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Abstract 
Providing quality of service (QoS) in large-scale networks like the lnternet in- 
herently needs to deal with heterogeneous network QoS systems. Therefore, the 
interworking between different network QoS systems is of high importance. In 
this paper, the interworking with respect to a basic characteristic of network 
QoS systems, the time scale of the system, is under investigation. The time scale 
of a network QoS system is its speed of reaction to individual requests for dif- 
ferentiated treatment of units of service. A slow time scale system will prefer 
requests to amve with a low frequency and persist unaltered for a substantial pe- 
nod of time while a fast one is able to support much higher amval rates of re- 
quests and is thus more amenable for short-lived units of service. Obviously, 
when overlaying a slow time scale QoS system over a faster one, there is no 
problem. However, and that is a more likely case, for the overlay of a fast time 
scale system on a slow one, there is a mismatch to be mediated at the edge be- 
hveen the two. The technique that is applied at an edge device for this mediation 
is called decoupling of time scales. Decoupling can also be viewed as aggrega- 
tion of requests in time in contrast to spatial aggregation on the data path. In the 
paper we develop an adaptive heuristic scheme to deal with decoupling and 
evaluate this scheme by extensive simulations. 

1.1 Motivation 
Different time scales of QoS Systems may arise due to different QoS 
architectures like RSVPIIntServ (Resource reSerVation Protocoll Inte- 
grated Services) [I], Dirnen, (Differentiated Services) [2], or ATM 
(Asynchronous transfer Mode) [3] being used but may also be due to 
different QoS strategies followed by providers even if they employ the 
sarne QoS architecture. Choosing different QoS architectures as well 
as different strategies results from serving different needs, e.g., for an 
access and backbone provider. An access provider that has a compara- 
tively moderate load and directly connects to end-systems may favor a 
fast time scale system responding immediately to the end-systems re- 
quests. A backbone provider that connects access providers respective- 
ly offers transit services is generally faced with a drastically higher 
load of individual transmissions, so that reaction on the time scale of 
individual requests is usually not possible and a slower time scale sys- 
tem needs to be enforced. 

When different time scales are in operation in heterogeneous net- 
work QoS systems, it is simply not possible to query the underlying 
QoS system each time an overlaid system is altering its state. Here, the 
system operating on a faster time scale needs to be smoothed when 
overlaying it onto a system that operates only on slow time scales. A 
realistic confiyration for access and backbone providers may be, e.g., 
that access providers use RSVPllntServ to suit their custorners' needs 
while a backbone provider uses DiffServ with a Bandwidth Broker 
(DiffServIBB) to allow for some dynamics but on a slower time scale. 
This scenano is shown in F i y r e  1. 

Here it is also very obvious why a BB is generally not able to react 
to individual RSVP requests that are arriving at edge devices between 
access and backbone provider. Because if it did, the BB would need to 
operate at a throughput of requests that is proportional to the Square of 
the number of access providers it serves - that is not scalable. To See 
this, assume each of N edge devices would have M (new or modified) 
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Figure 1: Combined local and global admission control. 

RESV messages for each other edge device in a given time period and 
would query the BB for each of these requests. Then the BB would 
have to deal with N X (N-1) X M requests in the Same period. Note that 
the problem is not solved by spatial aggregation approaches like. e.g., 
[4] or [5] since for each of the M RESV messages the aggregate would 
have tobe rearranged. Here a decoupling of the different time scales is 
necessary. The decoupling can be achieved by building "depots" of ca- 
pacity which stabilize the fluctuations of the "nervous" demand curve 
for backbone capacity by individual requests. From another perspec- 
tive, the decoupling technique can also be viewed as introducing a 
combined local and global admission control for the DiffServIBB net- 
work. Global admission control is only invoked whenever local admis- 
sion control at an edge device runs out of resources in its capacity 
depot. This scheme allows to Wade off resource efiiciency for a more 
stable and long-tenn capacity demand presented to the BB. 

While the problem of different time scales is very obvious for thc de- 
scribed interoperation of RSVPIIntServ over DiffServIBB, it also oc- 
curs in other scenanos. For example, even in a homogeneous RSVPI 
lntServ case where both, access and backbone providers, use RSVPI 
IntServ, the backbone provider may decide to build up so-called RSVP 
tunnels [6] in which the individual requests from the access regions are 
fed. Again, the backbone provider can try to remain scalable on the 
control path by decoupling the different time scales and not rearrang- 
ing the reservations for tunnels whenever an individual request is re- 
ceived by an edge device. The Same applies to a backbone provider 
that operates an ATM network where several individual requests are 
collected together in a single vimial circuit. 

Note that the slow time scale of an underlying QoS system may not 
express itself in being unable to process requests for QoS at short time 
scales but by the fact that significant setup costs are incurred for QoS 
requests between different administrative domains. Such a scheme of 
QoS tarifing is an instance where a QoS strategy of a network provid- 
er restricts the capabilities of the employed QoS architecture. A possi- 
ble reason for this may be, e.g., that the charging and accounting 
systern is not able to deal with a large number of individual requests 
since this involves a lot of operational costs. 



1.2 Outline 
In the next section, a closer and more formal look at the generic prob- 
lern of decoupling time scales for heterogeneous network QoS systems 
is undertaken. Then solution techniques based on a heuristic adaptation 
scheme are devised and evaluated by simulations, before, at the end, 
related work is reviewed and some conclusions are drawn. 

