to centralized approaches [26, 4, 33], where
one or a set of dedicated entities is responsible for collecting the monitored data and
distributing the resulting information, decentralized monitoring mechanisms try to
integrate the participating peers into these procedures [34, 16, 36, 13]. Thus, besides
periodically capturing the local data, peers are also responsible for the collection and
distribution procedures.

Depending on the monitoring approach, only a fraction of peers can be involved
into the previously described monitoring procedures. These approaches rely on a
technique which is characterized as sampling [17]. Only elected peers estimate the
current state of the system based on the collected data from a subset or sample of all
peers. To determine an adequate and representative sample of peers, probabilistic
algorithms such as random walks are applied [24]. Besides this class of monitoring
mechanisms, other approaches exist that try to include all peers into the monitoring
procedures. The generated results ideally reflect the measurements of each single
peer in the peer-to-peer system. The whole chapter as well as the resulting bench-
marks are designed for the second class of monitoring mechanisms.
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Fig. 6.1: Example of a peer-to-peer system with an integrated tree-based monitoring
mechanism

For the integration of a decentralized monitoring mechanism into a peer-to-peer
system, the monitoring mechanism establishes its own topology on top of the peer-
to-peer overlay and below a possible application, as shown in Figure 6.1. This mon-
itoring topology with its corresponding functionality can either be implemented as a
separate layer or directly be combined with an overlay. In this new system architec-
ture, each peer obtains a local monitor and is responsible to measure specific data.
The measured data is collected over the established topology and stored at one or
several peers. Afterwards, each peer can access the resulting information.

The specific data which must be monitored and collected is represented by a set
of attributes. This set might either be static, or the approach might allow to add addi-
tional or remove unnecessary attributes [34]. Examples range from attributes of the
underlay (e.g., the transmitted traffic at the network layer [23]), over overlay-specific
attributes [10] to application-related attributes [34]. Since monitoring data is only
exchanged in addition to application- and peer-to-peer-related data, this data should
not become the dominant factor for the traffic in the network but only consume as
little bandwidth as possible. To limit and compress the size of the monitored data,
especially in systems with a large number of users, the utilization of aggregation
functions for the data is an appropriate and frequently applied method. Typically,
the set of common aggregation functions of decentralized monitoring mechanisms
comprises minimum, maximum, sum, average, or standard deviation [20, 3]. So,
instead of sending all the monitored values of an attribute, these values are com-
pressed by using those aggregation functions. The aggregate of an attribute, which
is calculated by the decentralized monitoring mechanism and includes the values of
all participating peers, is called the global view of that attribute. The global state of
the system then consists of the global views of all the attributes.

The following three sections detail (i) the underlying topology, (ii) the data col-
lection procedure, and (iii) the resulting dissemination procedure.

3



6.1.1.1 Monitoring Topology

Trees [36, 6, 10] and meshes [16, 13, 5] constitute the prevailing topologies, which
are used by a decentralized monitoring mechanism to collect the monitored data
and to disseminate the generated results. As outlined by Makhloufi et al. [21], the
selection of a topology for a decentralized monitoring mechanism constitutes the
main decision criterion, which influences the data collection and result dissemina-
tion procedures.

For the creation of a tree, several approaches rely on the underlying peer-to-peer
overlay [36, 6, 10], such as a distributed hash table, to create the topology, whereas
other approaches [8] simply create a spanning tree on the overlay. The collected
data is propagated over the topology from the leaves over the inner nodes towards
the root. Depending on the chosen procedure for result dissemination, this topology
can also be used to distribute the calculated results.

On top of a mesh topology, a peer does not have a predefined peer or a set of
peers to communicate with. Instead, one or several neighbors are randomly chosen
to exchange the monitored data with. The neighbors can either be provided by the
peer-to-peer overlay by relying on the routing table or by an additional service,
such as a peer sampling service [14]. The random selection of neighbors for the
information exchange results in a gossip-based type of communication [16, 13, 5].
This epidemic communication paradigm is often used as a synonym for mesh-based
monitoring mechanisms.

6.1.1.2 Data Collection

The data collection procedure specifies how the monitored data is collected. For this
procedure, we describe the different techniques to propagate the data .

In terms of propagation, decentralized monitoring mechanisms can actively
transmit the monitored and collected data, which results in a push-based propa-
gation. The transmission of data as an answer to a request is denoted as a pull-
based propagation. Tree-based approaches can choose between push- [10] and pull-
based [36, 23] propagation. During the collection procedure, a child sends its mon-
itored data to its parent. The parent processes the received data of all children as
well as its own measurements. Afterwards, the parent sends the data to its parent.
Relying on this procedure, the monitored data might always be propagated to and
stored at the root [18, 10], or collected and stored at inner nodes [36, 37]. A parent
aggregates the received information using a generic aggregation function [36], such
as Vi,type,name = ftype(V 0

i−1,type,name,V
1
i−1,type,name, . . . ,V

k−1
i−1,type,name), where i repre-

sents the level of the parent in the tree, type and name denote type and name of
the attribute and determine the corresponding aggregation function ftype, and V m

identifies the mth child of the parent.
Gossip-based approaches mainly push the data [16, 31], while a fraction of

approaches [13, 5] reacts with an answer on the push message, which results in
push-pull-based data collection. For the correct mode of operation, gossip-based

4



approaches, which apply aggregation to compress the size of the data, divide the
time into cycles. In terms of push-based approaches, each peer sends its current
value v and the corresponding weight w of an attribute to k peers (k > 0) during one
cycle. Before the transmission, v and w are updated as follows: v = v/(k+ 1) and
w = w/(k+ 1). At the end of a cycle, a peer sums all received vs and ws includ-
ing its own, which serve for the next cycle as v and w. In terms of push-pull-based
approaches, each peer i sends its current value vi only to another peer j during a
cycle. The receiving peer j answers with its current value v j. Afterwards, both peers
aggregate vi and v j to v as follows: v = (vi + v j)/2. Both, the push- and push-pull-
based approach, stop if the accuracy of the current estimate for an attribute exceeds
a given threshold [31] or if a predefined number of cycles has elapsed [13]. This
period of time is denoted as an epoch. At the end of an epoch, each peer has an
estimate of the global view of an attribute. In terms of push-based approaches, the
estimate is calculated as v/w, whereas for the push-pull-based approach, v already
represents the estimate.

To start the push- or pull-based data collection procedure, existing approaches
either use a periodic or event-based execution. For the first case, a given time in-
terval specifies the time between two consecutive executions [5, 10]. Based on the
description of the data collection procedure, it becomes apparent that gossip-based
approaches mainly rely on a periodic execution. For the event-based execution, the
data is only collected and forwarded if a certain event occurs at a peer. Typical
examples for this event comprise (i) the measurement of an attribute value that sig-
nificantly deviates from the previous measurement [23, 12] or (ii) a query for the
global view of one or several attributes [36].

