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Abstract
Providing quality of service (QoS) in large-scale networks like the
Internet inherently needs to deal with heterogeneous network QoS
systems. Therefore, the interworking between different network
QoS systems is of high importance. In this paper, the interworking
with respect to a basic characteristic of network QoS systems, the
time scale of the system, is under investigation. The time scale of a
network QoS system is its speed of reaction to individual requests
for differentiated treatment of units of service. A slow time scale
system will prefer requests to arrive with a low frequency and persist
unaltered for a substantial period of time while a fast one is able to
support much higher arrival rates of requests and is thus more ame-
nable for short-lived units of service. Obviously, when overlaying a
slow time scale QoS system over a faster one, there is no problem.
However, and that is a more likely case, for the overlay of a fast time
scale system on a slow one, there is a mismatch to be mediated at the
edge between the two. The technique that is applied at an edge de-
vice for this mediation is calleddecouplingof time scales. Decou-
pling can also be viewed as aggregation of requests in time in
contrast to spatial aggregation on the data path. In the paper we de-
velop an adaptive heuristic scheme to deal with decoupling and eval-
uate this scheme by extensive simulations.

Keywords: Network QoS, Edge Device,Time Scales.

1 INTRODUCTION

1.1 Motivation
Different time scales of QoS systems may arise due to differ-
ent QoS architectures like RSVP/IntServ (Resource reSerVa-
tion Protocol/ Integrated Services) [1], DiffServ
(Differentiated Services) [2], or ATM (Asynchronous trans-
fer Mode) [3] being used but may also be due to different
QoS strategies followed by providers even if they employ the
same QoS architecture. Choosing different QoS architectures
as well as different strategies results from serving different
needs, e.g., for an access and backbone provider. An access
provider that has a comparatively moderate load and directly
connects to end-systems may favor a fast time scale system
responding immediately to the end-systems requests. A back-
bone provider that connects access providers respectively of-
fers transit services is generally faced with a drastically
higher load of individual transmissions, so that reaction on
the time scale of individual requests is usually not possible
and a slower time scale system needs to be enforced.

When different time scales are in operation in heterogene-
ous network QoS systems, it is simply not possible to query
the underlying QoS system each time an overlaid system is
altering its state. Here, the system operating on a faster time
scale needs to be smoothed when overlaying it onto a system

that operates only on slow time scales. A realistic configur
tion for access and backbone providers may be, e.g., that
cess providers use RSVP/IntServ to suit their custome
needs while a backbone provider uses DiffServ with a Ban
width Broker (DiffServ/BB) to allow for some dynamics bu
on a slower time scale. This scenario is shown in Figure 1

Here it is also very obvious why a BB is generally not ab
to react to individual RSVP requests that are arriving at ed
devices between access and backbone provider. Here a
coupling of the different time scales is necessary. The dec
pling can be achieved by building “depots” of capacity whic
stabilize the fluctuations of the “nervous” demand curve fo
backbone capacity by individual requests. This scheme
lows to trade off resource efficiency for a more stable an
long-term capacity demand presented to the BB.

Note that the slow time scale of an underlying QoS syste
may not express itself in being unable to process requests
QoS at short time scales but by the fact that significant set
costs are incurred for QoS requests between different adm
istrative domains. Such a scheme of QoS tariffing is an i
stance where a QoS strategy of a network provider restri
the capabilities of the employed QoS architecture. A possib
reason for this may be, e.g., that the charging and account
system is not able to deal with a large number of individu
requests since this involves a lot of operational costs.

1.2 Outline
In the next section, a closer and more formal look at the g
neric problem of decoupling time scales for heterogeneo
network QoS systems is undertaken. Then solution tec
niques based on a heuristic adaptation scheme are dev
and evaluated by simulations.

BB

RSVP/IntServ
Access Networks

DiffServ Domain

Control

IntServ/DiffServ
Edge Device

Invokation of BB
for global admission control

Figure 1: Combined local and global admission control.
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2 DECOUPLING TIME SCALES - THE PROBLEM

AND ITS COMPLEXITY

2.1 Problem Statement
In order to assess the complexity of the decoupling problem,
we first try to state the problem in a more formal manner. We
model capacity as one-dimensional here, e.g., a rate resource
that may be requested from a BB for a certain path across a
DiffServ domain. This is certainly simplifying as more ca-
pacity dimensions like, e.g., a buffer resource may be in-
volved. However, the resulting problem can be generalized
albeit at the cost of a higher complexity (see [4] for a discus-
sion of this). Hence, we can model thecapacity demand
curve R for the overlaid QoS system as a step function

where and

(1)

So,nR is the number of steps here; , and are the
height, the start and the end of stepi. Furthermore, we denote

 as the length of stepi.
From the capacity demand curve (CDC) for the overlaid

system, the CDC of the underlying system is derived. A nec-
essary condition on the CDC of the underlying QoS system
is that itcoversthe CDC of the overlaid system. A cover of a
CDC R is simply defined to be a CDCR for which

. An illustrative example of a CDC and a cov-
er for it is shown in Figure 2.

