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Abstract — In this paper, we present an admission control
scheme which provides per-flow delay and bandwidth guaran-
tees based solely upon simple class-based strict priority queue-
ing. We derive basic properties of the worst-case behaviour in
strict priority queueing systems using network calculus. Building
upon these properties the flow admission control scheme is
devised. The rationale behind this work is the appealing simplic-
ity as well as the almost ubiquitous availability of strict priority
queueing in today’s routers and the thus promising applicahbility
of our results for practical purposes in providing quality of serv-
ice (QoS) in the Internet.
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l. INTRODUCTION

A. Motivation

The provision of multiple differentiated services over the
Internet, often coined by the term QoS, is a notoriously diffi-
cult problem. Many different schemes have been devised and
supported in standard efforts {1, 2]. Yet, success looks differ-
ent. There is of course many reasons and often they are much
more contrived than ust technical issues like scalability. We
argue that one of the big problems of existing approaches is a
lack of simplicity and availability. Therefore, we want to
make a first step towards a very simple solution available
today, based on strict priority queneing {many router products
have been offering strict priority queueing for some time, see
e.g. [3]). Furthermore, we wish to keep the interface towards
the differentiated services simple by providing worst-case
properties like the maximum delay that may be experienced
by a flow. From our perspective it is important that the service
interface allows for per-flow guarantees while the service
implementation is only based on class differentiation. This
allows for both, simplicity in the implementation and in the
semantics of the “service contract”.

In particular, we derive the basis for providing per-flow
delay and bandwidth guarantees under class-based strict prior-
ity queueing by developing a suitable admission control.

B. Related Work

There is of course an almost intimidating body of work in
providing (oS in the Internet (see [4] for a recent and excel-
lent overview). Very directly related to our work on strict pri-
ority queueing there are interesting results from queueing
theory which are however restricted mainly to the equilibrium
behaviour of the system and furthermore make usually fairly
strong assumptions on the statistical characteristics of the
arrival processes (see [5] for a good overview). We focus on
worst-case guarantees because they can be derived without
knowledge of statistical properties of armival processes as long
as these can be bounded. Furthermore, statistical assurances

bring along a number of difficullies at the service interface
since violations of the service contract cannot be interpreted
unambiguously.

Closely related to our work are [6, 7]. They derive a similar
result as our Theorem 4 (see Section 111.B) for the special case
of two service classes in the context of DiffServ’s Expedited
Forwarding Per-Hop Behaviour (EF PHB) [8]. However, they
focus on a different aspect, namely what they call aggregate
scheduling. This is the problem where flows from multiple
entry points to the network accumulate inside the network and
how this affects the worst-case bounds. They assume no
knowledge of the network topology and thus armve at very
restrictive bounds. We focus on the case where the topology
and the paths taken by flows are known by the admission con-
trol scheme, e.g., by using a (logically) centralized bandwidth
broker or by using multi-protocol label switching (MPLS) [9]
to prevent flows from accumulating inside the network.

In [10], statistical guarantees for two class priority queueing
are derived based on the so-called negligible jitter conjecture.
We focus on worst-case respectively deterministic guarantees.

To some extent similar in spirit is the work in [11], because
it also aims at providing deterministic per-flow guarantees
without per-flow state in routers. However, the approach is
very different and based on a concept called dynamic packet
state which essentially means that packets carry with them
state that allows to enrich non-per-flow state in routers
towards per-flow state and thus to do per-flow traffic manage-
ment again. This is an interesting theoretical approach which
however is a far cry from curmrent router technology and
involves some non-trivial implementation issues.

C. Outline

After giving some background information on network cal-
culus and its notation in Section 11, we derive basic properties
of strict priority queueing based on network calculns methods
in Section 1IL In Section 1V, we then use these basic proper-
ties to develop a fairly simple admission control scheme
which allows to offer per-flow delay and bandwidth guaran-
tees despite purely class-based traffic control mechanisms on
the data path of the system. Section V concludes the paper.