6.1.1.3 Result Dissemination

The result dissemination procedure defines how the generated results are dissem-
inated among the peers. Existing procedures range from a proactive to a reactive
result dissemination.

With the proactive dissemination the collected data is transmitted to all or only a
subset of the interested peers in the overlay. To reach the subset or all peers in the
overlay, the sending peer either has a dedicated list of recipients or, when dissemi-
nating the results to all peers, it relies on the established topology [36, 10]. With the
reactive dissemination, the collected data is only sent to the requesting peers.

As a consequence of the push- or push-pull-based data collection, the proactive
dissemination is implicitly integrated in gossip-based monitoring. In contrast, tree-
based monitoring approaches allow to choose between different result dissemination
strategies: (i) the root either proactively disseminates the results down the tree [10],
(ii) reacts on a request of a peer [25], or (iii) allows to define how the results are
disseminated [36].
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6.1.2 Deduction of an Interface

Based on the description of the functional requirements above, we narrow down the
functionality of a decentralized monitoring mechanism to a set of essential meth-
ods and design the respective interface to access those methods. Although some
approaches allow to add additional and remove unnecessary attributes at runtime,
we assume that the number of attributes during a benchmark is fixed. In addition,
we limit the utilized aggregation functions to the five classical functions mentioned
in Section 6.1.1.

Each participating peer of the overlay locally measures the predefined set of at-
tributes and stores them. The decentralized monitoring mechanism collects this data
according to the underlying topology and utilized data collection procedure. Subse-
quently, each peer is able to retrieve the global view of the collected attributes.

The common functionality of a decentralized monitoring mechanism can be sum-
marized with the following interface:

• setLocalValue(String name, double value, long time) per-
sists a locally measured value of an attribute for later collection. The parameter
time specifies when the current value was locally measured.

• getGlobalViewOfAttributes() returns the global view of all monitored
attributes.

Every monitoring approach, applying our decentralized benchmark, must pro-
vide the mentioned functionality and implement the specified interface in order to
be comparable.

6.2 Non-Functional Requirements

Based on the general considerations about quality aspects for peer-to-peer systems
in Section 3.3, we now define the relevant non-functional requirements for decen-
tralized monitoring mechanisms. The resulting set is divided into the two categories
workload independent and workload dependent quality aspects.

Workload-independent Quality Aspects

• Performance. In general, the performance of a peer-to-peer system consists of
the quality aspects responsiveness, throughput, and validity, as described in Sec-
tion 3.3. Out of these three categories, validity and responsiveness are of major
importance for decentralized monitoring in peer-to-peer systems. Validity char-
acterizes the quality of the provided results and is represented through accuracy
and staleness. Responsiveness characterizes how fast these results are provided
to a requesting peer.
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– Validity is a central aspect for monitoring, because it characterizes the quality
of the provided results, which, in turn, can be divided into accuracy and stale-
ness. In the context of decentralized monitoring mechanisms, these results are
represented by the generated global views of the monitored attributes. Accu-
racy describes how precise the results are and if the monitoring mechanism is
able to correctly capture and present the system’s state. Staleness addresses the
age of the provided results. In contrast to responsiveness, which only consid-
ers the time to retrieve the global view, staleness also includes and considers
the age of values, which are used to calculate the results. Thus, it represents
the time span from capturing the first value of an attribute until the point in
time when a peer obtains the global view.

– Responsiveness covers the aspect how fast a requesting peer is served with
the current global view. The responsiveness of a monitoring mechanism heav-
ily depends on the applied strategy to collect data and disseminate results (cf.
Section 6.1.1.2 and 6.1.1.3). A monitoring mechanism can be very responsive
and immediately deliver the results, because the request is locally answered
by the requesting peer. In contrast, the responsiveness of a monitoring mech-
anism might decrease if the request for the current global view triggers the
distributed collection process for the set of attributes.

• Cost. We consider only the communication cost, produced by the monitoring
mechanism to calculate and distribute the global view of the attributes.

• Fairness. To evaluate the fairness of a system, performance and cost with their
related metrics serve as the basis for the calculation. In this chapter, we define
fairness as the uniform distribution of either performance or cost between the
peers while not taking their available resources into account. With respect to
cost, a fair monitoring mechanism should evenly distribute the communication
overhead among the peers to avoid overloaded peers. Dealing with the perfor-
mance, a fair system should offer the same access to the provided services and
avoid starving peers. For decentralized monitoring mechanisms, we investigate
how the performance in terms of staleness and accuracy as well as the cost differ.

Workload-dependent Quality Aspects

• Scalability. In the context of decentralized monitoring mechanisms, scalability
is divided into horizontal and vertical scalability, as detailed in Section 3.3.3.
Horizontal scalability addresses the increase of peers in the system. On the one
hand, this increases the number of peers which must be monitored, and on the
other hand, the number of requests for the monitored results.
Vertical scalability varies the applied load on the system. In order to increase the
load on a decentralized monitoring mechanism, there are two workload factors
that can be varied: (i) by varying the number of monitored attributes, the resulting
amount of data is increased; (ii) by varying the number of requests for the global
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view of aggregates, the frequency to collect and disseminate the data might be
increased or decreased.

• Robustness characterizes how a peer-to-peer system handles unpredictable ex-
ternal events or severe failures. For decentralized monitoring mechanisms, we
consider massive fluctuations of peers, induced by massive crashes or massive
arrivals of peers.

• Stability characterizes the ability of a decentralized monitoring mechanism to
deal with the random behavior of the autonomous participating peers in the peer-
to-peer system. While the autonomy of peers covers (i) the application-specific
load induced by the consumption of a service or an application as well as (ii)
the uncontrollable arrival and departure of peers, we only consider the random
behavior and the autonomy of participating peers in terms of different churn lev-
els. The application-specific load, which results from different request rates, is
covered by the scalability above.

6.3 Workload

In the following, the synthetic workload models are presented, which are used to
benchmark a decentralized monitoring mechanism. The different workloads can be
classified according to the three workload-dependent quality aspects scalability, ro-
bustness, and stability, as previously defined. Besides, the synthetic workload model
also comprises a model to assess the validity of a monitoring mechanism, as de-
scribed at the end of this section.

The workloads rely on a set of workload factors, which are summarized in Ta-
ble 6.1. The table presents the default values to which the factors are set if they
are not varied. The parameter number of peers determines how many active peers
are simulated within a scenario. The mean peer session length specifies how long a
peer is online, participating in the peer-to-peer system. To model a scenario without
churn, the corresponding value must be set to infinite, because no peer leaves the
network. The number of monitored attributes outlines how many attributes must be
monitored, collected, and disseminated. Finally, the request rate defines how often a
peer requests the global view of the monitored attributes. At the end of this section,
after the description of the different workloads, Table 6.2 summarizes the workload
setup including the assignment of values to the corresponding workload factors. The
values with an overline mark the default values for that workload factor.