2 DECOUPLINC TIME SCALES - THE PROBLEM 
AND ITS COMPLEXITY 

2.1 Problem Statement 
In order to assess the complexity of the decoupling problem, we first 
try to state the problem in a more formal manner. We model capacity 
as one-dimensional here, e.g., a rate resource that may be requested 
from a BB for a certain path across a DifPjerv domain. This is certainly 
simplifying as more capacity dimensions like, e.g., a buffer resource 
may be involved. However, the resulting problem can be generalized 
albeit at the cost of a higher complexity (see [7]  for a discussion of 
this). Hence, we can model the capacity demand curve R for the over- 
laid QoS system as a step function 

nR R R  

R(t)  = X ( t )  where X(! )  = 
t E [ s i ,  ei I arid 

i =  I Ih; otherwise 
R R  e, = s ,  + , Vi 

R R  R 
( 1 )  

So, nR is the number of steps here; hi , si and ei are the hei ht, the 
R start and the end of step i. Furthermore, we denote f = ei - s i  Vi  as 

the length of step i. 
From the capacity demand curve (CDC) for the overlaid system, the 

CDC of the underlying system is derived. A necessary condition on the 
CDC of the underlying QoS system is that it covers the CDC of the 
overlaid system. A cover of a CDC R is simply defined to be a CDC R 
for which R ( t )  2 R(t)  V t .  An illustrative example of a CDC and a 
cover for it is shown in Figure 2. 

acity 

f 
I I , 

Si ei Time 
Figure 2: Example CDC with a cover. 

For the underlying QoS system, it is assumed that a slow time scale 
is enforced by the introduction of setup costs for requests from the 
overlaid system. An alternative for enforcing a slow time-scale would 
be to only allow for a certain number of setups in a given period of 
time. The latter, however, is less flexible and can usually be achieved 
by choosing setup costs adequately. 

The cost of a CDC R for an underlying QoS system in a given time 
period [tO, t I ]  is detined as 

11 

C ( R I F .  U) = F X  nR + U d ~ ( t ) d t  (2) 

10 

where F are fixed setup costs involved for changing the requested ca- 
pacity level and U are variable costs per capacity unit. We assume 
these parameters do not change in the planning period, although again 
this is easy to generalize [ 7 ] .  

Under these prerequisites, decoupling of QoS systems with different 
time scales can be formulated as a minimal-cost CDC coveringprob- 
lem, i.e.: 

Find a CDC R for R such that c(R(F,LI) is minimal. 
The cost-minimal cover of a CDC R is denoted by PP'. 

2.2 Some Observations about Complexity 
The possible set of covers for a CDC is, of course, unlimited without 
further restrictions being made. One observation is, however, that ROP' 

always is a tight cover. A cover C of a CDC R is called tight iff 

i.e., the step heights of the cover are a subset of the step heights of the 
CDC that is tobe covered. The simple fact that ROp' is necessarily tight 
can be seen if one assumes that it is not. In that case i t  would be possi- 

R 
ble to lower PP' for a step where it is not tight to the nearest hi and i t  
would still be a cover of R but with lower costs (at least if U > O), 
which, of course, contradicts the cost-minimality. The space of tight 
covers is restricted as the following theorem states. 
Theorem 1: The state space complexity for tight covers of a CDC 
with n steps is 0(2"-'). 

ProoT: We show this by giving a worst-case example of a CDC with n 
steps where the number of strict covers is indeed 2"-'. Such a CDC is 
either monotonically increasing or decreasing; an example of a mono- 
tonically decreasing CDC (for n = 6) is depicted in Fiyre 3. 
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Figure 3: Example CDC yielding 2"-' tight covers (n = 6 here). 

We further on restrict without loss of generality on monotonically de- 
creasing CDCs. Let T(n) be the number of possible tight covers for a 
decreasing CDC with n steps as in F iyre  3. We show the statement of 
the theorem by induction on the number of steps: 

n =  1: 

lf we assume that step n+l of the CDC that was added for the induc- 
tion step is the first, i.e., the highest one, then the first equation is due 
to the fact that we have n+l possibilities for the length of this step in a 
strict cover ofthis CDC. One is just to prolong it to the end of the CDC. 
This alternative is represented by the first addend (the I), the other al- 
ternatives are captured by the sum tem, and correspond to prolonging 
the first step to an increasing number of steps of the CDC to be cov- 
ered, for which the rest can then be covered by the same procedure but 
lesser steps. This allows then to apply the induction assumption, i.e., 
the theorem's statement, which eventually confirms the theorein. 

W 
So, we see that while strict covers are limiting the space of possible 
covers, there is still a huge search space in which the cost-minimal 
cover, for which we are naturally striving, may be located. 

All of the discussions so far have silently assumed that the search of 
the cost-minimal cover of a CDC could take place under certainty 
about this CDC. That is, of course, not the case in general. It would be 
the case if the overlaid system used only advance reservations (see, 
e.g., [ 8 ]  or [9] for this concept). However, for immediate requests 
which we are focussing on here, the CDC that is to be covered is not 
known beforehand and for every step of the CDC, a decision has to be 



made whether the cover should follow this step or not. In fact, due to 
little experience with real network QoS systems, there is not even an 
established theory for statistical models on how a CDC could look like, 
although one could a r p e  that some of the models known from teleph- 
ony could be applicable to some parameters of the CDC. The parame- 
ters in question of the CDC are 

R the step length li , which is a product of the interarrival times of 
the individual requests at an edge device and the duration of such 
requests, and 

R the step height hi , which corresponds to the aggregate capacity 
required to serve the requests. 

Especially, the latter parameter is extremely difiicult to model as there 
is no practical experience with it. It depends upon which applications 
are actually using reservations and how widely resource requirements 
are differing for actual reservation-based applications. The first param- 
eter, the step length, might be rnodeled by markovian models known 
from teletraftic theory [10] as the characteristics might be similar (at 
least as long as the individual requests correspond to personal commu- 
nications). However, also for this parameter, there is a certain degree 
of uncertainty whether traditional models fit. 

