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Abstract - In this paper, we present an admission eontral 
scheme which provides per-llow delay and bandwidth guaran- 
tees based solely upon simple class-based strict priority queue- 
ing. We derive basic properties of the wont-case behaviour in 
strict priority queueing systems using nehvork calculus. Building 
upon these pmperties the llow admission control scheme is 
devised. The rationale behind this work is the appealing simplic- 
ity as well as the almost ubiquitous availability of strict priority 
queueing in today's rauters and the thus promising applicability 
of nur results for practical purposes in providing quality of serv- 
ice (QoS) in the Internet. 
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A. Motivalion 

The provision of multiple differentiated services over the 
Intemet, often coined by the term QoS, is a notoriously dißi- 
cult problem. Many different schemes have been devised and 
supported in standard efforts [ I ,  21. Yet, success looks differ- 
ent. There is of Course many reasons and often they are much 
more conhived than just technical issues like scalability. We 
argue that one of the big problems of existing approaches is a 
lack of simplicity and availability. Therefore, we Want to 
make a first step towa~ds a veiy simple solution available 
today, based on strict priority queueing (many router products 
have been offering strict priority queueing for some time, see 
e.g. [3]) Furthermore, we wish to keep the interface towards 
the differentiated services simple by providing worst-case 
properties like the maximum delay that may be experienced 
by a flow. From ourperspective it is important that the service 
interface allows for per-flow guarantees while the service 
implementation is only based on class differentiation. This 
allows for both, simplicity in the implementation and in the 
semantics of the "service contract". 

In particular, we derive the basis for providing per-flow 
delay and bandwidth guarantees under class-based strict prior- 
ity queueing by developing a suitable admission control. 

bring along a number of difiiculties al the service interface 
since violations of the service contract cannot be interpreted 
unambiguously. 

Closely related to our work are [6. 71. They derive a similar 
result as our Theorem 4 (see Section 111.8) for the special case 
of two service classes in the context of DiffServ's Expedited 
Fonvarding Per-Hop Behaviour (EF PHB) [8]. However, they 
focus on a different aspect, namely what they call aggregate 
scheduling. This is the problem where flows from multiple 
entry points to the nehvork accumulate inside the nehvork and 
how this affects the worst-case bounds. They assume no 
knowledge of the nehvork topology and thus amve at veiy 
restrictive bounds. We focus on the case where the topology 
and the paths taken by flows are known by the admission con- 
trol scheme, e.g., by using a (logically) centralized bandwidth 
broker or by using multi-protocol label switching (MPLS) 191 
to prevent flows from accumulating inside the nehvork. 

In [IO], statistical guardntees for hvo class pnonty queueing 
are derived based on the so-called negligible jitter conjecture. 
We focus on worst-case respectively deterministic guarantees. 

To some extent similar in spirit is the work in [II], because 
it also aims at providing deterministic per-flow guarantees 
without per-flow state in routers. However, the approach is 
veiy different and based on a concepi called dynamic packet 
state which essentially means that packets cany with them 
state that allows to ennch non-per-flow state in routers 
towards pcr-flow state and thus to do per-flow trafiic manage- 
ment again. This is an interesting theoretical approach which 
however is a far ciy from current router technology and 
involves some non-trivial implementation issues. 

C Ouiline 
After giving some background information on network cal- 

culus and its notation in Section 11, we derive basic properties 
of stnct pnority queueing based on nehvork calculus methods 
in Section 111. In Section IV, we then use these basic proper- 
ties to develop a fairly simple adrnission control scheme 

D n.7- . .JrTT. .7 .  which allows to offer per-flow delay and bandwidth guaran- 
D .  neruieu rrurn 

tees despite purely class-based traßic control mechanisms on 
There 1s of course an almest intimihting body of werk in the data path ofthe section V concludes the 