To obtain valid and comparable results, the correct procedure to apply a workload
on a decentralized monitoring mechanism must be defined so that each experiment
is conducted in the same way. The required information comprises the answers to the
two questions (i) when to start the workload and (ii) how long it should be applied.
Based on the definition of the different phases of a workload (cf. Section 3.4.1), the
underlying experiment lifecycle for the application of a workload on a decentralized
monitoring mechanism is divided into three phases. As depicted in Figure 6.2, the
bootstrap phase lasts 60min so that all peers can join. Afterwards, the whole system
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Workload factor Unit Default value
Number of peers peers 10,000
Mean peer session length min Infinite
Number of monitored attributes attributes 10
Request rate requests/min 0.1

Table 6.1: Identified workload parameters and their default values

levels out and becomes stationary during a silent phase of 20min. Finally, the testing
phase is set to 180min; it is used to apply the workload as well as to measure the met-
rics. During each testing phase, only one workload factor will be varied. In terms of
the workloads that rely on offline variation1, we periodically measure the produced
data of the simulation with an interval of a minute during the testing phase. In terms
of the online variation, we measure the produced data during the first 30 minutes of
the testing phase (80min to 110min), apply the workload, and measure the produced
data during the last 30 minutes (230min to 260min) to capture the differences before
and after the application of the workload.

Fig. 6.2: Experiment lifecycle for the application of a workload on a decentralized
monitoring mechanism

Baseline Workload

The baseline workload models idealized conditions, comprising a network with a
reliable transmission of data and without churn. The workload provides insights into

1 Offline variation and online variation will be explained during the following description of the
different workloads.
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the behavior of the monitoring mechanism under such conditions. Every workload
factor is set to its default value, as listed in Table 6.1, and remains constant.

The baseline workload states a reference for the remaining workloads: (i) in the
first place, it can be used to compare how performance and cost of a monitoring
mechanism deviate from this reference under different workloads; (ii) it serves as
reference to assess how the workload-independent quality aspects of a particular
monitoring mechanism are met for other workloads.

Scalability Workloads

Starting from the baseline workload as described above, we use horizontal as well
as vertical scaling to benchmark the scalability capabilities of the monitoring mech-
anism.

The horizontal scalability workload consists of several separate runs. During
each run the number of participating peers in the system is multiplied by an order
of magnitude for each run. In the following, we denote this variation of the work-
load factor during several runs as offline variation. The workload investigates how
a monitoring mechanism handles a growing number of peers and thus an expand-
ing peer-to-peer system. It focuses on the communication cost and evaluates if they
change due to the higher amount of peers in the system. Besides, it investigates the
impact of an expanding system on the responsiveness of the monitoring mechanism
as well as on the accuracy and staleness of the provided results.

In contrast to that, vertical scaling stresses the system in terms of an increas-
ing load. The vertical scalability I workload examines how the monitoring mecha-
nism scales under an increasing number of monitored attributes, while the number
of peers remains constant. Similar as for the horizontal scalability workload, this
workload scheme consists of several separate runs. During each run the amount of
monitored attributes is multiplied by an order of magnitude. Due to the increased
load in the peer-to-peer system, the workload helps to identify if a higher load is
equally distributed or if the monitoring mechanism, although decentralized, might
reveal bottlenecks. Furthermore, it evaluates the effect of an increased load on the
staleness and validity of the retrieved results due to a higher amount of monitored
attributes.

The vertical scalability II workload increases the number of requests for the
global view of attributes. For the variation of requests, a Poisson process is used
to model the time between two consecutive requests of a peer. The intensity of the
Poisson process is configured by the workload factor request rate and influences
the number of requests per peer. Similar to the previous description of the vertical
scalability workload, this workload consists of several runs during which the work-
load factor request rate is multiplied by an order of magnitude per run. Based on
this workload, it can be assessed if a monitoring mechanism balances the requests
equally or if only a fraction of peers or even a single peer might be in charge to
answer the requests. Especially in systems with a pull-based data collection or a
reactive result dissemination procedure, the request rate can heavily influence the

10



performance and cost, because each request might trigger the collection and dis-
semination procedure again.

Stability Workloads

To investigate the stability of a decentralized monitoring mechanism, a churn work-
load is applied, which relies on an exponential churn model. The exponential churn
model is configured by the workload factor mean peer session length and defines the
mean of the underlying exponential distribution. The churn workload evaluates the
stability of a monitoring mechanism based on different churn levels. The workload
consists of several runs, and during each run the corresponding workload factor is
halved.

We measure how the performance is affected by the reorganization of the mon-
itoring mechanism and the whole peer-to-peer system with different frequencies of
arriving and leaving peers. Depending on the considered monitoring mechanism,
the churn workload can have an immense influence, especially on validity. Due to a
constant reorganization of the monitoring topology, the monitored data might be in-
correctly collected and/or disseminated. Furthermore, a short session time of peers
might end up in wrong monitoring results because measured attributes of transient
peers quickly become stale or might not be included in the global view at all.

Robustness Workloads

For robustness, we investigate the system behavior under two different workloads
defined by the massive join and massive leave workloads. During the massive join
workload, we assume that the number of peers doubles in the system, whereas for
the massive leave, we assume that 50% of peers ungracefully crash. In the following,
we denote this variation of the workload factor during one run as online variation.
Both workloads stress the monitoring mechanism and the peer-to-peer system, be-
cause they must deal with a sudden change in the system status as well as in the
number of peers. For the massive leave workload, we differentiate between a col-
lapse of the monitoring mechanism due to the breakdown of the peer-to-peer system
or due to the inability of the monitoring mechanism to reorganize itself.

To quantify the robustness of a monitoring mechanism, we examine validity, per-
formance, and cost with their dedicated metrics. We consider a system to be robust
if these metrics reach predefined levels after a crash or a massive join.

Validity

To determine the validity of a monitoring mechanism, the participating peers per-
form their tasks and monitor a set of attributes, while the previously presented work-
loads are applied. Using the captured attributes, the monitoring mechanism calcu-
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Fig. 6.3: Sine reference signal with a period of 30 min

lates the global view for each attribute, which is subsequently (proactively or reac-
tively) disseminated to the participating peers and compared to the correct global
view. The validity of a monitoring mechanism under different workloads is thus
made obvious.

The calculation of the correct global view, which represents the current status of
a system at a certain point in time, heavily depends on the applied evaluation en-
vironment. During a simulation it is possible to generate an exact snapshot of the
simulated system, which represents the correct global view and serves for a compar-
ison. In contrast, taking a snapshot of a system in a testbed requires additional steps.
Each peer either sends its locally measured values to a central entity, which gener-
ates the snapshot of the system, or the peers locally store the data, while snapshots
are generated after an experiment. The accuracy of the snapshot, which represents
the correct global view of the system and serves for a comparison, heavily depends
on the current synchronization in the testbed.