3 ADAPTATION SCHEME FOR DECOUPLING 
From the observations of the preceding section, the need for adaptive 
heuristic techniques when tackling the decoupling problem under un- 
certainty about the CDC can be derived. The use of heuristic tech- 
niques is necessav since the involved problem is fairly complex even 
under certainty as discussed in the preceding section. Furthermore, as 
statistical rnodels for CDCs are generally not available, we arme for 
the use of adaptation as a way to learn the statistical properties of the 
system in an on-line fashion. This is also highly useful in an environ- 
rnent where there are unpredictable, but rather long-term fluctuations 
in the demand for capacity. In general, the adaptation to behavior that 
would have been "good" in the past is the best a heuristic technique can 
do under complete uncertainty about a CDC. 

The question what is "good" behavior can be assessed by comparing 
the outcome of an on-line heuristic with the results of applying a tech- 
nique to solve the cost-minimal covering problem for the known CDC 
from the past. In the next section, such a technique as well as an inex- 
pensive approximation is introduced. Hence, let us assume that we 
have a technique to solve the cost-minimal covering problem for the 
CDC of past system behavior. If we further on assume that a para- 
metrized heuristic h(8) is applied to the on-line cost-minimal CDC 
covering problem, there are essentially hvo different modes of adapta- 
tion that can be directed by good behavior as achieved by the cost-min- 
imal cover of the past CDC: 
Adaptation in Action Space. In this mode, the heuristic's parame- 
ter (vector) 8 is adapted such that the behavior of the CDC cover pro- 
duced by applying the heuristic deviates as little as possible from the 
optimal cover with respect to some characteristic as, e.g., the number 
of steps of the optimal covers. More formally, if we define the similar- 
ity characteristic of two covers R and S as s(R,S) (with higher values of 
s( . )  representing higher similarity), this means the adaptation problem 
is 

rnax. s(H(8), 0 )  
where H(8) and 0 represent the covers produced by applying heuristic 
h(8) and the optimum technique. 
Adaptation in Performance Space. In this mode the heuristics pa- 
rarneter (vector) 8 is adapted such that the cost of the cover produced 
by applying the heuristic deviates as little as possible from the optimal 
cover's cost. Again, this can be stated formally as 

min. c(H(8)) - c(0) 
Discussions on which mode is better suited to our decoupling problem 
are postponed until Section 6 when the individual building blocks of 
the scheme like the employed heuristic and the technique for comput- 
ing optimal covers have been investigated in more detail. 

Both adaptation modes have three parameters with which a flexible 
trade-off between adaptation complexity and the cost performance of 
the optimum-directed adaptation can be achieved: 
1. The fk-quens, ofadaptation determines how often the adaptation 

of the heuristics pararneter is camed out. 
2. The time window of adapiaiion determines the length of the past 

period that is taken into account for the adaptation. 
3. The accuracy of adaptaiion determines how thoroughly the 

parameter space is searched during the optimization problem for 
the adaptation. 

It might seem that the adaptation in performance space does not de- 
pend on the optimum cover to be computed as i t  is only a constant in 
the objective hnction. However, if one takes into account the accuracy 
of adaptation parameters, it is obvious that without the notion of a tar- 
get cost to strive for the heuristic, this pararneter cannot be Set reason- 
ably. Thus, in both modes of adaptation the optimal cover for the past 
CDC directs the adaptation. Therefore the whole scheme is called 
ODAH (Optimum-Directed Adaptive Heuristic). 

4 SEARCHING FOR THE MINIMAL COVER 
UNDER CERTAINTY 

As the ODAH scheme depends heavily on being able to compute the 
cost-minimal cover for past CDCs, the problem of finding such a cover 
for a CDC under certainty is investigated in this sectioi. First, an ex- 
haustive search technique to deterministically find the cost-minimal 
cover is presented. This approach, however, is computationally very 
expensive for CDCs with a considerable nurnber of steps. Therefore an 
inexpensive approximation technique based on the optimal algorithrn 
is devised. 

4.1 Finding the Optimal Cover 
Simply searching the space of strict curves is prohibitively expensive 

as Theorem I states. An observation that can be made for ROP' is that 
for the peak step of the regarded CDC R it takes the sarne value for the 
period of this step, i.e., 

R"~'(I) = R(I) for t E [sf, ef]  with 

Furthermore, it ap lies that the shapes of the right and left side frorn 
R E R R the peak, i.e., [s, ,  s k ]  and [ e , ,  e ,I do not influence each other. So, 

the question for PP' is how far totrolong the peak step to the left and 
to the right. These observations can be combined into a divide-and- 
conquer strategy to recursively search the space of strict covers by the 
algorithm given in Figure 4, which is denoted OPT. 

OPT finds the cost-minimal cover of a CDC under all circumstances, 
yet it is less expensive than a total enumeration of the space of strict 
covers by using the observation from (6) and by pruning the search 
space using a lower bound on the costs for further prolongations. 

OPT has been implemented in a discrete-event simulation environ- 
ment which simulates the overlaying of a fast time scale reservation 
system onto a slow one. The environment allows to generate CDCs 
with different statistical properties and to apply decoupling techniques 
on these CDCs in an on-line as well as an off-line manner. Using this 
sirnulation environment, OPT has been tested on a number of CDCs in 
order to obtain a feeling how complex it would be to compute a cost- 
minimal cover. An example CDC and the cost-minimal cover that has 
been computed by OPT is given in Figure 5. 