For the underlying QoS system, it is assumed that a slow
time scale is enforced by the introduction of setup costs for
requests from the overlaid system. This may be, in fact, mon-
etary costs but could also be virtual resource costs depending
upon whether the edge device belongs to the overlaid or un-
derlying system. An alternative for enforcing a slow time-
scale would be to only allow for a certain number of setups
in a given period of time. The latter, however, is less flexible
and can usually be achieved by choosing setup costs ade-
quately (see [4] for details).

The cost of a CDCR for an underlying QoS system in a
given time period [t0, t1] is defined as

(2)

whereF are fixed setup costs involved for changing the re-
quested capacity level andU are variable costs per capacity

unit. We assume these parameters do not change in the p
ning period, although again this is easy to generalize [4].

Under these prerequisites, decoupling of QoS systems w
different time scales can be formulated as aminimal-cost
CDC covering problem, i.e.:

Find a CDCR for R such thatc(R|F,U) is minimal.
The cost-minimal cover of a CDC R is denoted byRopt.

2.2 Some Observations about Complexity
The possible set of covers for a CDC is, of course, unlimit
without further restrictions being made. One observation
however, thatRopt always is atight cover. A coverC of a
CDC R is called tight iff

, (3)

i.e., the step heights of the cover are a subset of the s
heights of the CDC that is to be covered. The simple fact th
Ropt is necessarily tight can be seen if one assumes that i
not. In that case it would be possible to lowerRopt for a step
where it is not tight to the nearest and it would still be
cover ofR but with lower costs (at least ifU > 0), which, of
course, contradicts the cost-minimality. The space of tig
covers is restricted as the following theorem states.
Theorem 1:The state space complexity for tight covers of
CDC withn steps isO(2n-1).

Proof: See [5].
So, we see that while tight covers are limiting the space
possible covers, there is still a huge search space in which
cost-minimal cover, for which we are naturally striving, ma
be located.

All of the discussions so far have silently assumed that t
search of the cost-minimal cover of a CDC could take pla
under certainty about this CDC. That is, of course, not t
case in general. It would be the case if the overlaid syste
used only advance reservations (see, e.g., [6] or [7] for t
concept). However, for immediate requests which we are
cussing on here, the CDC that is to be covered is not kno
beforehand and for every step of the CDC, a decision has
be made whether the cover should follow this step or not.
fact, due to little experience with real network QoS system
there is not even an established theory for statistical mod
on how a CDC could look like, although one could argue th
some of the models known from telephony could be applic
ble to some parameters of the CDC. The parameters in qu
tion of the CDC are
• the step length , which is a product of the interarriva

times of the individual requests at an edge device and
duration of such requests, and

• the step height , which corresponds to the aggreg
capacity required to serve the requests.

Especially, the latter parameter is extremely difficult to mod
el as there is no practical experience with it. It depends up
which applications are actually using reservations and h
widely resource requirements are differing for actual rese
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Figure 2: Example CDC with a cover.
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vation-based applications. The first parameter, the step
length, might be modeled by markovian models known from
teletraffic theory [8] as the characteristics might be similar
(at least as long as the individual requests correspond to per-
sonal communications). However, also for this parameter,
there is a certain degree of uncertainty whether traditional
models fit.

3 ADAPTATION SCHEME FOR DECOUPLING
From the observations of the preceding section, the need for
adaptive heuristic techniques when tackling the decoupling
problem under uncertainty about the CDC can be derived.
The use of heuristic techniques is necessary since the in-
volved problem is fairly complex even under certainty as dis-
cussed in the preceding section. Furthermore, as statistical
models for CDCs are generally not available, we argue for
the use of adaptation as a way to learn the statistical proper-
ties of the system in an on-line fashion. This is also highly
useful in an environment where there are unpredictable, but
rather long-term fluctuations in the demand for capacity. In
general, the adaptation to behavior that would have been
“good” in the past is the best a heuristic technique can do un-
der complete uncertainty about a CDC.

The question what is “good” behavior can be assessed by
comparing the outcome of an on-line heuristic with the re-
sults of applying a technique to solve the cost-minimal cov-
ering problem for the known CDC from the past. In the next
section, such a technique as well as an inexpensive approxi-
mation is introduced. Hence, let us assume that we have a
technique to solve the cost-minimal covering problem for the
CDC of past system behavior. If we further on assume that a
parametrized heuristich(θ) is applied to the on-line cost-
minimal CDC covering problem, there are essentially two
different modes of adaptation that can be directed by good
behavior as achieved by the cost-minimal cover of the past
CDC:
Adaptation in Action Space. In this mode, the heuristic’s
parameter (vector)θ is adapted such that the behavior of the
CDC cover produced by applying the heuristic deviates as
little as possible from the optimal cover with respect to some
characteristic as, e.g., the number of steps of the optimal cov-
ers. More formally, if we define the similarity characteristic
of two coversR andS ass(R,S) (with higher values ofs(.)
representing higher similarity), this means the adaptation
problem is

max.s(H(θ), O)
whereH(θ) andO represent the covers produced by applying
heuristich(θ) and the optimum technique.
Adaptation in Performance Space. In this mode the heu-
ristics parameter (vector)θ is adapted such that the cost of
the cover produced by applying the heuristic deviates as little
as possible from the optimal cover’s cost. Again, this can be
stated formally as

min. c(H(θ)) - c(O)

Discussions on which mode is better suited to our decoupl
problem are postponed until Section 6 when the individu
building blocks of the scheme like the employed heurist
and the technique for computing optimal covers have be
investigated in more detail.