To assess the validity of a decentralized monitoring mechanism based on moni-
tored attributes, the peer count states a commonly used and acknowledged attribute.
It is duplicate-sensitive, and the monitored number of peers directly indicates if all
the considered peers are included. Besides the peer count, we rely on a reference
signal as our second monitored attribute. A reference signal is generated by a value
generator, which provides each peer with a value, depending on the implemented
function of the generator. The reason for this decision results from the fact that we
can specify the complexity of the reference signal by defining, e.g., nearly constant
or highly varying functions. Moreover, the generated values neither depend on the
surrounding peer-to-peer system nor on the current workload scenario, thus, they are
not biased. For our benchmark, Figure 6.3 depicts the implemented sine function, as
proposed by Graffi [9]. The reasons for the selection of a sine function are twofold:
Through steep slopes, it can be observed how fast the considered monitoring mech-
anisms capture the increasing or decreasing values. In addition, the periodicity of
the signal enables to detect if the calculated global view of that attribute deviates
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Workload Workload factor Variation Type of variation
Baseline None – –
Horizontal scalability Peers 100, 1,000, 10,000 Offline variation
Vertical scalability I Attributes 10, 100 Offline variation
Vertical scalability II Request rate [requests/min] 0.1, 1, 10 Offline variation
Stability Mean peer session length [min] 60, 30, 15 Offline variation
Massive join Peers 10,000 simultane-

ously joining peers
Online variation

Massive leave Peers 5,000 simultaneously
leaving peers

Online variation

Table 6.2: Workload setup

over a longer period of time or is influenced by occurring events (e.g., massive joins
or crashes).

6.4 Metrics

For the benchmark, the following metrics are introduced to quantify how well the
non-functional requirements of a decentralized monitoring mechanisms are met. To
avoid that the identified metrics are captured at different places in the system and
lead to incomparable results, they must be measured at each peer. Based on these
per-peer metrics, the global metrics for the whole system can be derived (cf. Sec-
tion 3.5). Table 6.3 lists the utilized symbols.

Symbol Description
T The set of time samples
P(t) The set of online peers at time t ∈ T
A(t) The set of attributes being monitored at time t
Xm(a, t, p) The measured global aggregate X of an attribute a ∈ A(t) at time t ∈ T

available at a peer p ∈ P(t)
Xc(a, t, p) The correct global aggregate X of an attribute a ∈ A(t) at time t ∈ T at a

peer p ∈ P(t), which is obtained via global knowledge
τmin(X(a, t, p)) The time of the oldest value of an attribute being included into an aggre-

gate
τmax(X(a, t, p)) The time of the most recent value of an attribute being included into an

aggregate
∆ tagg(X(a, t, p)) The time span that contains all included values for a global aggregate and

is calculated as ∆ tagg(X(a, t, p)) = τmax− τmin
∆ tprop(X(a, t, p)) The propagation time for a global aggregate from a data sink to a peer,

which is responsible to disseminate the data to other peers, e.g., as in
SDIMS [36]. This time is = 0 for mechanisms that disseminate results in
a proactive manner.

Table 6.3: List of mathematical symbols as defined in [28].
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Per-peer metrics

The following metrics are used to quantify the non-functional requirements for per-
formance and cost.

Responsiveness Metric

• To quantify responsiveness, the lookup time for a request of the global view of the
monitored attributes is used. In this context, treq(Xm(a, t, p)) represents the time
in seconds from the transmission of the request to its answer. For mechanisms
that disseminate results in a reactive manner, this time will be ≥ 0. For systems
with proactive result dissemination, the request may result in a lookup in a peer’s
local storage, thus leading to treq = 0.

Cost Metric

• Considering the metric for this quality aspect, we rely on the total traffic, as
described in Section 3.5:

cd(p, t) = cdup(p, t)+ cddown(p, t)

This traffic summarizes the traffic of the whole peer-to-peer system including the
peer-to-peer overlay and the monitoring mechanism. Measuring the overall traffic
reveals the indirect traffic of a monitoring mechanism, which arises, e.g., if the
monitoring mechanism initiates a peer lookup that is resolved by the peer-to-peer
overlay.

Validity Metric

• With εX (a, t, p), the monitoring error for an aggregate X of an attribute a ∈ A(t)
at peer p ∈ P(t) at time t ∈ T is specified. As mentioned for the validity in the
previous section, the error is calculated based on the measured global aggregate
Xm(a, t, p) and the correct global aggregate Xc(a, t, p). In the area of decentral-
ized monitoring mechanisms, there exist several approaches to calculate the error.
In their scenario, Kostoulas et al. [17] rely on the two metrics root mean square
error (RMSE) and standard deviation of error to quantify the accuracy of their
monitoring approach. While the RMSE assesses the distance in terms of error
between the measured and correct values, the standard deviation of error outlines
how this distance varies. Besides these two metrics for the total error, there are
several common approaches to calculate a relative error metric. While Considine
et al. [7] propose to use |Xm(a,t,p)−Xc(a,t,p)|

Xc(a,t,p)
, we rely on

εX (a, t, p) =
Xm(a, t, p)−Xc(a, t, p)

Xc(a, t, p)
.

A relative error metric facilitates the comparison of different results, because the
total number of peers within simulated scenarios needs not be equal. Moreover,
our proposed calculation of the error enables to investigate the resulting error in
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more detail. As the calculation is not based on the absolute value of the differ-
ence between the measured and correct global view, the obtained relative error
indicates if the considered monitoring mechanism under- or overestimated the
correct global view.

• tstale(Xm(a, t, p)) denotes the staleness or age of an aggregate in seconds, ob-
served at peer p ∈ P(t). The staleness comprises (i) the time ∆ tagg to aggregate
the data, (ii) the time ∆ tprop(Xm(a, t, p)) to disseminate the data to another peer,
as well as (iii) the lookup time treq(Xm(a, t, p)), resulting in the following calcu-
lation:

tstale(Xm(a, t, p)) = ∆ tagg +∆ tprop + treq

Global metrics

For the definition of global metrics, which are calculated from the per-peer metrics,
we rely on the definition for the aggregation of metrics, detailed in Section 3.5:

• The average of a metric x(t) over the set of peers at time t ∈ T
• The average of a metric x̃(p) over the set of time samples per peer p ∈ P
• The total average of a metric x̂.

In terms of the fairness, which can be calculated for the performance and the cost
for the set of peers, we rely on Jain’s fairness index.

6.5 Example Implementations

In the area of decentralized monitoring mechanisms, different approaches have been
developed that are suitable for a wide application range with varying requirements.
The developed approaches range from dedicated solutions for peer-to-peer systems,
grids or wireless sensor networks to solutions for large-scale distributed systems in
general. Besides the dedicated class of approaches for peer-to-peer systems, such as
DASIS [1], Willow [35], or SkyNet.KOM [10], most of the remaining approaches
rely on the basic peer-to-peer concepts. Astrolabe [34] communicates over a pre-
defined tree topology using an epidemic communication protocol, which is similar
to Gnutella2. Other monitoring mechanisms, such as SDIMS [36] and PRISM [11],
rely on the routing functionality of Pastry [27] to build their trees which are used to
exchange the monitored data.