For the simulated CDC R, we have had the following (arbitrary) set- 
tings: nR = 40; hf E [I, 101 and f E [I ,6] drawn from uniform ran- 
dom distributions; F= 25 and U =  1. This yields a cost of c(R) = 1809. 
Under these settings the cost-minimal cover 0 as computed by OPT 
has the following characteristics no = 6 and c(0) = 1353. Hence, had 
the optimal cover been used for decoupling the two QoS systems as 
simulated here, about 25% costs could have been saved. The saving in 



OPT(R, a, b) / /  R is the CDC, a and b are the start and 
/ /  end times for which to find an optimal cover 

if (a ! =  b) 
find k / /  as defined in Equation ( 6 )  
for 1 = k-1 downto a 
prolong R to the left till step 1 
leftcost = OPT(R, a. eil]) + cost for prolongatior 
if (leftCost c minLeftCost) 

minLeEtCost = leftcost 
left = 1 

LB = sum of variable costs for steps from a to 1 
+ cost for prolongation 

if (LB > minLeftCost) 
break 

for r = k+l to b 
prolong R to the right till step 1 
rightcost - OPT(R, a, e[ll) + cost for prolongatior 
iE IrightCost < minRightCost) 

minRightCost = rightcost 
right = r 

LB = sum OE variable costs for steps from r to b 
+ cost Eor prolongation 

if (LB > rninRightCost) 
break 

return minLeftCost + minRightCost + 
(s irightl -e [leftl ) 'hik] .U + F 

else 
return 0 ;  

I Figure 4: Algorithm to find cost-minimal cover of a CDC (oPT).~ 
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Figure 5: Cost-minimal cover computed by OPT. 

cost, however, is, of course, totally dependent on the cost parameters F 
and U. If F is very high compared to LI, then the cost savings can be 
considerably higher. 

Larger values for nR are generally not possible as even nR = 40 al- 
ready took up to a few seconds on average for the computations from 
OPT (on a 400 MHz Pentium-11 processor). That OPT is increasingly 
expensive to compute can be Seen when obsewing that the average size 
of the space of covers So(n) searched by OPT for a CDC with n steps 
is recursively defined as (corresponding to the operation of the algo- 
rithm) 

A comparison of S d n )  with Sdn), the size of the space of tight covers, 
for some example values of n is given in Table 1. This is intended to 
give an illustration of how much is saved by OPT when compared to a 
total enumeration of tight covers. At the same time, of course, it also il- 

Table 1: Growth of search spaces. 

lustrates that even S d n )  is too large to be searched exhaustively (al- 
though the pmning is quite effective on average so that only a small 
part of the search space needs to be traversed). So, while the search 
space is diminished by the recursive operation of OPT, it is still too 
large if the number of steps of the CDC is becoming larger. 

An alternative formulation of the problem as an integer program is 
given in [7]. This Opens up a standard Set of operations research tech- 
niques to deal with the problem, however, all of these are computation- 
ally very expensive in the worst-case. That means, even if they 
produce the cost-optimal cover in a reasonable time on average, the ex- 
ecution times might vary considerably. This is something the ODAH 
scheme cannot deal with as it requires the optimum tobe computed fast 
for recent past behavior to be able to adapt heuristics best. Therefore, 
we go a different way and try to find a good approximation of OPT that 
is computationally inexpensive. 

4.2 Finding Near-Optimal Covers 
In the ODAH scheme the optimum is required to adapt parameters 
from heuristics to "good" past behavior. In the preceding section, i t  has 
been shown that the determination of the optimum for a past CDC is 
very compute-intensive if the CDC becomes too large in terms of 
steps. That means if the time window of adaptation becomes moderate- 
ly large, and that is generally desirable in order to take more past be- 
havior into account, then it is more suitable to compute an 
approximation of the cost-minimal cover for the adaptation of the heu- 
ristic instead of the absolute optimum. 

So, in this section, an approximation approach to compute the cost- 
minimal cover is introduced. It is based on the strategy followed by 
OPT but instead of trying all prolongations from a peak step for a Cer- 
tain Part of the regarded CDC, it only compares the cost for prolonging 
the level of the peak until the next peak (in both directions certainly) 
with the sum of a further setup cost Fand the cost of the subsection be- 
tween the peaks being calculated by this strategy itself. We call this al- 
gorithm NEAROPT. It uses the notion of OPT to cut the problem into 
halves wherever possible and always tries only two different choices 
for prolongation. To compare exactly those two cases for each step of 
the algorithm is motivated by obsewations of the covers that were pro- 
duced by OPT and which mostly used just either of these extremes. 
The detailed working of NEAROPT is given in F iyre  6. 

NEAROPT(R, a, b) / /  R is the CDC, a and b are the start and 
/ /  end times for which to find an optimal cover 

if (a != b) 
find k / /  as defined in Equation (6) 
leftCost = NEAROPT(R, a, e[k-11) + F 
if (leftcost < (e [k-11 -a) *h[kl *U) 

prolong R to the left till a 
else 

leftCost = (e [k-11 -a)*h[kl *U 
rightcost = NEAROPTfR, s [k+ll, b) + F 
if (rightcost C lb-B [k+ll )*h[kl *U) 

prolong R to the right till b 
else 

rightcost = (b-s [k+ll ) *h[kl *U 
return leftCost + rightcost + (sikl -e ikl )'h[kl 'U + F 

else 
return 0; 

Figure 6: NEAROPT algorithm. 

The following theorem shows that NEAROPT is indeed substantial- 
ly less expensive than OPT and should be easy to compute for all rea- 
sonable time windows of adaptation. 
Theorem 2: NEAROPT has a time complexity of O(n). 