11. NETWORK CALCULUS BACKGROUND

Network Calculus is a tool to analyse flow control problems
in networks with particular focus on determination of bounds
on worst-case performance. In particular, it abstracts traffic
regulation and scheduling schemes from which one may
derive general results. It is a framework to derive determinis-
tic guarantees on throughput, delay, and to ensure no losses in
packet-switched networks. The focus of this paper is on rout-



ers which internally operate with strict priority queueing and
which input is constrained by the use of traffic regulation
schemes as for example token buckets.

We shall now provide some basic definitions and notation
before summarizing some basic results from network calcu-
lus. In depth results are given in the text [12].

DEFINITION: The input function R(t) of an arrival process is
the number of bits that arrive m the interval [D,¢]. In particular,
R(0) = 0 and R i1s wide-sense increasing, i.e. R(r)) < R(t;)

forall ¢, <t,.

DEFINITION: The output function R°(t) of a system S is the
number of bits that have left § in the interval [0,£]. In particu-

lar, R°(0) = 0 and R® is wide-sense increasing.

DEFINITION:  Min-Plus Convolution. Let f and g be wide-
sense increasing and f(0) = g(©@) = 0. Then their convolu-
tion under min-plus  algebra is  defined as
Ue®g)n) = infoe, e Aft—5)*+gls)}.

We now define, by means of the min-plus convolution, the
arrival and service curve. A wide-sense inereasing function o
with a(z) = 0 for ¢ <0 is called ap arrival curve for an input
function R if R< R ® o. We also say R is o-smooth or R is
constrained by «.

DEFINITION: Arrival Curve. Let a be a wide-sense increasing
function ¢ such that a(¢) = 0 for ¢ <0. o is an arrival curve
for an input function RiIf RS R P .

DEFINITION: Serviee Curve. Consider a system S and a flow
through § with R and R°. S offers a service curve [3 to the flow

if B is wide-sense increasing and R°> R ® B.

From these, it is now possible to capture the major worst-
case properties for data flows: maximum delay and maximum
backlog. These are stated in the following theorems.

THEOREM 1: Backlog Bound

Let a flow R{?), eonstrained by an arrival curve ¢, traverse a
system § that offers a service curve B. The backlog x(2) for all
¢ satisfies:

x(1) S sup s ofols) - B(sH} = via, B). (1)
v(e, B) is also often called the vertical deviation between
and B.

THEOREM 2: Delay Bound

Assume a flow R{1) eonstrained by arrival curve @ traverses a
system S that offers a service curve . At any time ¢, the vir-
tual delay 4r2) satisfies:

d(t) <sup . ofinfi,{u(s) <Bs+ 1)} = A, B) 2)
h(a, B) is also often called the horizontal deviation between

o and f.
A typical example of an arrival curve is given by

Yo o(t) = rt+b ©)

which results from using the prominent token bucket algo-
rithm as traffie regulation mechanism.
A typical example of a service eurve is given by

B, r(t) = RU-T)" (4)
where the notation (x)J' denotes x if x 20 and 0 otherwise.
This is often also called a rate-latency service curve.

11, STRICT PRIORITY QUEUEING: ANALYSIS OF WORST-CASE

A. Strict Priority Queueing under General Arrival Curves

We now use network caleulus to analyse strict priority
queucing for a given number of classes n and under the
assumption that the input of each class ¢ is constrained by o
for i = 1, ..., n. There are often no guarantees associated
with the lowest priority and thus it is often not necessary lo
have a constraint on its input functions. However, we follow
the more general case where guarantees are required also from
the lowest priority.

1) Service Curve for Strict Priority Queueing: First we derive
the respective service curves for each class under strict prior-
ity queueing. The following theorem states the interesting
result that service curves of lower priority classes are depend-
ent on the arrival curves of higher priority classes

THEOREM 3: Let C be the overall capacity of the system. Let
«; be the arrival curve for input ta class i. The service curve

Bf for class i is given by

i—-1 +

B () = Cr—zaj(‘)’m“’x.‘)elstSr.{],Tw} (5)
i=1
fori=1,...,n.