Both adaptation modes have three parameters with whic
flexible trade-off between adaptation complexity and th
cost performance of the optimum-directed adaptation can
achieved:
1. The frequency of adaptationdetermines how often the

adaptation of the heuristics parameter is carried out.
2. Thetime window of adaptationdetermines the length of

the past period that is taken into account for the adap
tion.

3. Theaccuracy of adaptationdetermines how thoroughly
the parameter space is searched during the optimizat
problem for the adaptation.

It might seem that the adaptation in performance space d
not depend on the optimum cover to be computed as it is o
a constant in the objective function. However, if one tak
into account the accuracy of adaptation parameters, it is
vious that without the notion of a target cost to strive for th
heuristic, this parameter cannot be set reasonably. Thus
both modes of adaptation the optimal cover for the past CD
directs the adaptation. Therefore the whole scheme is ca
ODAH (Optimum-Directed Adaptive Heuristic).

4 SEARCHING FOR THE MINIMAL COVER

UNDER CERTAINTY
As the ODAH scheme depends heavily on being able to co
pute the cost-minimal cover for past CDCs, the problem
finding such a cover for a CDC under certainty is investiga
ed in this section. First, an exhaustive search technique to
terministically find the cost-minimal cover is presented. Th
approach, however, is computationally very expensive f
CDCs with a considerable number of steps. Therefore an
expensive approximation technique based on the optimal
gorithm is devised.

4.1 Finding the Optimal Cover
Simply searching the space of tight covers is prohibitive

expensive as Theorem 1 states. An observation that can
made forRopt is that for the peak step of the regarded CDCR
it takes the same value for the period of this step, i.e.,

Ropt(t) = R(t) for  with

(4)

Furthermore, it applies that the shapes of the right and l
side from the peak, i.e., and do not influ
ence each other. So, the question forRopt is how far to pro-
long the peak step to the left and to the right. The
observations can be combined into a divide-and-conqu
strategy to recursively search the space of strict covers by
algorithm given in Figure 3, which is denoted OPT.
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OPT finds the cost-minimal cover of a CDC under all cir-
cumstances, yet it is less expensive than a total enumeration
of the space of tight covers by using the observation from (4)
and by pruning the search space using a lower bound on the
costs for further prolongations.

OPT has been implemented in a discrete-event simulation
environment which simulates the overlaying of a fast time
scale reservation system onto a slow one. The environment
allows to generate CDCs with different statistical properties
and to apply decoupling techniques on these CDCs in an on-
line as well as an off-line manner. Using this simulation en-
vironment, OPT has been tested on a number of CDCs in or-
der to obtain a feeling how complex it would be to compute
a cost-minimal cover. An example CDC and the cost-mini-
mal cover computed by OPT is given in Figure 4.

For the simulated CDCR, we have had the following (arbi-
trary) settings:nR = 40; and drawn
from uniform random distributions;F = 25 andU = 1. This
yields a cost ofc(R) = 1809. Under these settings the cost-
minimal coverO as computed by OPT has the following
characteristicsnO = 6 andc(O) = 1353. Hence, had the opti-

mal cover been used for decoupling the two QoS systems
simulated here, about 25% costs could have been saved.
saving in cost, however, is, of course, totally dependent
the cost parametersF andU. If F is very high compared toU,
then the cost savings can be considerably higher.

Larger values fornR are generally not possible as evennR =
40 already took up to a few seconds on average for the co
putations from OPT (on a 400 MHz Pentium-II processor
That OPT is increasingly expensive to compute can be se
when observing that the average size of the space of cov
SO(n) searched by OPT for a CDC withn steps is recursively
defined as (corresponding to the operation of the algorith

(5)

A comparison ofSO(n) with ST(n), the size of the space of
tight covers, for some example values ofn is given in
Table 1. This is intended to give an illustration of how muc
is saved by OPT when compared to a total enumeration
tight covers. At the same time, of course, it also illustrat

that evenSO(n) is too large to be searched exhaustively (a
though the pruning is quite effective on average so that on
a small part of the search space needs to be traversed).
while the search space is diminished by the recursive ope
tion of OPT, it is still too large if the number of steps of th
CDC is becoming larger.