Proofi Let C be the time consumed for the operations in a single 
NEAROPT call without the time consumed by the recursive calls to 
the NEAROPT subroutine. Then the total time n n )  for the execution 
of NEAROPT on a CDC with n steps is given by 

T(n) = T ( k - I ) + T ( n - k ) + C  forsome k~ ( 1 , n I  (8) 



The Statement of the theorem is shown by induction on the number of 
steps of the CDC. The induction Statement is 

T(n) = nC (9)  
Then the induction works as follows 
n =  I: 

T(I) = C (10) 
n+n+l:forsome k~ ( 1 , n +  1) 

T ( n + l )  = T ( k - l ) + T ( n + l - k ) + C  

= ( k - l ) C + ( n + I - k ) C + C  = ( n + l ) C  (1 1) 

Of course, T(n) = nC = O(n) and thus the theorem holds. 
rn 

So, NEAROPT has linear time complexity and is thus inexpensive to 
compute. The question certainly is how good the results are that can be 
achieved with NEAROPT. Therefore, a simulative comparison of 
NEAROPT with OPT is done. As a metric for this comparison, we use 
the achieved cost saving, denoted by ACS(NEAR0PT) and defined as 

where HnOP' is the cover as computed by the NEAROPT algorithm (lat- 
er on the ACS(.) metric will also be used for other decoupling heuris- 
tics). As above, we use F = 25 and U = 1 for the fixed respectively 
variable cost of capacity from the underlying QoS system and draw the 
capacity demands hi of the overlaid QoS system from a uniform ran- 
dom distribution over [I, 101. For the step length li of the generated 
CDCs, we use 3 different scenarios, called F, M, and S, for which li is 
drawn from [I, 31, [I, 61 and [I,  101. This corresponds to fast, medium, 
and slow fluctuations of the CDC. For all scenanos, we repeat the sim- 
ulations 100 times. The sample means and standard deviations of the 
ACSWEAROPT), yACS and crACS , and the average number of ste s 
for the covers produced by OPT and NEAROPT, nopT and nn"~o'T 
are given in Table 2. 

Table 2: ACS(NEAR0PT) for different scenarios. 

From these experiments, it can be Seen that NEAROPT performs very 
well if the CDC is fluctuating very fast, and behaves worse if the fluc- 
tuations become slower, though still doing pretty well. This is due to 
the fact that for fast fluctuations as in F the problem actually becomes 
simpler because it rarely makes sense to change the capacity level as it 
is expensive compared to the time period for which the fixed setup 
costs can be amortized. Furthermore, it can be noticed that NEAROPT 
has a tendency to change capacity levels too often for all scenarios. Ac- 
tually, when taking a closer look at the covers produced by NEAROPT 
and OPT, it was observed that NEAROPT often did not prolong capac- 
ity levels for peaks long enough. That often produced situations as de- 
picted in Fiyre 7 (indicated by an X), where a small prolongation to 
the lefl or right from a peak would have yielded the optimum behavior 
(Figure 7 is one particular simulation outcome of type scenario S). This 
observation led to a simple improvement technique for the cover com- 
puted by NEAROPT: try to prolong each peak of RnOP1 up to K steps 
(of the CDC) to the left and to the right and see if an improvement can 
be achieved. We call this improvement technique K-REPAIR and the 
combination of NEAROPT and K-REPAIR is denoted as NEAROPT- 
K. Of course, K-repair is an O(n) algorithm for a fixed K and as 
NEAROPT and K-repair are performed sequentially, NEAROPT-K's 
time complexity is still O(n). 
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Figure 7: Covers computed by OPT and NEAROPT. 

To investigate NEAROPT-K's potential and to see how different 
values for K perform, another set of simulations with the same param- 
eters as above has been performed. The resulting means of the 
achieved cost saving for different values of K,  denoted by y ACS(K) i n  

the different scenarios are given in Table 3 (note that NEAROPT-0 is 
equal to NEAROPT). 

Table 3: ACS(NEAR0PT-K) for different scenarios. 

It can be Seen that the use of K-repair actually pays off, especially for 
scenario S. The experiments also exhibit that small values of K, e.g., 3 
or 4, are performing well. Considerably lager values for K, e.g., 10, do 
not achieve better ACS values. This is, of course, beneficial with re- 
spect to the efficiency of NEAROPT-K. 

In conclusion, the experiments indicate that NEAROPT-K with 
small values for K is a good approximation technique for finding near- 
optimal covers of a known CDC. It is very fast as its time complexity 
is linear in the number of steps of a CDC (for the rather mall CDCs in 
the simulations above it could be computed in the order of psecs on a 
400-MHz Pentium-I1 processor). So, it can serve as substitute for the 
optimum calculation within the ODAH scheme if larger time windows 
of adaptation are to be used than the exact technique for determination 
of the cost-minimal cover can accommodate. 

Scenario F 
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5 SIMPLE HEURISTIC FOR DECOUPLINC - 
THRESHOLDED DEPOT EXCESS 

So far, it has been investigated how to compute covers under certainty 
about the CDC that is tobe covered, yet the decoupling problem needs 
to compute covers under uncertainty. In this section, a very simple, yet 
reasonable heuristic is introduced that deals with the problem under 
uncertainty at each single step in time. It is called thresholded depot 
excess (TDE) as it ensures that the capacity depot held for decoupling 
is never above a certain threshold. 