~rovidine OoS in tlie Intemet (see 141 for a recent and excel- 
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lent overview). Veiy directly related to nur work on shict pri- 11. NEWORK CALCULUS BACKGROUND 
ority queueing there are interesting results from queueing 
theoiy which are however restricted mainly to the equilibrium Network CalcuIus is a tool to analyse flow control problems 

behaviour of the system and furthermore make usually fairly in nehvorks with particular focus on determination of bounds 

strong assumptions on the statistical characteristics of the on worst-case performance. In particular, it abstracts traßic 

amval processes (see [ 5 ]  for a good overview). We focus on regulation and scheduling schemes from which one may 
derive general results. It is a framework to derive deteminis- worst-case guarantees because they can be derived without 
tic guarantees on throughput, delay, and to ensure no losses in knowledge of statistical properties of amval processes as long 

as these can be bounded. Furthermore, statistical assurances ~acket-switched nehvorks. The focus of this paper is on rout- 



ers which internally operate with strict priority queueing and 
which input is constrained by the use of hafiic reglation 
schemes as for example token buckets. 

We shall now provide sorne basic definitions and notation 
before summarizing sorne basic results from network calcu- 
lus. In depth results are given in the text [12]. 

DEFINITION: The iiipnlfunction R ( t )  of an arrivai process is 
the number of bits that amve in the inlerval [ O , r ] .  In particular, 

R ( 0 )  = 0 andR is wide-sense increasing, i e .  R ( 0 )  < R(12) 

forall t ,  < t , .  

DEFINITION: The outpurfunctron Ro( t )  of a System S is the 
nurnber of bits that have left S in tbe interval [O,t]. In particu- 

lar, ~ ' ( 0 )  = 0 and R' is wide-sense increasing 

DEFINITION: Min-Plus Convolution. Let f and g he wide- 
sense increasing and f ( 0 )  = g ( 0 )  = 0 . Then their convolu- 
tion under min-plus algehra is defined as 

( f @ s ) ( O  = i r ~ f ~ , , ~ , C f ( t - ~ )  + g ( s ) }  
We now define, by rneans of the rnin-plus convolution, the 
arrival and service curve. A wide-sense inereasing function a 
with a(r) = 0 for t  < 0 is called an arrival curve for an input 

function R if R < R 8 a .  We also say R is a-smooth or R is 
constrained by a. 

DEFINITION: Amval Curve. Let a be a wide-sense increasing 

function a such tbat a(i) = 0 for i < 0 .  a is an arrival curve 

for an input function R if R < R O a . 

DEFINITION: Serviee Curve. Consider a systern S and a flow 
through S with R and RO. S offers a service curve ß to the flow 

if ß is wide-sense increasing and R0 > R @J ß . 
From these, it is now possible to captnre the major worst- 

case properties for data flows: maximum delay and maximum 
backlog. These are stated in the following tbeorerns. 

THEOEM I: Backlog Bonnd 
Let a flow Rft), eonstrained by an arrival curve a, haverse a 
system S (hat offers a service curve ß. The backlog x(t) for all 
I satisfies: 

x ( 0  < s u p „ ~ I a ( s )  - = ~ ( a ,  P) (1) 

~ ( a ,  ß) is also often called the vertical deviation between a 
and ß. 

THEOREM 2: Delay Bonnd 
Assume a flow R(1) eonshained hy amval curve a traverses a 
system S that offers a service curve ß. At any time 1. the vir- 
mal delay d(1) satisfies: 

d ( t )  ~ s r ~ ~ , ~ ~ I i n ~ ~ ~ I a ( s )  ß (s  + T)}} = h ( a ,  ß) ( 2 )  

h ( a ,  ß) is also often called the horizontal deviation hetween 
a and ß. 
A typical example of an arrival curve is given hy 

Y,, = r t  + b (3) 

which results frorn using the prominent token hucket algo- 
rithm as traffie regulation mecbanisrn. 

A iypical exarnple of a service eurve is given by 

ßn,r ( l )  = R ( t -  T)* ( 4 )  

where the notation ( X ) '  denotes X if x > 0 and 0 othenvise. 
This is often also called a rate-latency service cuwe. 