Here [ is the maximum size of a packet in class /.
PROOF:
Let R,(¢), R/(2) be the input and output function for traffic

fromelassifor i = 1, ..., n. Now, let s be the start of the last
busy period due to traffic from classes | to i before a fixed
time 1. Then the amount of service given traffic from class i1 is
lower bounded by the server output minus the service given to
higher traffic classes and the maximum packet size for lower
traffie classes for which a single packet might just have
started service before s. The server output in interval [s.f] is
given by C(f—s5) due to the definition of a busy period. Thus
we have
RI(—RI(5)=Clt—1s5)

i-1

(4] o max (6)
_Z(Rj(!)_Rf(s))_maxf+15jgn{[,i }

j=1

Due to s being the start of a busy period for traffic from

classes j = 1, ..., i we also have Rf(s) = Rs). Thus



RI(1)—R[(s) = R}(1)=R;(5)
<R,(t)- R(s)<oy(t—s)
That means we can bring the arrival curve constraints into (6).
Note that the bound in (7} is tight because at time ¢ input and
output function for traffic from class i could well be equal and

of course traffic could be greedy. Introducing (7} in (6) we
obtain

RI(1y—R}(s)=C(t—ys)
i—1
_Z oyt —5)—max,, S‘,-5,,{1‘;"”}

i=1

(M

®

Since R; is wide-sense increasing we obtain

RY(1)> Ri(s)

i-1 +
+ C(t—s)—Zaj(t—s)—maxiﬂSJ.S"{I;’”}

i=1 (9)
= R(s)+B; (t—5)

z i”fﬁsssx{R?(S) + Bf(f"s)}
= (R ® B))1)

Thus, indeed, strict priority queueing offers Bf as a service

curve towards traffic from class i.
|
The theorem is the basis for all subsequent findings of the
paper. Moreover, it contains a very eonstructive result:

There is a quantifiable dependency of lower priorities’
service curves on arrival curves of higher priority classes.

There are several ways to use this in practical networking
problems as for example in flow or packet admission control
for class-based networks. In particular for flow admission
control, it allows to dimension aggregate arrival curves for
each class such that certain delay targets for each class are
achieved. New flow requests for a elass ean then be checked
by the admission control against whether the sum of arrival
curves of already admitted flows and the new flow is still
below the aggregate arrival curve which is necessary to
achieve the delay target.

B. Strict Priority Queueing under Token Buckets

In this section, we now assume a particular amival curve,
the popular token bucket [13]. Under this assumption we can
concretize the service curve for general arrival curves and can
then derive bounds on maximum backlog and delay per class.

1) Service Curve: First we apply Theorem 3 to the special
case of token buckets as arrival curves for the different classes
in order to derive the service curve for strict priority queueing.
Theorem 4 states the result.

THEOREM 4: (Service Curve under Token Buekets)
Let o, = Yr, 5, be the arrival curves for all traffic classes

J = 1,...,n, ie. each traffic class is constrained by a token

bucket (each with its own parameters). The service curve for
class  under strict priority queueing 1s then given by

Bl = By p
with

(10)

-1

max
iml ij+maxi+15j5u'[lj }

c- 3
j=1
That means the service curve is of the rate-latency type.
PROOF:
The theorem is a consequence of Theorem 3 and the defini-
tion of the rate-latency service curve in (4):
i-1 +
Ct— Z o(t) —max; ;e {0}
i=1
i-1 +

= 1Ct- Z(fﬁ"’ bi)—maxi+ lstn{l;mx}

i=1

Br(H)

i-1 +
i-1 ij"' max; . 15;‘5:1{";‘"”}
C—er t—i=1 —
J=1 C—-er

= Bﬂf, 0

2) Delay and Backlog: Using the serviee eurve for strict prior-
ity queueing we can now derive the worst-case delay bound as
well as the maximum backlog bound for each traffic class.
The backlog bound is given by the following theorem,