2 The Annotated Gnutella Protocol Specification v0.4 http://
rfcgnutellasourceforge.net/developer/stable/index.html.
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6.6 Benchmarking Results

This section presents the application of the distributed benchmark described above
and discusses the obtained results. Before going into detail, we describe the chosen
monitoring mechanisms on which the benchmark is executed.

6.6.1 Simulation Setup

To apply the benchmark on the selected monitoring mechanisms, we rely on simula-
tions and use the peer-to-peer simulation framework PeerfactSim.KOM [29]. Each
of the selected monitoring mechanisms is set up on top of a Chord overlay [30],
because at least one of the chosen monitoring mechanisms requires a DHT, as de-
tailed below. Since the design and behavior of a decentralized monitoring mecha-
nism mainly depends on the selected topology, as outlined in Section 6.1.1, three
mechanisms with different topologies are selected.

SkyNet [10] is a tree-based monitoring mechanism, which relies on a DHT to
build its tree topology. Over the tree, each peer periodically pushes the locally mea-
sured attributes to the root, which in turn proactively disseminates the calculated
results down the tree. Thus, SkyNet uses a push-based data collection, while the
results are proactively disseminated. For the periodic data collection and result dis-
semination, we use the proposed values by Graffi et al. and set both update intervals
to 60s. The branching factor of the tree is set to 4.

The approach from Jelasity et al. [13], which we denote as Gossip in the follow-
ing, is a mesh-based monitoring mechanism, which uses gossiping to communicate.
It does not depend on any specific overlay as long as each peer can randomly choose
one of its neighbors to exchange information with. During a cycle, each peer pushes
its data to the selected neighbor, which processes the data and answers with the
available information in turn. Given this communication pattern, the considered ap-
proach uses push-pull-based data collection with an implicit proactive result dissem-
ination, because each peer is provided with the global view of monitored attributes
at the end of an epoch. To configure the required parameters of the approach, we
use the proposed values by Jelasity et al. and set the cycle length to 10s, while the
number of cycles per epoch is set to 30.

Besides the two decentralized approaches, we have implemented a centralized
monitoring mechanism as a reference. The approach relies on a separate server,
which is in charge of collecting the measured data and distributing the aggregated
results. The centralized approach is set up on top of the overlay. Each participating
peer periodically pushes its locally measured data to the server. In turn, the server
proactively disseminates the computed global view to all peers in the system. Sim-
ilar to the tree-based approach, the centralized solution implements a push-based
data collection, while the results are proactively disseminated. To configure the ap-
proach, the update intervals for both the periodic data collection and result dissem-
ination are set to to 60s. As our previous evaluation has shown [28], the obtained

16



(a) CDF of the mean relative monitoring error
for the sine function

(b) CDF of the mean relative monitoring error
for the peer count

(c) CDF of the mean staleness (d) CDF of the mean traffic

Fig. 6.4: Per peer results for performance and cost, measured for the baseline work-
load

results of the centralized approach represent an optimal solution, which serves as
a reference. Therefore, we mainly detail the results of the two decentralized ap-
proaches and refer to the centralized solution where appropriate.

During the following evaluation, the vertical scalability II workload is not used,
because a variation of the request rate does not influence the considered monitoring
mechanisms, which implement push-based data collection and proactive result dis-
semination. Thus, a monitoring request for the global view is directly resolved by a
lookup in a peer’s local storage.

6.6.2 Baseline Workload

Figure 6.4 shows the results for the baseline workload in terms of performance and
cost. Relying on the definition of the global metrics, as defined in Section 3.5, the
respective cumulative distribution function (CDF) displays the distribution of the
global metric x̃(p) = 1

|S| ∑s∈S x(p,s), which represents the average of a metric x at a
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specific peer p over the set of sample timestamps s. Starting with the performance
in terms of validity, Figure 6.4a and 6.4b outline that SkyNet outperforms Gossip,
given an optimal network without churn or message loss. In terms of monitoring the
constant number of peers in the system, SkyNet even catches up with the centralized
solution, whereas Gossip exhibits a slight mean relative error of 0.8% compared
to the correct global view, which is obtained by a snapshot of the simulator. With
respect to monitoring a dynamic attribute with varying values, Figure 6.4a outlines
the effect of a tree topology as well as flat topology on the accuracy of results. While
the relative error does not considerably differ for Gossip, the different levels of the
tree topology result in an increased relative error per level.

The impact of the two different topologies on the performance of a decentral-
ized monitoring mechanism becomes apparent as well when looking at Figure 6.4c,
which displays the staleness of results. For Gossip, the peers are nearly simulta-
neously provided with the results, whereas the staleness increases per level in the
tree.

In terms of cost, Gossip generates the highest amount of traffic on average. In
contrast to SkyNet or the centralized approach, the increased traffic results from a
shorter update interval to distribute the data. Although SkyNet and the centralized
approach have the same update intervals to transmit data, the resulting traffic of
SkyNet is higher than that of the centralized approach. The reason for the increased
traffic results from the fact that a peer of SkyNet must communicate with its parent
and four children on average, whereas the communication of a peer in the centralized
approach is limited to pushing the data to one peer (the server) and requesting the
results.

6.6.3 Horizontal Scalability Workload

Figure 6.5 displays the results for accuracy, staleness, and cost as box plots. Similar
to the baseline workload, the box plots outline the distribution of the global metric
x̃(p). The whiskers are set to the 2.5 and 97.5 percentile, covering 95% of all values,
whereas the box represents the values between the first and third quartile. The line
inside the box is the median.

In contrast to the baseline workload with idealized network conditions, the hori-
zontal scalability workload is applied on a peer-to-peer system with an Internet-like
message loss [15]. Figure 6.5b shows the direct impact of message loss on the rela-
tive peer count error, because the error increases for both decentralized monitoring
mechanisms. The higher impact of the message loss on SkyNet results from the fact
that a loss of a message next to the root leads to a loss of data collected over many
peers, or that the same peers are not provided with the global view of the system.
Since Gossip operates on a flat topology, the impact of a lost message between any
pairs of peers is the same. Besides the introduced message loss, both Figure 6.5a
and 6.5b show the influence of the number of peers on the relative monitoring error.
While the relative error in terms of the peer count does not differ for the centralized
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(a) Mean relative monitoring error for the sine
function