111. STRICT PRlORlTY QUEUEING: ANALYSIS OF WORST-CASE 

A. Stricr Priorip Qrreueing under Gerieral Arrival Curves 
We now use network caleulus to analyse strict priority 

queueing for a given nurnber of classes n and under the 
assumption that tbe input of eacb class i is constrained by u; 
for i = 1, ..., 1 1 .  There are often no guarantees associated 
with the lowest priority and thus it is often not necessary io 
have a constraint on its input functions. However, we follow 
the rnore general case where guarantees are required also from 
the lowest priority. 

I )  Service Curvefor Sfrrct Priority Qzieueing: First we derive 
the respective service curves for eaeh class under strict prior- 
ity queueing. The following theorem states the interesting 
result ha t  service curves of lower priority classes are depend- 
ent on the arrival curves of higher priority classes 

THEOREM 3: Let C be the overall capacity of the system. Let 
ai be the arrival curve for input to class i. The servicr curve 
P ß ,  for class i is given by 

for i = 1, ..., n 

Here is the maximum size of a packet in class j. 

Let R j ( t ) ,  R ~ ( I )  be the input and output function for traffic 

from elass i for i = 1, ..., n . Now, let s he the start of the last 

busy penod due to haffic from classes I to i before a fixed 
time I .  Then the amount of service given traffic from class i is 
lower bounded by the server output minus the service given to 
higher traff~c classes and the maxirnum packet size for lower 
traff~e classes for which a single packet might just have 
started servicc before s .  Tbe server output in interval [s,t] is 
given by C ( t -  s )  due to the detinition of a busy period. Thus 
we have 

R Y ( I )  - R ; ( S )  > C ( t  - s )  
i -  1 

rn01 ( 6 )  
- C ( ~ ~ ( t ) - ~ ~ ( s ) ) - r n o x , + , ~ ~ ~ . I l ~  1 

j =  1 

Due to s being tbe start of a busy penod for hafflc from 

classes j = I, ..., i we also have RJ(s )  = R j ( s ) .  Thus 



~ " 1 )  J -RJ?(s) = R1?(t) -R,(s) 

cR.( t ) -R,(s)cn , ( t -s )  
(7) 

I 

Tbat means we can bring the arrival curve constraints into (6). 
Note that the bound in (7) is tight because at time t input and 
output function for traffic from class i could well be equal and 
of Course hafflc could be greedy. Introducing (7) in (6) we 
obtain 

~ ; ( t ) -R ; ( s )  C(!-S) 

Since R,%S wide-sense increasing we obtain 

P Thus, indeed, strict priority queueing offers Pi as a service 

curve towards trafflc from class i. 
W 

Tbe theorem is the basis for all subsequent findings of the 
Paper. Moreover, it contains a very eonshuctive result: 

There is a quantifiable dependency of lower priorities' 
service curves an arrival curves of higlier priorig classes. 

There are several ways to use this in practical nehvorking 
problems as for example in flow or packet admission control 
for class-based networks. In paiticular for flow admission 
control, it allows to dimension aggregate amval curves for 
each class such that certain delay targets for each class are 
achieved. New flow requests for a elass ean then be checked 
by the admission control against whether the sum of amval 
curves of already admitted flows and the new flow is still 
below the aggregate amval curve which is necessary to 
achieve the delay target. 

B. Strict Priorig Queueing under Token Buckets 
In this section, we now assume a particular arrival curve, 

the popular token bucket [13]. Under this assumption we can 
concretize the service curve for general amval curves and can 
then derive bounds on maximum backlog and delay per class. 

I) Sewice Cuwe: First we apply Theorem 3 to the Special 
case of token buckets as amval curves for the different classes 
in order to derive the service curve for strict priority queueing. 
Theorem 4 states the result. 

bucket (each with its own parameters). The service curve for 
class i under strict priority queueing is then given by 
P 

Pi = PR',f 
with 

i -  l 

P R; = C - C r ,  and = i = l  ; - I  

j =  1 C -  Crj 
j =  1 

That means the service curve is of the rate-latency type. 