Note that TDE is to be regarded as an illustrative example for how 
pararnetrized heuristics can be integrated into the ODAH scherne and 
how they can be improved by this integration. There are certainly 

Scenario M 
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"smarter" heuristics than TDE. However, the emphasis is on investi- 
gating what results can be achieved by adaptation of a simple heuristic 
like TDE (see Section 6). 

The exact working of the TDE algorithm is given in Figure 8. A slot- 

TDEit, alpha) / /  R is t h e  CDC and alpha is the  
/ /  t h e  r e l a t i v e  th reshold  parameter 

i£ iR[t l  c alphagDft-11 I I Rftl  > D[t-11 i 
D[tl  = R l t )  

D[t1 = D[t-11 

Figure 8: TDE algorithm. 

ted time is assumed for TDE and the algorithm is applied in every time 
slot. If the CDC rises above the current capacity depot, i.e., D(t-I) < 
R(t), this change is always followed (assuming that there is enough ca- 
pacity at the underlying QoS system). Whenever the CDC takes a step 
downward, i.e., if R(!) < R(t-I), TDE checks whether the step is smaller 
than a certain fnction a E [O,l] of the old level of the capacity depot 
(D(!-1)) and if that is the case, TDE follows this step. 

An obvious refinement of TDE could be to always leave a certain 
safety margin between the depot level and the CDC when taking a step 
downward. Another would be to integrate some memory about past 
steps into the decision to follow a step or not, which would be particu- 
larly suited to non-stationary CDCs. However, as noted above, here we 
do not Want to pursue such refinements any further but stay with the 
simple TDE as it is. Despite its simplicity, TDE does some reasonable 
things: It does not increase the capacity depot if there is no need, which 
is correct since for time-invariant setup costs, as we assume here, there 
is no reason to increase a depot without absolute necessity. Further- 
more, i t  gives downward steps a higher probability if the depot is com- 
parably high to the average level of the CDC. This is intuitively the 
right thing to do since for high levels of the depot there are higher 
chances of wasting capacity and consequently incurring higher costs. 
Of course, the value of parameter a is crucial for the success of TDE. 
If a is set too high, then TDE is too "nervous", and will produce too 
many changes in the level of the depot and if it is Set too low, TDE is 
too "lazy", and will waste a lot of capacity. 

Again, simulations are used to evaluate the potential of TDE for de- 
coupling of QoS systems that operate on different time scales. Yet, this 
time an attempt is made to use more realistic and significantly longer 
CDCs. The CDCs are produced by simulating individual requests with 
poisson amval and exponential holding times. They are thus based on 
markovian models as known from teletraffic theory. The capacity de- 
mand for each individual request is still drawn from random distribu- 
tions as for this quantity there are no known statistical models. In order 
to assess the covers generated sequentially by TDE, we also apply 
NEAROPT-4 to the CDCs in an off-line manner once these are known 
(to use OPT as a reference value is computationally infeasible for the 
large CDCs we used). The cover produced by NEAROPT-4 is then 
used to get an approximate ACS for TDE's covers that is, of course, a 
little bit higher than the correct ACS value. The aggregated results of 
100 simulations are shown in Table 4. 

ACS Here pa and oUCS denote again the sarnple means and standard 
deviations from the simulations for different values of a. n TDE. a und 
nNoPT4 are the average number of steps produced by TDE (with pa- 
rameter a )  respectively NEAROPT-4. For each simulation 5000 indi- 
vidual requests were generated with poisson arrival (X = 6) and 
capacity demands drawn randomly from the uniform distribution over 
[1,30].* For the lifetime of a request, we simulated three different sce- 
narios with short-, medium and long-lived flows by drawing from an 
exponential distribution with parameter p = 40, 100 and 400. In order 
to model very different time scales for the two QoS systems, we set 
F = 2000 and U = I for all simulations (note that under these settings 

. Thcsc paramctcr scitings were iaken arbiirarily duc io a lack o f  cmpirical 
data. howevcr. simulations indicared [hat ilic rcsults arc not vcry sensitive to 
thcsc paramctcrs. 

Table 4: ACS(TDE) for requests with different lifetimes. 

the absolute cost saving was extremely high (one order of magnitude 
on average)). 

It can be seen from the results that for different lifetimes of requests 
TDE performs best with different values of a. For short-lived flows, i t  
is good to set a rather low, for medium-lived requests i t  is good to set 
it at an intermediate level and for long-lived requests, it is best chosen 
very high. Furthermore, it can be perceived that wrong values for cr can 
have a devastating effect for the performance of TDE. For example, in 
the short-lived requests case setting a = 0.9 only yields about 20% of 
the cost saving potential. So, TDE cannot be considered to deliver a ro- 
bust behavior if the lifetimes of requests vary. It is interesting to note 
that for all kinds of flows the value of a that yields the best results for 
TDE exhibits for the ratio of steps for its cover and for the cover of 
NEAROPT-4 values fairly close to 2 while the worse a produce ratios 
far apart from this. In particular, a ratio close to one as is the case for 
TDE with a = 0.5 and long-lived requests did not achieve a good re- 
sult. The likely reason for this is that TDE cannot cope with the same 
number of steps as NEAROPT-4 to produce a good cover. 

The overall result from these discussions is, not surprisingly, that 
TDE alone cannot yarantee to deliver good covers for decoupling 
QoS systems with different time scales but an integration in the ODAH 
scheme to self-control the setting of a instead of setting it manually to 
some arbitrary value may be a promising direction. 

6 TDE IN THE ODAH SCHEME 
In this section, the integration of TDE into the ODAH scheme is de- 
scribed and the resulting heuristic, called ODAH-TDE, is evaluated 
again by simulations. This integration is motivated by the previous dis- 
cussions on TDE's sensitivity to the parameter a. 