(b) Mean relative monitoring error for the
peer count

(c) Mean staleness of monitored data (d) Mean traffic

Fig. 6.5: Per peer results for performance and cost, measured for the horizontal
scalability workload

approach (0.03% for 100 and 10,000 peers, respectively) or slightly increases for
Gossip (1.37% for 100 and 1.75% for 10,000 peers), a larger peer-to-peer system
leads to an increasing relative error in SkyNet. The higher number of peers leads to
an increased number of levels of the tree, which becomes apparent by the increas-
ing relative error for both attributes. In contrast, Gossip provides the results always
after a certain amount of time, which depends on the configured length of the cycle
and the epoch, thus leading to the constant behavior in the presence of a growing
number of peers. On the one hand, this static behavior is beneficial, because the size
of a peer-to-peer system does not influence the accuracy of the system. On the other
hand, the relative error is unnecessarily high in smaller systems (cf. Figure 6.5a),
and for larger systems the current configuration of the cycle and epoch length might
not suffice to collect the data from all peers. Figure 6.5c confirms the observed
trends for SkyNet and Gossip. While the staleness of results in SkyNet increases
for a larger peer-to-peer system, it remains constant for Gossip, which leads to the
outcome that the size of the system does not influence staleness, but also that the
dissemination of results could be accelerated in smaller systems.
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Taking a look at the induced traffic, Figure 6.5d displays the interesting fact that
for each monitoring mechanism the resulting traffic does not change for a given sub-
set of peers, whereas the remaining peers must carry the increased load. For every
mechanism, the median of each box plot shows that the traffic slightly increases for
50% of the peers, which even partially holds for 75% of peers, as outlined by the
constant upper end of the box. Based on this observation, the remaining 25% of the
peers must carry the logarithmically increasing load, as indicated by the growing
upper whisker. The fairness index for the traffic (cf. Table 6.4) confirms this uneven
distribution, because the index decreases for each monitoring mechanism between
a peer-to-peer system with 100 and 10,000 peers. A reason for the uneven load bal-
ancing results from the traffic of the overlay itself. Even the centralized approach
exhibits this unfair behavior, where the resulting traffic to collect and disseminate
data is independent on the number of peers in the system, because each peer only
exchanges information with the server.

It can be concluded that the considered decentralized monitoring mechanisms
put additional load on the peer-to-peer system, while the additionally load does not
change the logarithmic increase of traffic as a function of a growing system, which
has already been shown in Section 4.6.3.

6.6.4 Vertical Scalability Workload

Considering the results of the vertical scalability workload, which comprises the
variation of load caused by a varying number of attributes, Figure 6.6c displays
an increasing staleness of the results for a higher number of monitored attributes.
This observation leads to the conclusion that an increasing traffic decelerates the
data exchange in every system and results in stale data. Starting with the centralized
approach, even during one hop, the higher number of attributes increases the stale-
ness of results (mean staleness of 148.5s for 10 attributes; mean staleness of 156.6s
for 100 attributes). For the considered decentralized monitoring mechanisms, the
impact of a decelerated data exchange even multiplies: the data must be exchanged
over several hops, which leads to an increased staleness of the results for both decen-
tralized approaches, and it even disturbs the underlying synchronization of Gossip.

The degrading influence of the increased load is also reflected by the decreasing
accuracy, as depicted in Figure 6.6a and 6.6b. Whereas the relative error of the
sine function does not yet display the heavy impact of traffic on the monitoring
results, the relative peer count error exhibits this influence. As shown in Figure 6.6b,
the growing load results in a considerable loss of information, which especially
influences the underlying calculation of the peer count for Gossip.

Figure 6.6d displays the resulting traffic for each monitoring mechanism under
the varying load. In contrast to the horizontal scalability workload, where only a
fraction of peers had to deal with a higher load, the number of attributes influences
the resulting traffic for each peer, as shown by the box plots. The fairness index
proves this statement for the traffic, because the reduction is not as strong as during
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(a) Mean relative monitoring error for the sine
function

(b) Mean relative monitoring error for the
peer count

(c) Mean staleness of monitored data (d) Mean traffic

Fig. 6.6: Per peer results for performance and cost, measured for the vertical scala-
bility workload

the horizontal scalability workload. Instead, the increasing load even balances the
uneven distribution of traffic of the overlay, because the transmission of attributes
becomes the predominant factor.

6.6.5 Stability Workload

For the following workloads, we focus on the relative peer count error and omit the
results for the sine function. In contrast to the previous benchmarks, the number of
active peers varies over time during the remaining workloads, thus this monitored
attribute enables to evaluate the accuracy based on an attribute with changing values.
In terms of accuracy, Figure 6.7 does not display the mean relative peer count error
per peer. Instead, we rely on the global metric x(t) = 1

|P(t)| ∑p∈P(t) x(p, t), which is
the average of a metric x at a specific point in time t over the set of peers P(t). Fig-
ure 6.7 does not contain the results of the centralized approach, because the varying
mean peer session length does not have an impact on the accuracy of the central-
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(a) Average of the disseminated results for the
monitored number of peers within SkyNet

(b) Average of the disseminated results for the
monitored number of peers within Gossip

Fig. 6.7: Average of the disseminated monitoring results for the stability workload

(a) Mean staleness of monitored data (b) Mean traffic

Fig. 6.8: Per peer results for staleness and traffic, measured for the stability workload

ized approach, which correctly monitors the current number of peers in the system.
Figure 6.7a displays the average monitored number of peers per minute of SkyNet
and outlines that it suffers from a decreasing mean peer session length. SkyNet is
not able to construct a monitoring tree, which incorporates all peers, because the
overlay suffers from the decreasing mean peer session length as well, thus it is not
capable to provide the required lookup functionality. As a result, SkyNet constantly
underestimates the current number of peers in the system. Figure 6.7b depicts con-
trary results for Gossip, which considerably overestimates the current number of
peers in the system. In contrast to SkyNet, the mesh-based approach does not suffer
from the missing lookup functionality of the overlay but from the short mean peer
session lengths. Due to the high fluctuation, the arriving peers falsify the calculation
of the peer count, which leads to the mentioned overestimation. The overestimation
worsens, because the short session times even disturb the synchronization mecha-
nism, resulting in the unusual distribution of staleness (cf. Figure 6.8a). In terms of
SkyNet, the results for staleness confirm that the topology construction for the mea-
surement tree is not successful and creates degenerated trees, which increase the age
of monitored values.
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Figure 6.8b depicts the traffic and outlines that a varying mean peer session
length does not change the tendency between the different monitoring mechanisms
in terms of traffic. Gossip still causes the highest traffic followed by SkyNet and then
the centralized approach. But similar to the horizontal scalability workload, it can
be observed that, dependent on a decreasing mean peer session length, the average
load increases, and it is carried by a fraction of the peers. Based on the results for
the centralized approach, it becomes obvious that the increasing traffic results from
the overlay and its ongoing attempts to rebuild its structure, which can be observed
for both decentralized monitoring mechanisms as well. The uneven distribution of
this increased traffic can be confirmed for each monitoring mechanism when look-
ing at the decreasing fairness index of the decreasing mean peer session length (cf.
Table 6.4).