THEOREM 5: (Per-Class Backlog Bound under Token Buckets)
Let o; =y, , be the arrival curves for all traffic classes

j =1,...,n,ie. eaeh traffic class is constrained by a token
bucket (each with its own parameters). For stability we further

n

assume that C 2 Z v,

i=1
The maximum backlog per traffic class i is bounded by the
vertical deviation between the ammival curve to class £, v, ; ,
and its service curve, i



i—t

ij"' max, . stn{l_?aI}
(Y, 5, BT = ryxi=d +b, (11

i—1
-3,

J=1

PROOF:
i—-1

Due to the stability condition we have ' — Z rizr;,1e. the

j=1
slope of the service curve is higher than that of the arrival
curve. That means the maximum vertical deviation is taken on
at the latency of the service curve, because the service curve
comes ever closer once the service is “started”, i.e.

v(Y,. 5, B})

sup ol 5(5) =B/ ()}
Tr, (T ) = B (T7)
'Yril b'(Tf)

i—-1
Max
E bj+maxi+l£j£n{[j }
r.)('i=1 +b_
i i—=1 i
C- zrj

i=1

1

|
Next, we derive the per-class maximum delay bound under
the same assumptions in Theorem 6.
THEOREM 6: (Per-Class Delay Bound under Token Buckets)
Let o; = v, , be the arrival curves for all traffic classes

Jj =1, ..., n, ie. each traffic class is constraincd by a token
bucket (each with its own parameters). For stability we farther

n
assume that C> Z .

i=1
The maximum delay per traffic class ¢ is bounded by the hori-
zontal deviation betwcen the ammival curve to class /, 7y, »,» and

. . P
its service curve, f;
i
max
ij *max;, | San{lj }
Py =
h(¥,, p, B) = 121

(12)

i—-1
c-¥,
i=
PROOE:
Following the same arguments as in the proof of Theorem 3, it

is clear that th¢ maximum horizontal deviation is taken on at
the origin, i.c.

Bty 5, B7) = suposolinfisol,, 5 () < Bl (s + D}
= infa ol ¥, 5(0) < B (D)}
-1

b;< - be'_ma*“iﬂsjﬂ{z}mx}

— i =1
- mjrzo‘ iol

+ C—er T

i=1

i

max
ij +max, Sjsn{{,- 1

i=1

= infisg <1

i-1
C"}E’}

J=1

I

max
ij tmaxi, g}

= i=1

i1
C— Z T
i=1

[ |
So, we can now compute the worst-case properties for strict
priority queueing if we assume each traffic class conforms to
a token bucket (respectively make it conform to it by either
using admission control at ingress to the network or drop

packets according to the token bucket).

IV. ADMISSION CONTROL FOR STRICT PRIORITY QUEUEING

In this section, we now use the basic results on worst-case
bounds for strict priority queueing from the preceding section
to design an admission control scheme which allows to give
per-flow delay and rate guarantees despite the purely class-
based priority queueing. We can distinguish two cascs here:

+ static bandwidth shares for different priority classes,

* dynamic bandwidth shares depending on current traffic,

Both cases can be useful from the perspective of network
providers. The static case corresponds to a situation where a
network provider wants fairly strict control on how resources
are allocated to classes. The dynamic case is inhcrently more
efficient but also involves more complexity due to on-line
reconfigurations for the class token buckets. Therefore, we
decide to only treat the static case here and postpone the
dynarnic case to future work.

A. Admission Control under Static Bandwidth Shares

Here, we assume that we are given maximum bandwidth
shares per class, ¢, >0, i = 1, ..., n, and want to ensure cer-
tain class delay targets D,, i = 1,..,,n, with Dl.cDj if

i <j. The following theorem provides how the class token
buckets have to be dimensioned:



THEOREM 7: Dimensioning of Class Token Buckets
To achieve the class delay targets D, i = 1, ...,n and to

ensure that each class obtains its bandwidth share ¢;, the class

token buckets have to be chosen as

ri = ¢,C (13)

i-1 i-1

b, = D C‘er _behmaxl'+|SfSJl{I}Tnax}

F=1 J=1

(14)

i—-1

i
= Zb’ =D|C- er —max; gl
i=1 i=1
fori = 1,...,n.
PROOF:

It is obvious that in order to achieve the bandwidth assur-
ance per class the token bucket rates need to be set propor-
tional to their shares as in (13). The class bucket depths can
then be calculated by setung the horizontal deviation of the
classes’ servicc curves equal to the class delay target:

h(y, 5, B)) = D,

i

(15)
Zb’ + max; . S_;Sﬂ{ljmax}

iz = D, (16)

i~
C—er

4=1

=1 i—1

= b, =D, C—er —ij—maxfﬂsjsﬂ{l;m} an

=17 f=

]
Notc that (14) constitutes a system of n linearly independent
equations for n unknowns, i.e. it always has a unique solution.