An alternative formulation of the problem as an intege
program is given in [4]. This opens up a standard set of op
ations research techniques to deal with the problem, how
er, all of these are computationally very expensive in th
worst-case. That means, even if they produce the cost-o
mal cover in a reasonable time on average, the execut
times might vary considerably. This is something the ODA
scheme cannot deal with as it requires the optimum to
computed fast for recent past behavior to be able to ad
heuristics best. Therefore, we go a different way and try
find a good approximation of OPT that is computational
inexpensive.

4.2 Finding Near-Optimal Covers
In the ODAH scheme the optimum is required to adapt p
rameters from heuristics to “good” past behavior. In the pr
ceding section, it has been shown that the determination
the optimum for a past CDC is very compute-intensive if th
CDC becomes too large in terms of steps. That means if
time window of adaptation becomes moderately large a
that is generally desirable in order to take more past behav

OPT(R, a, b) // R is the CDC, a and b are the start and
// end times for which to find an optimal cover

if (a != b)
find k // as defined in Equation (4)
for l = k-1 downto a

prolong R to the left till step l
leftCost = OPT(R, a, e[l]) + cost for prolongation
if (leftCost < minLeftCost)

minLeftCost = leftCost
left = l

LB = sum of variable costs for steps from a to l
+ cost for prolongation

if (LB > minLeftCost)
break

for r = k+1 to b
prolong R to the right till step l
rightCost = OPT(R, a, e[l]) + cost for prolongation
if (rightCost < minRightCost)

minRightCost = rightCost
right = r

LB = sum of variable costs for steps from r to b
+ cost for prolongation

if (LB > minRightCost)
break

return minLeftCost + minRightCost +
(s[right]-e[left])*h[k]*U + F

else
return 0;

Figure 3: Algorithm to find cost-minimal cover of a CDC (OPT).
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Figure 4: Cost-minimal cover computed by OPT.
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Table 1: Growth of search spaces.

n 10 50 100 200 500 1000

SO(n) 85.6 1.61e+6 3.78e+9 2.75e+14 1.72e+24 2.43e+35

ST(n) 512 1.13e+15 1.27e+30 1.61e+60 3.27e+150 1.07e+30
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into account, then it is more suitable to compute an approxi-
mation of the cost-minimal cover for the adaptation of the
heuristic instead of the absolute optimum.

So, in this section, an approximation approach to compute
the cost-minimal cover is introduced. It is based on the strat-
egy followed by OPT but instead of trying all prolongations
from a peak step for a certain part of the regarded CDC, it
only compares the cost for prolonging the level of the peak
until the next peak (in both directions certainly) with the sum
of a further setup costF and the cost of the subsection be-
tween the peaks being calculated by this strategy itself. We
call this algorithm NEAROPT. It uses the notion of OPT to
cut the problem into halves wherever possible and always
tries only two different choices for prolongation. To compare
exactly those two cases for each step of the algorithm is mo-
tivated by observations of the covers that were produced by
OPT and which mostly used just either of these extremes.
The detailed working of NEAROPT is given in Figure 5.

The following theorem shows that NEAROPT is indeed
substantially less expensive than OPT and should be easy to
compute for all reasonable time windows of adaptation.
Theorem 2:NEAROPT has a time complexity ofO(n).

Proof: See [5].
So, NEAROPT has linear time complexity and is thus inex-
pensive to compute. The question certainly is how good the
results are that can be achieved with NEAROPT. Therefore,
a simulative comparison of NEAROPT with OPT is done. As
a metric for this comparison, we use the achieved cost sav-
ing, denoted by ACS(NEAROPT) and defined as

(6)

whereRnopt is the cover as computed by the NEAROPT algo-
rithm (later on the ACS(.) metric will also be used for other
decoupling heuristics). As above, we useF = 25 andU = 1
for the fixed respectively variable cost of capacity from the
underlying QoS system and draw the capacity demandshi of
the overlaid QoS system from a uniform random distribution
over [1, 10]. For the step lengthli of the generated CDCs, we
use 3 different scenarios, called F, M, and S, for whichli is

drawn from [1, 3], [1, 6] and [1, 10]. This corresponds to fas
medium, and slow fluctuations of the CDC. For all scenario
we repeat the simulations 100 times. The sample means
standard deviations of the ACS(NEAROPT), an

, and the average number of steps for the covers p
duced by OPT and NEAROPT,nOPT andnNEAROPTare given
in Table 2.