6.1 Embedding TDE in ODAH 
As discussed in Section 3, there are two modes of adaptation in the 
ODAH scheme: adaptation in performance space and in action space. 
In principle, both kinds of adaptation are possible for ODAH-TDE. In 
both cases, we use NEAROPT-K instead of OPT if the time window of 
adaptation is too large for OPT to compute the minimal cover in a rea- 
sonable time (which is the case in most circumstances). 

The adaptation in performance space works by simply adjusting 
TDE's parameter a such that 

is minimized. This minimization is done by a simple recursive gnd 
search [ I  11 through the interval [0,1] for parameter a as there is no 



simple relationship between a and C for a more intelligent search to ex- 
ploit. 

For the adaptation in action space, it was decided to use the number 
of steps as basis for the similanty relation between covers, so that in 
this case 

is to be minimized. R F  is a relaxation factor that compensates for the 
obsewation that TDE cannot produce good covers with the same 
number of steps as OPT respectively NEAROPT-K. In the simulations 
below, we always set RF = 2 since experiments showed good results 
for that value (see also Section 5 for a discussion of this). For the min- 
imization in this case we can use an interpolation search [ I  I] since a 

TDE. a . and n have a simple relationship: n 1s monotonically increasing 
in a. This is, of course, much more efficient than the recursive grid 
search for the adaptation in performance space mode. 

The adaptation parameters for both modes are more or less the same, 
so we discuss them together: 
Frequency of Adaptation. This parameter determines partially how 
expensive the technique is in terms of computational effo; because the 
computation of the optimal or even the near-optimal cover is certainly 
much more compute-intensive than the simple TDE algonthm on its 
own. So, if the frequency of adaptation is very high, e.g., every time 
period, ODAH-TDE can become a very expensive technique while lit- 
tle new data collected about the CDC may not change the adaptation 
process significantly and hence not justi5 the effort. On the other 
hand, if the adaptation frequency is too low, then ODAH-TDE may be 
too slow to react on changes in the CDC. Hence, a good trade-off be- 
tween computational effort and responsiveness to changes is the target 
here. 
Time Window of Adaptation. As well as the frequency of adapta- 
tion, this parameter is jointly responsible for the computational effort 
invested in the adaptation in ODAH as it controls how expensive i t  is 
to compute the "optimal" cover for a certain past period. Moreover, it 
controls how much past behavior is taken into account for the adapta- 
tion process. The larger the time window of adaptation the more past 
information is included. However, including too much "old" behavior 
is not necessarily helpful because recent behavior might be more rele- 
vant for the decision on future behavior. On the other hand, if not 
enough past behavior is captured, some important information from 
the past may be lost. For efficiency reasons of the ODAH-TDE algo- 
rithm it is, of course, beneficial to use smaller windows. 
Accuracy of Adaptation. This parameter deals with the exactness 
of each adaptation step, i.e., how thoroughly the parameter space for a 
is searched during the minimization problems solved at each adapta- 
tion step. Extreme accuracy should not be required since a "perfect" 
fitting to past behavior does not necessarily yield better results since 
ODAH-TDE is still only a heuristic (in particular as it is based on 
NEAROPT-K for larger K) .  Furthermore, less accuracy certainly im- 
proves the efficiency of ODAH-TDE. 
For ODAH-TDE, we use the number of steps of the CDC to be covered 
as units for the frequency as well as for the time window of adaptation. 
This means these parameters are not specified in absolute time but 
adapt themselves to the rate of changes of the offered CDC, i.e., adap- 
tation takes place oflen in times of many changes and less often in 
more quiet periods. That is a desirable behavior from our point of view. 

The accuracy of adaptation in ODAH-TDE is measured by the gran- 
ularity of the parameter space for a at which the minimization proce- 
dures terminate to search any further (in case they do not succeed 
before). In all of the simulations of ODAH-TDE that are discussed in 
the next subsection, this accuracy was set to I o - ~ .  

6.2 Simulations for ODAH-TDE 
Using again the simulation environment for QoS Systems with differ- 
ent time scales, this subsection evaluates ODAH-TDE's performance 
for the on-line sequential determination of a cover for a CDC. The 

same kind of CDCs generated from different types of requests as in 
Section 5 is used in order to allow for a comparison of ODAH-TDE 
with the values for plain TDE given in Table 4. Again, NEAROPT-4 is 
applied to the off-line under certainty about the generated 
CDC in order to be able to compute the approximate ACS metric for 
ODAH-TDE. 

Although, we have experimented with both adaptation modes we 
concentrate on adaptation in action space for the simulations here, 
since both modes performed very similar and, as we aryed in the pre- 
ceding section, adaptation in action space is more efficient due to the 
less compute-intensive adaptation step. 

The simulations are targeted at evaluating different adaptation pa- 
rameters for ODAH-TDE, in particular different time windows and ad- 
aptation frequencies. To limit the possible number of alternatives for 
the adaptation Parameters, it has been decided to investigate ODAH- 
TDE algorithms for cases where the time window of adaptation equals 
the reciprocal value of the frequency of adaptation. In these cases, all 
past information about the CDC is used exactly once for an ariapfation 
epoch as we call it. So, at the end of an adaptation epoch, the adapta- 
tion step is camed out using only the data collected about the CDC 
within this epoch. In the simulations ODAH-TDE works with adapta- 
tion epochs of 20, 100,200,500, and 1000. For an adaptation epoch of 
20 ODAH-TDE uses OPT to compute the cost-optimal cover against 
which the adaptation is performed whereas for the larger epochs 
NEAROPT-4 is applied since OPT is computationally infeasible for 
these. In all cases ODAH-TDE starts with a = 0.5, and adapts itself in 
the course of time. 