6.6.6 Robustness Workload

6.6.6.1 Massive Leave Workload

Similar to the stability workload, Figure 6.7 displays the averaged monitored num-
ber of peers over time for the three monitoring mechanisms. It can be observed that
the centralized approach is able to handle the sudden departure of 50% of peers, be-
cause this event does not influence the direct data exchange between the remaining
peers and the server. SkyNet considerably suffers from the massive leave of peers,
which becomes apparent by the considerable drop of the averaged monitored num-
ber of peers. Since the underlying overlay is not capable of recovering from this
massive crash, providing the required lookup functionality again, SkyNet cannot
recreate its topology. As a result, it is not capable of capturing the corrected num-
ber of peers in the system, which becomes apparent by the fluctuating results that
considerably underestimate the number of peers. Gossip handles the sudden crash
better and provides more accurate results. Due to the fact that the approach does
not rely on a specific functionality of the underlying overlay, it is able to recover
from the crash to a certain degree. The available neighbors of a peer in the broken
overlay are nearly sufficient to create meaningful results that reflect the current state
of the system. But as shown in Figure 6.10a, which displays the staleness before
and after the crash, it can be observed that in Gossip a fraction of peers exhibits
synchronization problems. These problems become apparent by the varying stale-
ness, as indicated by the outlying whiskers in the plot, which leads to stale results
for a fraction of the peers. In contrast, the very low age of the results after the crash
indicates that SkyNet creates several very small trees, incorporating only a handful
of peers, leading to the low staleness results.

In terms of traffic, Figure 6.10b outlines that a massive peer crash does not change
the tendency between the different monitoring mechanisms regarding the resulting
traffic. Moreover, it can be observed, similar to the stability workload, that only a
fraction of peers must deal with an increased traffic, resulting from the recovery
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Fig. 6.9: Average of the disseminated results for the monitored number of peers for
the massive leave workload

(a) Mean staleness of monitored data (b) Mean traffic

Fig. 6.10: Per peer results for staleness and traffic, measured for the massive leave
workload

attempts of the overlay. The corresponding decreasing fairness index confirms the
uneven distribution.

6.6.6.2 Massive Join Workload

For the discussion of the results for the monitored number of peers, we split the re-
sults into two plots to adequately evaluate them. Figure 6.11a displays the mean
monitored number of peers over time for SkyNet and the centralized approach,
wheres Figure 6.11b depicts this metric for Gossip. The reason for the separation
becomes apparent when looking at the results for Gossip, because right after the
number of peers in the system doubles, the monitored number of peers is heav-
ily overestimated. The overestimation results from the recovery of the underlying
overlay as well as from the resynchronization of the newly arrived peers. After this
fluctuation, the monitored number of peers levels out to the correct number of peers
in the system. The results for the mean monitored number of peers that were mea-
sured during the measurement phase of 30 minutes before (mean relative peer count
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(a) Average of the disseminated results for the
monitored number of peers within SkyNet and
the centralized approach

(b) Average of the disseminated results for the
monitored number of peers within Gossip

Fig. 6.11: Average of the disseminated results for the massive join workload

(a) Mean staleness of monitored data (b) Mean traffic

Fig. 6.12: Per peer results for performance and cost over time, measured for the
massive join workload.

error of 1.7%) and after the massive join (mean relative peer count error of 1.95%)
confirm the displayed results in Figure 6.11b. In terms of SkyNet and the central-
ized approach (cf. Figure 6.11a), it can be observed that the centralized approach
immediately catches up with the current numbers of peers in the system. Due to the
fact that the underlying overlay is capable to provide its lookup functionality even
after the massive arrival of peers, SkyNet is able to span its tree over the new peers
and to adequately capture the current state of the system. Although Figure 6.11a dis-
plays larger fluctuations after the arrival of the new peers, the results for the mean
relative peer count error that were measured during the measurement phase of 30
minutes before (mean relative peer count error of 7.19%) and after (mean relative
peer count error of 6.83%) the application of the workload indicate that Skynet is
robust enough to handle the newly arriving peers well.

In terms of staleness and traffic, Figure 6.12a and 6.12b display the usual be-
havior for each monitoring mechanism in the presence of an increasing peer-to-peer
system as long as the monitoring mechanism is correctly operating. For SkyNet the
staleness of the results increases, because the height of the tree grows to integrate
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SkyNet 0.819 0.906 0.81 0.81 0.788 0.859 0.643 0.81 0.125 0.81 0.796
Gossip 0.882 0.954 0.88 0.88 0.9 0.894 0.78 0.878 0.391 0.878 0.867
Centralized 0.851 0.953 0.848 0.848 0.917 0.889 0.438 0.839 0.089 0.839 0.822

Fairness of mean relative peer count error
SkyNet 1.0 0.993 0.996 0.996 0.999 0.994 0.994 0.993 0.992 0.966 0.984
Gossip 0.976 0.999 0.989 0.989 0.945 0.002 0.005 0.939 0.678 0.937 0.941
Centralized 1.0 0.992 1.0 1.0 0.999 0.978 0.978 0.996 0.999 0.998 0.997

Table 6.4: Jain’s fairness index for the distribution of traffic and the mean relative
peer count error.

the arriving peers, while the staleness of results for Gossip and for the centralized
approach remains constant, as already observed and discussed for the horizontal
scalability workload (cf. Section 6.6.3). After the massive join, the resulting traffic
remains nearly constant for a fraction of 50% and even 75% of the peers, whereas
the remaining fraction of peers must handle the increasing traffic. This behavior of
each decentralized monitoring mechanism is inline with the observed results for the
traffic during the horizontal scalability workload, including also the decreasing fair-
ness index for the traffic. Due to the fact that the number of peers in the system is not
increased by an order of magnitude but only doubled, the observed impact regarding
the increasing traffic and the decreasing fairness index is not that high.

6.6.7 Evaluation Summary

After the detailed discussion of the results, the general observations and conclusions
are summarized. Figure 6.13 condenses the obtained results for each applied work-
load, using Kiviat charts. Each plot displays the previously discussed six metrics
on a separate axis. The orientation and dimension of each axis is chosen so that
results next to the origin of an axis reflect a good outcome, whereas results at the
end of an axis indicate a bad outcome. The result for each metric is presented as
x̂ = 1

|S||P| ∑s∈S ∑p∈P x(p,s), which represents the total average of a metric x over the
set of sample timestamps S and the set of all peers P.