From these experiments, it can be seen that NEAROPT p
forms very well if the CDC is fluctuating very fast, and be
haves worse if the fluctuations become slower, though s
doing pretty well. This is due to the fact that for fast fluctua
tions as in F the problem actually becomes simpler becaus
rarely makes sense to change the capacity level as it is exp
sive compared to the time period for which the fixed setu
costs can be amortized. Furthermore, it can be noticed t
NEAROPT has a tendency to change capacity levels too
ten for all scenarios. Actually, when taking a closer look
the covers produced by NEAROPT and OPT, it was o
served that NEAROPT often did not prolong capacity leve
for peaks long enough. That often produced situations as
picted in Figure 7 (indicated by an X), where a small prolon
gation to the left or right from a peak would have yielded th
optimum behavior (Figure 7 is one particular simulation ou
come of type scenario S). This observation led to a simp
improvement technique for the cover computed b
NEAROPT: try to prolong each peak ofRnopt up to K steps
(of the CDC) to the left and to the right and see if an im
provement can be achieved. We call this improvement tec
nique K-REPAIR and the combination of NEAROPT and K
REPAIR is denoted as NEAROPT-K. Of course, K-repair

NEAROPT(R, a, b) // R is the CDC, a and b are the start and
// end times for which to find an optimal cover

if (a != b)
find k // as defined in Equation (4)
leftCost = NEAROPT(R, a, e[k-1]) + F
if (leftCost < (e[k-1]-a)*h[k]*U)

prolong R to the left till a
else

leftCost = (e[k-1]-a)*h[k]*U
rightCost = NEAROPT(R, s[k+1], b) + F
if (rightCost < (b-s[k+1])*h[k]*U)

prolong R to the right till b
else

rightCost = (b-s[k+1])*h[k]*U
return leftCost + rightCost + (s[k]-e[k])*h[k]*U + F

else
return 0;

Figure 5: NEAROPT algorithm.

ACS NEAROPT( ) c R( ) c R
nopt( )–

c R( ) c R
opt( )–

--------------------------------------= ∞– 1,[ ]∈

µACS

σACS

Table 2: ACS(NEAROPT) for different scenarios.

Scenario F Scenario M Scenario S

0.97 0.91 0.87

0.002 0.008 0.01

nOPT 3.4 6.1 12.6

nNEAROPT 3.7 8.3 15.1

µACS

σACS
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anO(n) algorithm for a fixedK and as NEAROPT and K-re-
pair are performed sequentially, NEAROPT-K’s time com-
plexity is still O(n).

To investigate NEAROPT-K’s potential and to see how
different values forK perform, another set of simulations
with the same parameters as above has been performed. The
resulting means of the achieved cost saving for different val-
ues ofK, denoted by , in the different scenarios are
given in Table 3 (note that NEAROPT-0 is equal to
NEAROPT).

It can be seen that the use of K-repair actually pays off, espe-
cially for scenario S. The experiments also exhibit that small
values ofK, e.g., 3 or 4, are performing well. Considerably
larger values forK, e.g., 10, do not achieve better ACS val-
ues. This is, of course, beneficial with respect to the efficien-
cy of NEAROPT-K.

In conclusion, the experiments indicate that NEAROPT-K
with small values forK is a good approximation technique
for finding near-optimal covers of a known CDC.

5 SIMPLE HEURISTIC FOR DECOUPLING -
THRESHOLDED DEPOT EXCESS

In this section, a very simple, yet reasonable heuristic is in-
troduced that deals with the problem under uncertainty at
each single step in time. It is called thresholded depot excess
(TDE) as it ensures that the capacity depot held for decou-
pling is never above a certain threshold.

Note that TDE is to be regarded as an illustrative example
for how parametrized heuristics can be integrated into the
ODAH scheme and how they can be improved by this inte-
gration. There are certainly “smarter” heuristics than TDE.
However, the emphasis is on investigating what results can
be achieved by adaptation of a simple heuristic like TDE (see
Section 6).

The exact working of the TDE algorithm is given in Figure
7. A slotted time is assumed for TDE and the algorithm is ap-
plied in every time slot. If the CDC rises above the current
capacity depot, i.e.,D(t-1) < R(t), this change is always fol-
lowed (assuming that there is enough capacity at the under-
lying QoS system). Whenever the CDC takes a step
downward, i.e., ifR(t) < R(t-1), TDE checks whether the step
is smaller than a certain fraction of the old level of

the capacity depot (D(t-1)) and if that is the case, TDE fol-
lows this step.

Again, simulations are used to evaluate the potential
TDE for decoupling of QoS systems that operate on differe
time scales. Yet, this time an attempt is made to use more
alistic and significantly longer CDCs. The CDCs are pro
duced by simulating individual requests with poisson arriv
and exponential holding times. They are thus based on ma
ovian models as known from teletraffic theory. The capaci
demand for each individual request is still drawn from ra
dom distributions as for this quantity there are no known s
tistical models. In order to assess the covers genera
sequentially by TDE, we also apply NEAROPT-4 to th
CDCs in an off-line manner once these are known (to u
OPT as a reference value is computationally infeasible
the large CDCs we used). The cover produced
NEAROPT-4 is then used to get an approximate ACS f
TDE’s covers that is, of course, a little bit higher than th
correct ACS value. The aggregated results of 100 simu
tions are shown in Table 4.