PROOF: 
The theorem is a consequence of Theorem 3 and the defini- 

tion of the rate-latency service curve in (4): 
{ ? - I  ) + 

= P,;, f(') 

2) Delay and Backlog: Using the serviee eurve for shict prior- 
ity queueing we can now derive the worst-case delay bound as 
well as the maximum backlog bound for each traffic class. 
The backlog bound is given by the following theorem. 

THEOREM 5: (Per-Class Backlog Bound under Token Buckets) 

Let nj = y, , be the amval curves for all traff~c classes 
ii I 

j = 1, ..., n , i.e. eaeh traff~c cclss is constrained by a token 
bucket (each with its own parameters). For stability we further 

assume that C > C ri 

; = I  

The maximum backlog per haffic class i is bounded by the 
vertical deviation behveen the arrival curve to class i, y,,, b r ,  

P 
and its service curve, ß, 

THEOREM 4: (Seniice Curve under Token Buekets) 

Let n, = y, , be the arrival curves for all hanic classes 
3. / 

j = I, ..., n ,  i.e. each tranic class is constrained by a token 



i - 1  

C b , + m a x , + l . j g . { l ~ )  

"(Y,,, b,, PP) = ri X I i -  I + bj  (11) 

c - c r j  

j =  I 

PROOF: 
i - 1  

Due to the stability condition we have C -  ZrJ > r, , 1.e. the 

J =  I 

slope of the service curve is higher than that of the anival 
curve. That means the maximum vertical deviation is taken on 
at the latency of the service curve, because the service curve 
Comes ever closer once the service is "started, i.e. 

C -  C.1 
J = ]  

Next, we denve the per-class maxiinum delay bound under 
the same assumptions in Theorem 6. 

THEOREM 6: (Per-Class Delay Bound under Token Buckets) 
Let a, = Y , , , ,  be the arrival curves for all traffic classes 

j = 1, ..., n ,  i e .  each traff~c class is conshaincd by a tokcn 
bucket (each with its own parameters). For stability we further 

" 
assume that C > C r i  . 

i = 1  

Thc maximum delay per traffic class i is bounded by the hori- 
zontal dcviation betwcen the amval curve to class i, y,,, b , ,  and 

P 
its servicc curvc, ß, 

C -  Crj 
j = 1  

PROOF: 
Following the Same arguments as in thc proof of Theorem 5, it 
is clear that thc maxiinum horizontal deviation is taken on at 
the ongin, i.c. 

C-  C r ,  

i = 1 

So, we can now compute the worst-case propetties for strict 
priority queueing if we assume each haffic class conforms to 
a token bucket (respectively make it conform to it by either 
using admission control at ingress to the network or drop 
packets according to the token bucket). 

1V ADMISSION CONTROL FOR STRICT PRlORlTY QUEUEING 

In this section, we now use the basic results on worst-case 
bounds for shict priority queueing from the preceding section 
to design an admission conhol scheme which allows to give 
per-flow delay and rate guarantees despite the purely class- 
based priority queueing. We can distinguish two cascs here: 

static bandwidth shares for different priority classes, - dynamic bandwidth shares depending on currcnt traffic. 
Both cases can be useful from the perspective of network 

providers. The static case corresponds to a situation where a 
network provider wants fairly shict control on how resources 
are allocated to classes. The dynamic case is inhcrently more 
efficiie but also involves more complexity due to on-line 
reconfigurations for the class token buckets. Therefore, we 
decide to only treat the static case here and postpone the 
dynainic case to future work. 

A.  Admission Confrol under Static Bandwidth Shares 

Here, we assume that we are given maximum bandwidth 

shares per class, qi > 0, i = 1, . . ., n , and Want to ensure cer- 

tain class delay targets D„ i = 1, ..., n , with Di < D, if 

i < j . The following theorem provides how the class token 
buckets have tobe dimensioned: 



THEOREM 7: Dimensioning of Class Token Buckets 

To achieve the class delay targets D ; ,  i = 1, ..., n and to 

ensure that each class obtains its bandwidth share @;, the class 

token buckets have to be chosen as 

ri = @;C 

j=i , i = i  ' 
for I = I, ..., ?L, 

PROOF: 
It is obvious that in order to achieve the bandwidth assur- 

ance per class the token bucket rates need to be set propor- 
tional to their shares as in (13). The class bucket depths can 
then be calculated hy setting the horizontal deviation of the 
classes' servicc curves equal to the class delay target: 

P 
h ( ~ , > .  ,,. Pi = D, (15) 

C -  C r ,  

,, = 1 

( ; - I  , i - I  

Note that (14) constitutes a system of n linearly independent 
equations for n uiiknowns, i.e. it always has a wiique solution. 