During the baseline workload, which assumes a perfect network, SkyNet pro-
vides perfect results in terms of the monitored number of peers. In terms of dy-
namic attributes, the accuracy of SkyNet degrades and reaches the mean relative
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(c) Vertical scalability workload

400 800 1200 1600

Mean Rel. Error

of Peer Count [%]

10

20

30

40

Mean Rel. Error

of Sine Function [%]

380

750

1100

1500
Staleness [s]

0.130.250.380.5

Traffic [kB/s]
0.75

0.5

0.25

0
Fairness Peer Count

0.75

0.5

0.25

0 Fairness Traffic

SkyNet 60

SkyNet 15

Gossip 60

Gossip 15

Centralized 60

Centralized 15

(d) Stability workload

21 43 64 85

Mean Rel. Error

of Peer Count [%]

8.8

18

26

35

Mean Rel. Error

of Sine Function [%]

210

420

620

830
Staleness [s]

0.0530.110.160.21

Traffic [kB/s]

0.75

0.5

0.25

0

Fairness Peer Count

0.75

0.5

0.25

0 Fairness Traffic

SkyNet Before

SkyNet After

Gossip Before

Gossip After

Centralized Before

Centralized After

(e) Massive leave workload
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Fig. 6.13: Overview of the benchmarking results for the six workloads

error of Gossip. The increased error of SkyNet results from the hierarchical topol-
ogy, because each level of the tree increases the relative error. The disadvantage of
a hierarchical compared to a flat topology becomes also apparent when considering
the results for staleness. The flat topology leads to fresher results, whereas SkyNet
suffers from the hierarchical topology in terms of staleness. Considering the cost,
Gossip induces the highest traffic.
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The horizontal scalability workload reveals the impact of a growing peer-to-peer
system on SkyNet, as displayed in Figure 6.13b. Due to a growing tree, which in-
creases the time to collect and deliver the results, SkyNet suffers from an increased
staleness and monitoring error. In contrast, the flat hierarchy as well as the temporal
synchronization of Gossip lead to nearly constant results in terms of staleness and
the relative monitoring error. Based on this observation, it can be concluded that the
size of the system has a low impact on the performance of Gossip, which is on the
one hand beneficial, because accuracy and timeliness do not depend on the size of
the system. On the other hand, it cannot be adapted to smaller or larger systems,
which might lead to incorrect or unnecessary old or imprecise results. In terms of
traffic, the results outline that the considered decentralized monitoring mechanisms
cause additional traffic but that the overall peer-to-peer system still scales logarith-
mically with the number of participating peers. A closer look at the presented results
reveals that the increasing load is unevenly distributed, because only a fraction of
the peers must carry the additional load.

In contrast to the horizontal scalability workload, the vertical scalability work-
load has an impact on each monitoring mechanism, including the centralized ap-
proach as well. The performance of each monitoring mechanism degrades in terms
of accuracy and leads to stale results, as depicted in Figure 6.13c. Even the under-
lying synchronization of Gossip is disrupted by the increased traffic, with the result
that the staleness increases. The heavy influence becomes apparent as well when
looking at the accuracy in terms of the relative peer count error, where even the
centralized approach degrades, while Gossip supersedes SkyNet. In contrast to the
horizontal scalability workload, the effect on the traffic is clearly perceptible, while
the load is carried by all peers.

The stability workload reveals that both decentralized monitoring mechanisms
are not able to deal with short mean peer session lengths in a peer-to-peer system,
as outlined in Figure 6.13d. SkyNet constantly underestimates the current num-
ber of participating peers, because the tree cannot incorporate each participant of
a peer-to-peer system due to the temporarily unavailable lookup functionality of the
overlay. In contrast, Gossip heavily overestimates the current number of peers. The
corresponding aggregation function, which calculates the peer count, suffers from
the high frequency of arriving and departing peers. In terms of staleness, SkyNet
and Gossip suffer from the dynamic behavior of the peers, which leads to an in-
creased staleness of the results for both decentralized approaches. Concerning the
traffic, Figure 6.13d displays for each mechanism that a decreasing mean peer ses-
sion length increases the traffic in the system.

Based on the results of the massive leave workload, it can be concluded that
SkyNet cannot cope with a crash of a peer-to-peer system at all. Though the re-
duced mean relative error of the sine function after the massive crash claims that
the monitoring mechanism is working properly (cf. Figure 6.13e), the drastically
increasing relative peer count error refutes this assumption. According to the mean
relative peer count error, Gossip is able to handle a subset of simultaneously leav-
ing peers but only to a certain degree, because the corresponding results in terms of
staleness confirm that a fraction of peers deals with temporal synchronization issues.
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After the massive crash, the traffic in each of the considered systems increases due
to the ongoing attempts to rebuild the overlay. Similar to the stability or horizontal
scalability workload, the increased load is carried by a fraction of peers, which is
reflected in the decreasing fairness index.

Finally, the massive join workload shows that each monitoring mechanism han-
dles a high number of simultaneously joining peers. The obtained results for the
mean relative peer count error and error of the sine function (cf. Figure 6.13f) reveal
that especially each decentralized monitoring mechanism provides a comparable
accuracy even after the number of peers in the system has increased. The obtained
results for the staleness confirm the proper functioning of each monitoring mech-
anism: SkyNet exhibits an increasing staleness due to the growing tree, whereas
Gossip nearly remains constant, since its synchronization is properly working. The
impact on the traffic and its distribution among the peers resembles the obtained re-
sults of the horizontal scalability workload, but does not clearly reflect this behavior
(cf. Figure 6.13f), because the number of peers in the system is only doubled and
not increased by an order of magnitude.

6.7 Conclusion

In this chapter, we have presented an extended benchmarking methodology for de-
centralized monitoring in peer-to-peer systems, based on our previous work [28].
The methodology is targeted at a unified evaluation of the considered mechanisms
to enable and facilitate a fair and reusable comparison between existing and future
approaches in this area. At the beginning, we defined the relevant non-functional re-
quirements, which must be taken into consideration when evaluating a decentralized
monitoring mechanism. Based on the requirements, we designed a set of workloads
to address and evaluate the identified requirements. The design of the workload
comprised the identification of corresponding workload factors and the description
how these factors must be changed during a workload. Finally, we completed our
methodology with the identification of appropriate metrics in order to quantify to
which extend the non-functional requirements have been fulfilled. Besides the iden-
tification, we standardized where the metrics must be measured in order to avoid
that different measurement points yield to deviating results.

In addition to the description of the methodology, we applied the workloads on
two decentralized and one centralized monitoring mechanism to demonstrate the
practical applicability. We showed how the considered monitoring mechanisms re-
act on the different workloads, comprising the identification of disadvantages or
advantages of a certain mechanism during the applied workloads. Given the results,
conclusions can be drawn, which decentralized monitoring mechanism, or at least,
which underlying concepts of the considered mechanism are suited for certain sce-
narios. The results outline as well that the decentralized monitoring mechanisms
depend on the behavior of the selected overlay. While SkyNet heavily relies on the
lookup functionality, Gossip only requires the provided neighborhood of the over-
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lay, which leads, for instance, to a better performance for the massive leave work-
load. If SkyNet and Gossip are set up on top of another overlay, which provides
the same functionality as Chord, but behaves differently for the applied workloads,
the benchmarks will lead to different results for SkyNet and Gossip. Thus, the over-
lay must always be taken into account, when judging the benchmark results for the
monitoring mechanisms.
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