Here denotes again the sample means* from the si
ulations for different values ofα. and nNOPT4are the
average number of steps produced by TDE (with parame
α) respectively NEAROPT-4. For each simulation 5000 in
dividual requests were generated with poisson arrival (λ = 6)
and capacity demands drawn randomly from the uniform d
tribution over [1,30].† For the lifetime of a request, we sim
ulated three different scenarios with short-, medium a
long-lived flows by drawing from an exponential distribu
tion with parameterµ = 40, 100 and 400. In order to mode
very different time scales for the two QoS systems, we s
F = 2000 andU = 1 for all simulations (note that under thes
settings the absolute cost saving was extremely high (one
der of magnitude on average)).

It can be seen from the results that for different lifetimes
requests TDE performs best with different values ofα. For
short-lived flows, it is good to setα rather low, for medium-

Table 3:  for different scenarios.

Scenario k=0 k=1 k=2 k=3 k=4 k=5 k=10

F 0.97 0.97 0.98 0.98 0.98 0.98 0.98

M 0.92 0.95 0.96 0.96 0.97 0.97 0.97

S 0.86 0.92 0.95 0.95 0.96 0.96 0.96

µACS K( )

µACS K( )

TDE(t, alpha) // R is the CDC and alpha is the
// the relative threshold parameter

if (R[t] < alpha*D[t-1] || R[t] > D[t-1])
D[t] = R(t)

else
D[t] = D[t-1]

Figure 7: TDE algorithm.

α 0 1[ , ]∈

*. The standard deviation is below 0.01 in all cases.
†. These parameter settings were taken arbitrarily due to a lack of empiri-

cal data. However, simulations indicated that the results are not very
sensitive to these parameters.

Table 4: ACS(TDE) for requests with different lifetimes.

short-lived
requests

medium-lived
request

long-lived
requests

0.84 0.65 0.36

1.8 0.2 0.2

0.71 0.84 0.51

9.4 2.3 0.8

0.19 0.42 0.81

27.8 16.8 2.2

µ0.1
ACS

n
TDE 0.1,

n
NOPT4⁄

µ0.5
ACS

n
TDE 0.5,

n
NOPT4⁄

µ0.9
ACS

n
TDE 0.9,

n
NOPT4⁄

µα
ACS

n
TDE α,
6
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lived requests it is good to set it at an intermediate level and
for long-lived requests, it is best chosen very high. Further-
more, it can be perceived that wrong values forα can have a
devastating effect for the performance of TDE. For example,
in the short-lived requests case settingα = 0.9 only yields
about 20% of the cost saving potential. So, TDE cannot be
considered to deliver a robust behavior if the lifetimes of re-
quests vary. It is interesting to note that for all kinds of flows
the value ofα that yields the best results for TDE exhibits for
the ratio of steps for its cover and for the cover of
NEAROPT-4 values fairly close to 2 while the worseα pro-
duce ratios far apart from this. In particular, a ratio close to
one as is the case for TDE withα = 0.5 and long-lived re-
quests did not achieve a good result. The likely reason for
this is that TDE cannot cope with the same number of steps
as NEAROPT-4 to produce a good cover.

The overall result from these discussions is, not surprising-
ly, that TDE alone cannot guarantee to deliver good covers
for decoupling QoS systems with different time scales but an
integration in the ODAH scheme to self-control the setting of
α instead of setting it manually to some arbitrary value may
be a promising direction.

6 TDE IN THE ODAH SCHEME
In this section, the integration of TDE into the ODAH
scheme is described and the resulting heuristic, called
ODAH-TDE, is evaluated again by simulations. This inte-
gration is motivated by the previous discussions on TDE’s
sensitivity to the parameterα.

6.1 Embedding TDE in ODAH
As discussed in Section 3, there are two modes of adaptation
in the ODAH scheme: adaptation in performance space and
in action space. In principle, both kinds of adaptation are
possible for ODAH-TDE. In both cases, we use NEAROPT-
K instead of OPT if the time window of adaptation is too
large for OPT to compute the minimal cover in a reasonable
time (which is the case in most circumstances).

The adaptation in performance space works by simply ad-
justing TDE’s parameterα such that

(7)

is minimized. This minimization is done by a simple recur-
sive grid search [9] through the interval [0,1] for parameterα
as there is no simple relationship betweenα andc for a more
intelligent search to exploit.

For the adaptation in action space, it was decided to use the
number of steps as basis for the similarity relation between
covers, so that in this case

(8)

is to be minimized.RF is a relaxation factor that compen-
sates for the observation that TDE cannot produce good cov-
ers with the same number of steps as OPT respectively
NEAROPT-K. In the simulations below, we always setRF=
2 since experiments showed good results for that value (see
also Section 5 for a discussion of this). For the minimization

in this case we can use an interpolation search [9] sinceα and
n have a simple relationship: is monotonically in
creasing inα. This is, of course, much more efficient than th
recursive grid search for the adaptation in performance sp
mode.