However, if some of the bi are negative this indicates that for 

the given bandwidth shares and class delay targets there is no 
allocation of token buckets which can achieve these. Further- 
more, as (14) results in a lower triangular matrix it is very 
simple to solve. 
This result can now be used for a simple admission control 
scheme: if a new flow with bandwidth requirements 

(r„„ b „ , )  and a maximum delay requirement d„, arrives 

it can he assigned to the lowest pnonty class i for which 
k k 

whcre I {  and b: are the bandwidth requirements of alrcady 

accepted flows in class i. j = 1, ..., k 

Such a class i may not exist which means the new flow has to 
he rejected. Since assigning flows to classes, which provide a 
much lower maximum delay ihan expected by the flow, might 

be undesirable under certain circumstances (e.g., because it 
may economically be more promising to serve more delay- 
critical future flows) the admission control scheme could also 
reject flows already if they do not "fit" in that class any more 
which provides the highest class delay that is just below the 
flow's target delay. 

B. Numerical Example 

We assume that 8 pnority classcs are uscd, a link speed C of 
100 Mbls (= 12500 KBls), and a maximum packet size of 
1500 bytes for all classes. The bandwidth shares Oi, 
i = 1, ..., 8 for each pnority class are given in Table 1 as 
well as the classes delay targets D ; .  From this input the token 
bucket rates and depths. r ;  and b ; ,  for cach class can be cal- 
culated, the results are also given in Table 1 

Table I :  Example with 8 Priority Classes. 

With these numhers the admission control decision can now 
be made simply by assigning a flow to the class which pro- 
vides an appropnate delay and which can still accommodate 
the flow with respect to the class tokcn bucket. 

The selection of delay targets govems the eff~ciency of the 
admission control scheme because if the distribution of delay 
requirements does not tit well wiih the dismbution of class 
delay targets then the assignment of flows toclasses can result 
in some wastage of resources due to providing "too good" 
service to flows. Here, a provider needs some experience with 
its customers' demands to select delay targets advantageously. 
Note, however, that it is not always possihle to find a set of 
class token buckets for a given set of class delay targets and 
bandwidth shares. E.g., if in our examplc kam Table 1 class 6 
should he assigned a delay target of 90 ms (instead of 100 ms) 
this would result in negative token hucket depths which 
means this assigmient of delay targets is infeasible. 

Similarly, the selection of bandwidth shares needs some 
experience by a provider. The choice of the bandwidth shares 
determines how many flows can be admitted for ccttain delay 
requirement regions. Again. this should be aligned as well as 
possihle with actual baffic demand. 

V. CONCLUSIONS 

We propose simple admission control wies under strict 
class-based priority queueing which facilitare deterministic 
guarantecs on delay and bandwidth per flow To do so we 
derived hasic worst-case properties for the case where strict 



pnonty queueing is used as packet schcduling mechanism in 
routers and arrivals to classes are regulated by simple token 
buckets. One advantage of our scheme, particularly in com- 
parison to other approaches, that we pereeive is the availahil- 
ity of all required base mechanisms in today's roulers as well 
as the simplicity of the scheme, both in tems of implementa- 
tion and at the sewice interface. The admission control 
scheme makes use of the fact that for priority queueing there 
is a quantifiable dependency behveen the sewice curves of 
lower priority classes and ihe arrival cuwes of higher pnority 
classes. This allows the dimensioning of the token buckets (as 
particular choice of arrival curves) such that a suitable range 
of maximum delay requirements can be matched well against 
the classes' service menu. 
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