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Abstract 
Providing quality of service (QoS) in large-scale networks like the 
Intemet inherently needs to deal with heterogeneous network QoS 
systems. Therefore, the intenvorking between different network 
QoS systems is of high importance. In this paper, the interworking 
with respect to a basic characteristic of network QoS Systems, the 
time scale of the system, is under investigation. The time scale of a 
network QoS system is its speed of reaction to individual requests 
for differentiated treatment of units of service. A slow time scale 
system will prefer requests to arrive with a low frequency and persist 
unaltered for a substantial period of time while a fast one is able to 
Support much higher arrival rates of requests and is thus more aine- 
nable for short-lived units of Service. Obviously, when overlaying a 
slow time scale QoS system over a faster one, there is no problem. 
However, and that is a more likely case, for tlie overlay of a fast time 
scale system on a slow one, there is a mismatch to be mediated at the 
edge between the two. The technique that is applied at an edge de- 
vice for this mediation is called decoupling of time scales. Decou- 
pling can also be viewed as aggregation of requests in time in 
contrast to spatial aggregation on the data path. In the paper we de- 
velop an adaptive heuristic scheme to deal with decoupling and eval- 
uate this scheme by extensive simulations. 
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1 .I Motivation 
Different time scales of QoS systems may arise due to differ- 
ent QoS architectures like RSVP/IntServ (Resource reSerVa- 
tion Protocoll Integrated Services) [l], DiffServ 
(Differentiated Services) [2], or ATM (Asynchronous trans- 
fer Mode) [3] being used but may also be due to different 
QoS strategies followed by providers even if they employ the 
same QoS architecture. Choosing different QoS architectures 
as well as different strategies results from serving different 
needs, e.g., for an access and backbone provider. An access 
provider that has a comparatively moderate load and directly 
connects to end-systems rnay favor a fast time scale system 
responding immediately to the end-systems requests. A back- 
bone provider that connects access providers respectively of- 
fers transit Services is generally faced with a drastically 
higher load of individual transmissions, so that reaction on 
the time scale of individual requests is usually not possible 
and a slower time scale system needs to be enforced. 

When different time scales are in operation in Iieterogene- 
ous network QoS systems, it is simply not possible to query 
the underlying QoS system each time an overlaid system is 
altering its state. Here, the systern operating on a faster time 
scale needs to be smoothed when overlaying it onto a system 
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Figure 1: Combined local and global admission control. 

that operates only on slow time scales. A realistic configura- 
tion for access and backbone providers may be, e.g., that ac- 
cess providers use RSVP/intServ to suit their customers' 
needs while a backbone provider uses DiffServ with a Band- 
width Broker (DiffServJBB) to allow for some dynamics but 
on a slower time scale. This Scenario is shown in Figure I .  

Here it is also very obvious why a BB is generally not able 
to react to individual RSVP requests that are arriving at edge 
devices between access and backbone provider. Here a de- 
coupling of the different time scales is necessary. The decou- 
pling can be achieved by building "depots" of capacity which 
stabilize the fluctuations of the "nervous" dernand curve for 
backbone capacity by individual requests. This scheme al- 
lows to trade off resource efficiency for a more stable and 
long-term capacity dernand presented to the BB. 

Note that the slow time scale of an underlying QoS system 
may not express itself in being unable to process requests for 
QoS at short time scales but by the fact that significant setup 
costs are incurred for QoS requests between different admin- 
istrative domains. Such a scheme of QoS tariffing is an in- 
stance where a QoS strategy of a network provider restricts 
the capabilities of the employed QoS architecture. A possible 
reason for this may be, e.g., that the charging and accounting 
systern is not able to deal with a large number of individual 
requests since this involves a lot of operational costs. 

1.2 Outline 
In the next section, a closer and more formal look at the ge- 
neric problem of decoupling time scales for heterogeneous 
network QoS systems is undertaken. Then solution tech- 
niques based on a heuristic adaptation scherne are devised 
and evaluated by simulations. 