The adaptation parameters for both modes are more or
the same, so we discuss them together:
Frequency of Adaptation. This parameter determines
partially how expensive the technique is in terms of comp
tational effort because the computation of the optimal
even the near-optimal cover is certainly much more com
pute-intensive than the simple TDE algorithm on its own. S
if the frequency of adaptation is very high, e.g., every tim
period, ODAH-TDE can become a very expensive techniq
while little new data collected about the CDC may no
change the adaptation process significantly and hence
justify the effort. On the other hand, if the adaptation fre
quency is too low, then ODAH-TDE may be too slow to re
act on changes in the CDC. Hence, a good trade-off betwe
computational effort and responsiveness to changes is
target here.
Time Window of Adaptation. As well as the frequency
of adaptation, this parameter is jointly responsible for th
computational effort invested in the adaptation in ODAH a
it controls how expensive it is to compute the “optimal” cov
er for a certain past period. Moreover, it controls how muc
past behavior is taken into account for the adaptation pro
ess. The larger the time window of adaptation the more p
information is included. However, including too much “old
behavior is not necessarily helpful because recent behav
might be more relevant for the decision on future behavio
On the other hand, if not enough past behavior is captur
some important information from the past may be lost. F
efficiency reasons of the ODAH-TDE algorithm it is, o
course, beneficial to use smaller windows.
Accuracy of Adaptation. This parameter deals with the
exactness of each adaptation step, i.e., how thoroughly
parameter space forα is searched during the minimization
problems solved at each adaptation step. Extreme accur
should not be required since a “perfect” fitting to past beha
ior does not necessarily yield better results since ODA
TDE is still only a heuristic (in particular as it is based o
NEAROPT-K for largerK). Furthermore, less accuracy cer
tainly improves the efficiency of ODAH-TDE.
For ODAH-TDE, we use the number of steps of the CDC
be covered as units for the frequency as well as for the tim
window of adaptation. This means these parameters are
specified in absolute time but adapt themselves to the rate
changes of the offered CDC, i.e., adaptation takes place of
in times of many changes and less often in more quiet pe
ods. That is a desirable behavior from our point of view.

The accuracy of adaptation in ODAH-TDE is measured b
the granularity of the parameter space forα at which the min-
imization procedures terminate to search any further (in ca
they do not succeed before). In all of the simulations

c R
TDE α,( ) c R

opt( )–

n
TDE α,

RF n
OPT×–

n
TDE α,
7
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ODAH-TDE that are discussed in the next subsection, this
accuracy was set to 10-4.

6.2 Simulations for ODAH-TDE
Using again the simulation environment for QoS systems
with different time scales, this subsection evaluates ODAH-
TDE’s performance for the on-line sequential determination
of a cover for a CDC. The same kind of CDCs generated
from different types of requests as in Section 5 is used in or-
der to allow for a comparison of ODAH-TDE with the values
for plain TDE given in Table 4. Again, NEAROPT-4 is ap-
plied to the off-line problem under certainty about the gener-
ated CDC in order to be able to compute the approximate
ACS metric for ODAH-TDE.

Although, we have experimented with both adaptation
modes we concentrate on adaptation in action space for the
simulations here, since both modes performed very similar
and, as we argued in the preceding section, adaptation in ac-
tion space is more efficient due to the less compute-intensive
adaptation step.

The simulations are targeted at evaluating different adapta-
tion parameters for ODAH-TDE, in particular different time
windows and adaptation frequencies. To limit the possible
number of alternatives for the adaptation parameters, it has
been decided to investigate ODAH-TDE algorithms for cas-
es where the time window of adaptation equals the reciprocal
value of the frequency of adaptation. In these cases, all past
information about the CDC is used exactly once for anadap-
tation epochas we call it. So, at the end of an adaptation ep-
och, the adaptation step is carried out using only the data
collected about the CDC within this epoch. In the simula-
tions ODAH-TDE works with adaptation epochs of 20, 100,
200, 500, and 1000. For an adaptation epoch of 20 ODAH-
TDE uses OPT to compute the cost-optimal cover against
which the adaptation is performed whereas for the larger ep-
ochs NEAROPT-4 is applied since OPT is computationally
infeasible for these. In all cases ODAH-TDE starts withα =
0.5, and adapts itself in the course of time.

As in all preceding experiments, 100 simulations each for
the different adaptation epochs and requests with different
lifetimes have been performed, the results of which are given
in Table 5.

Here, denotes the sample mean* of an approxima
ACS (based on NEAROPT-4) in the simulations for differen
adaptation epochsAE ∈ {20, 100, 200, 500, 1000}.

As the results indicate, ODAH-TDE generally achieves
good and robust performance over all types of requests es
cially for medium-size adaptation epochs. For the smalle
adaptation epoch of 20, the performance is considera
worse although it is the only one based on OPT. Howev
the adaptation epoch apparently is too short so that the ad
tation is too sensitive to short-term random effects. This e
phasizes the necessity of an approximation technique l
NEAROPT-K as a substitute for OPT in ODAH-TDE sinc
OPT is computationally infeasible for suitable adaptation e
och sizes.