However, if some of the &, are negative this indicates that for

the given bandwidth shares and class delay targets there is no
allocation of token buckets which can achieve these. Further-
more, as (14) results in a lower triangular matrix it is very
simple to solve.

This result can now be used for a simple admission control
scheme: if a new flow with bandwidth requirements

(Fems Prew ) 2and a maximum delay requirement d,,,, arrives

it can be assigned to the lowest priority class i for which
k

k
dneszi:Z’{*'rnewgrfandzb{"-b <br

new —

j=1 j=1
where r‘i and &, are the bandwidth requirements of alrcady

accepted flowsinclass £,/ = 1, .. k.
Such a class i may not exist which means the new flow has to

be rejected. Since assigning flows to classes, which provide a
much lower maximum delay than expected by the flow, might

be undesirable under certain circumstances {e.g., because it
may economically be more promising to serve more delay-
critical future flows) the admission control scheme could also
reject flows already if they do not "fit” in that class any more
which provides the highest class delay that is just below the
flow’s target delay.

B. Numerical Fxample

We assume that 8 priority classcs are uscd, a link speed C of
100 Mb/s (= 12500 KB/s), and a maximum packet size of
1500 bytes for all classes. The bandwidth shares ¢;,
i =1, .., 8 for each priority class are given in Table | as
well as the classes delay targets D;. From this input the token
bucket rates and depths, r; and b,, for cach class can be cal-
culated, the results are also given in Table 1.

Table 1. Example with 8 Priority Classes.

Class i | @, (%) | D, (ms)
1 s 5
2 5 20
3 5 40
4 s 60
5 10 80
6 10 100
7 10 150
8 50 200

With these numbers the admission control decision can now
be made simply by assigning a flow to the class which pro-
vides an appropriate delay and which can still accommodate
the flow with respect to the class tokcn bucket.

The selection of delay targets governs the efficiency of the
admission control scheme because if the distribution of delay
requirements does not fit well with the distribution of class
delay targets then the assignment of flows to classes can result
in some wastage of resources due to providing “too good”
service to flows. Here, a provider needs some experience with
its customers” demands to select delay targets advantageously,
Note, however, that it is not always possible to find a set of
class token buckets for a given set of class delay targets and
bandwidth shares. E.g., if in our examplc from Table 1 class 6
should be assigned a delay target of 90 ms (instead of 100 ms)
this would result in negative token bucket depths which
means this assignment of delay targets is infeasible.

Similarly, the selection of bandwidth shares needs some
experience by a provider. The choice of the bandwidth shares
determines how many flows can be admitted for certain delay
requirement regions. Again, this should be aligned as well as
possible with actual traffic demand.

V. CONCLUSIONS

We propose simple admission control rules under strict
class-based priority queueing which facilitate deterministic
guarantecs on delay and bandwidth per flow. To do so we
derived basic worst-case properties for the case where sirict



priority queueing ts used as packet scheduling mechanism in
routers and arrivals to classes are regulated by simple token
buckets. One advantage of our scheme, particularly in com-
parison to other approaches, that we pereeive is the availabil-
ity of all required base mechanisms in today’s routers as well
as the simplicity of the scheme, both in terms of implementa-
tion and at the service interface. The admission control
scheme makes use of the fact that for priority queueing there
is a quantifiable dependency between the service curves of
lower priority classes and the arrival curves of higher priority
classes. This allows the dimensioning of the token buckets (as
particular choice of arrival curves) such that a suitable range
of maximum delay requirements can be matched well against
the classes” service menu.
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