As in all preceding experiments, 100 simulations each for the differ- 
ent adaptation epochs and requests with different lifetimes have been 
performed, the results of which are given in Table 5. 

Table 5: ACS(0DAH-TDE) for requests with different lifetimes. 

Here, and o;? denote the sample rnean and standard devia- 
tion of an approximate ACS (based on NEAROPT-4) in the simula- 
tions for different adaptation epochs AE E (20, 100,200,500, 1000). 

As the results indicate, ODAH-TDE generally achieves a good and 
robust performance over all types of requests especially for medium- 
size adaptation epochs. For the smallest adaptation epoch of 20, the 
performance is considerably worse although it is the only one based on 
OPT. However, the adaptation epoch apparently is too short so that the 
adaptation is too sensitive to short-term random effects. This empha- 
sizes the necessity of an approximation technique like NEAROPT-K 



as a substitute for OPT in ODAH-TDE since OPT is computationally 
infeasible for suitable adaptation epoch sizes. 

The slight deterioration for large adaptation epochs may be ex- 
plained by the rather slow responsiveness of ODAH-TDE for these. 
So, if an unfortunate adaptation of a is done, it has a long lasting im- 
pact on the performance of ODAH-TDE as the next adaptation step is 
far away. 

Anyway, in conclusion the simulation results give evidence that 
ODAH represents a robust scheme for heuristically dealing with the 
sequential decoupling problem under uncertainty about a CDC. In par- 
ticular, it should work well even if flow characteristics as the lifetime 
of requests change since it shows good performance for all types of re- 
quests in the simulations. 

7 RELATED WORK 
The problem of different time-scales of  network QoS systems has been 
largely neglected in the literature so far. There is some work that deals 
with RSVP/intServ over DiffServ, probably the most important sce- 
nario for decoupling to be applied. For instance, in the IETF, there is 
work within the lSSLL working group that gives a very comprehensive 
framework for RSVP/intServ over DiffServ and the issues involved 
[12]. However, how to deal with different time scales of QoS systems 
based on the two architectures is not considered. In fact, a scenario is 
depicted in which both systems are assumed to operate on the Same 
time scale, i.e., each RSVP request results in a query to the BB. From 
our point of view, this is not desirable as it would destroy the scalabil- 
ity of the DiffServlBB approach. In [13], the design of an IntServl 
DiffServ edge device is described. But again the focus of this work is 
more on the interworking of mechanisms like mapping of lntServ 
classes onto DSCPs and so on whereas decoupling is not studied. A 
last example in that area of work is [I41 which gives very detailed 
treatment of the protocol between an Intse~/DiffServ edge device and 
a BB based on the COPS protocol. It is, however, not the target of that 
work to treat strategic decisions of an edge device as represented by 
decoupling. 

One piece of work that explicitly deals with different time scales of 
access and backbone networks on the control paths is [15]. Here a 
backbone QoS signalling is proposed which integrales mechanisms in 
order to dampen the faster time scales of access networks. This mech- 
anism is based on hysteresis and quantization for traffic aggregates 
which are based on sink trees towards destinations. The applied algo- 
rithm is to always reserve capacity in multiples of a certain quantity Q. 
Whenever the reserved capacity level of k  x Q is no more sufficient, it 
is increased to ( k  + I )  X Q and the new quantum is only relinquished 
when the reserved capacity falls below ( k  - I ) X Q . This is very com- 
parable to the simple strategy of the TDE algorithm, and uses no adap- 
tation. Moreover, we think that the integration of such a mechanism 
into a signalling protocol represents an unfortunate mixing of strategy 
and mechanisms since decisions on decoupling of time scales should 
be subject to the strategy of an edge device irrespective of the utilized 
signalling protocol. 

Interestingly, the decoupling problem may also be applied to the sit- 
uation where a QoS system supporting dynamic QoS is mapped onto a 
system that only allows for static QoS as is the case when mapping an 
RSVPIlntServ- onto an ATM-based QoS system. A further instance of 
the decoupling problem is the computation of renegotiation schedules 
for a non-stationary variable rate source which uses a renegotiated 
service class as, e.g., described in [16]. The algorithms presented in 
[I61 are pretty similar to the ones derived in this paper, especially for 
the case where the source's rate process is known beforehand. Howev- 
er, the algorithm proposed for interactive sources, which is comparable 
to the covering under uncertainty about the CDC, is not based on adap- 
tation directed via the optimum Cover calculation. 

This paper has dealt with a largely neglected problem when interwork- 
ing heterogeneous QoS systems - the accommodation of different time 
scales for QoS systems by decoupling. The decoupling problem has 
been formalized in order to analyze its complexity and derive solution 
approaches. These approaches are based on the ODAH adaptation 
framework which we devised for that purpose. The ODAH framework 
makes use of past knowledge about capacity demands by adapting par- 
ametrized heuristics with the aid of optimal techniques which, howev- 
er, require perfect knowledge about CDCs. Throughout this paper, we 
have used simulations to verifi the performance of our solution ap- 
proaches to the decoupling problem. In particular, it has been demon- 
strated that a very simple heuristic like TDE could be integrated into 
the ODAH scheme resulting in a very robust and still computationally 
feasible solution to the decoupling problem at an edge device between 
a fast and a slow time scale QoS system. While the heuristics devel- 
oped in this paper may be enhanced by introducing more empirical 
data into the heuristics (once this data is available), we believe that an 
adaptive scheme as presented here (based on (near-) optimal decisions 
for the past) may continue to play an important role for the decoiipling 
problem. 
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