In conclusion the simulation results give evidence th
ODAH represents a robust scheme for heuristically deali
with the sequential decoupling problem under uncertain
about a CDC. In particular, it should work well even if flow
characteristics as the lifetime of requests change since
shows good performance for all types of requests in the si
ulations.

7 RELATED WORK
The problem of different time-scales of network QoS sy
tems has been largely neglected in the literature so far. Th
is some work that deals with RSVP/IntServ over DiffServ
probably the most important scenario for decoupling to
applied. For instance, in the IETF, there is work within th
ISSLL working group that gives a very comprehensiv
framework for RSVP/IntServ over DiffServ and the issue
involved [10]. However, how to deal with different time
scales of QoS systems based on the two architectures is
considered. In fact, a scenario is depicted in which both s
tems are assumed to operate on the same time scale, i.e.,
RSVP request results in a query to the BB. From our point
view, this is not desirable as it would destroy the scalabili
of the DiffServ/BB approach. In [11], the design of a
IntServ/DiffServ edge device is described. But again the f
cus of this work is more on the interworking of mechanism
like mapping of IntServ classes onto DSCPs and so
whereas decoupling is not studied. A last example in th
area of work is [12] which gives very detailed treatment o
the protocol between an IntServ/DiffServ edge device and
BB based on the COPS protocol. It is, however, not the targ
of that work to treat strategic decisions of an edge device
represented by decoupling.

[13] deals with a two-tier model which consists of an intra
and interdomain resource management. BBs are represen
each administrative domain in the interdomain resour
management. Based on measurements, a watermark heu
at edge devices is used to trigger inter-domain signalling.
contrast to our work, the triggers are based on traffic mea
urements instead of control path events. Furthermore, the

Table 5: ACS(ODAH-TDE) for requests with different lifetimes.
short-lived
requests

medium-lived
request

long-lived
requests

0.83 0.84 0.85

0.93 0.92 0.91

0.93 0.92 0.91

0.92 0.92 0.90

0.91 0.91 0.88

µ20
ACS

µ100
ACS

µ200
ACS

µ500
ACS

µ1000
ACS

*. The standard deviation is below 0.01 in all cases.

µAE
ACS
8
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troduction of the watermark technique is rather ad hoc, and
resembles the TDE algorithm without any adaptation.

One piece of work that explicitly deals with different time
scales of access and backbone networks on the control paths
is [14]. Here a backbone QoS signalling is proposed which
integrates mechanisms in order to dampen the faster time
scales of access networks. This mechanism is based on hys-
teresis and quantization for traffic aggregates which are
based on sink trees towards destinations. The applied algo-
rithm is to always reserve capacity in multiples of a certain
quantity Q. Whenever the reserved capacity level of is
no more sufficient, it is increased to and the new
quantum is only relinquished when the reserved capacity
falls below . This is very comparable to the simple
strategy of the TDE algorithm, and uses no adaptation.
Moreover, we think that the integration of such a mechanism
into a signalling protocol represents an unfortunate mixing of
strategy and mechanisms since decisions on decoupling of
time scales should be subject to the strategy of an edge de-
vice irrespective of the utilized signalling protocol.

Interestingly, the decoupling problem may also be applied
to the situation where a QoS system supporting dynamic
QoS is mapped onto a system that only allows for static QoS
as is the case when mapping an RSVP/IntServ- onto an
ATM-based QoS system. A further instance of the decou-
pling problem is the computation of renegotiation schedules
for a non-stationary variable rate source which uses a rene-
gotiated service class as, e.g., described in [15]. The algo-
rithms presented in [15] are pretty similar to the ones derived
in this paper, especially for the case where the source’s rate
process is known beforehand. However, the algorithm pro-
posed for interactive sources, which is comparable to the
covering under uncertainty about the CDC, is not based on
adaptation directed via the optimum cover calculation.

8 CONCLUSIONS
This paper has dealt with a largely neglected problem when
interworking heterogeneous QoS systems - the accommoda-
tion of different time scales for QoS systems by decoupling.
The decoupling problem has been formalized in order to an-
alyze its complexity and derive solution approaches. These
approaches are based on the ODAH adaptation framework
which we devised for that purpose. The ODAH framework
makes use of past knowledge about capacity demands by
adapting parametrized heuristics with the aid of optimal
techniques which, however, require perfect knowledge about
CDCs. Throughout this paper, we have used simulations to
verify the performance of our solution approaches to the de-
coupling problem. In particular, it has been demonstrated
that a very simple heuristic like TDE could be integrated into
the ODAH scheme resulting in a very robust and still compu-

tationally feasible solution to the decoupling problem at a
edge device between a fast and a slow time scale QoS s
tem. While the heuristics developed in this paper may be e
hanced by introducing more empirical data into the heurist
(once this data is available), we believe that an adapt
scheme as presented here (based on (near-) optimal decis
for the past) may continue to play an important role for th
decoupling problem.
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