2 DECOUPLING TIME SCALES - THE PROBLEM 
AND ITS COMPLEXITY 

2.1 Problem Statement 
In order to assess the complexity of the decoupling problem, 
we first try to state the problem in a more formal manner. We 
model capacity as one-dimensional here, e.g., a rate resource 
that may be requested from a BB for a certain path across a 
DiffServ domain. This is certainly simpli@ing as more ca- 
pacity dimensions like, e.g., a buffer resource may be in- 
volved. However, the resulting problem can be generalized 
albeit at the cost of a higher complexity (see [4]  for a discus- 
sion of this). Hence, we can model the capacity demand 
curve R for the overlaid QoS system as a step function 

R 
R R R 

( I )  = ( )  e ( t )  = { " ' '1 ei arid 

i =  I 0 otherwise 
R R 

ei = si + , Vi 
R R R 

(1)  

So, nR is the number of steps here; hi , si and ei  are the 
height, the start and the end of step i. Furthermore, we denote 
R R R  Ii = ei  - si Vi  as the length of step i. 
From the capacity demand curve (CDC) for the overlaid 

system, the CDC of the underlying system is derived. A nec- 
essary condition on the CDC of the underlying QoS system 
is that it covers the CDC of the overlaid system. A cover of a 
CDC R is simply defined to be a CDC for which 
R(1)  2 R ( t )  V I .  An illustrative example of a CDC and a cov- 
er for it is shown in Figure 2. 

For the underlying QoS system, it is assumed that a slow 
time scale is enforced by the introduction of setup costs for 
requests from the overlaid system. This may be, in fact, mon- 
etary costs but could also be virtual resource costs depending 
upon whether the edge device belongs to the overlaid or un- 
derlying system. An alternative for enforcing a slow time- 
scale would be to only allow for a certain number of setups 
in a given period of time. The latter, however, is less flexible 
and can usually be achieved by choosing setup costs ade- 
quately (see [4 ]  for details). 

The cost of a CDC R for an underlying QoS system in a 
given time period [I,-,, t l ]  is defined as 

'I 

c(RIF. U )  = F X n + U X j ~ ( r ) d r  (2) 
' 0  

where F are fixed setup costs involved for changing the re- 
quested capacity level and U are variable costs per capacity 
Capaciiy 

1 CDC 41 
I St ei Time 

Figure 2: Example CDC with a cover. 

unit. We assume these parameters do not change in the plan- 
ning period, although again this is easy to generalize [ 4 ] .  

Under these prerequisites, decoupling of QoS systems with 
different time scales can be formulated as a minimal-cost 
CDC covering problem, i.e.: 

Find a CDC for R such that c(RIF,u) is minimal. 
The cost-minimal cover of a CDC R is denoted by ROP'. 
2.2 Some Observations about Complexity 
The possible set of covers for a CDC is, of course, unlimited 
without hrther restrictions being made. One observation is, 
however, that ROP' always is a tight cover. A cover C of a 
CDC R is called tight iff 

i.e., the step heights of the cover are a subset of the step 
heights of the CDC that is to be covered. The simple fact that 
ROP' is necessarily tight can be seen if one assumes that it is 
not. In that case it would be possible to lower ROP' for a step 
where it is not tight to the nearest hf and it would still be a 
cover of R but with lower costs (at least if U > O ) ,  which, of 
course, contradicts the cost-minimality. The space of tight 
covers is restricted as the following theorem states. 
Theorem 1: The state space complexity for tight covers of a 
CDC with n steps is O(2"-I). 

Proof: See [ 5 ] .  
So, we see that while tight covers are limiting the space of 
possible covers, there is still a huge search space in which the 
cost-minimal cover, for which we are naturally striving, may 
be located. 

All of the discussions so far have silently assumed that the 
search of the cost-minimal cover of a CDC could take place 
under certainty about this CDC. That is, of course, not the 
case in general. It would be the case if the overlaid system 
used only advance reservations (see, e.g., [6] or [7]  for this 
concept). However, for immediate requests which we are fo- 
cussing on here, the CDC that is to be covered is not known 
beforehand and for every step of the CDC, a decision has to 
be made whether the cover should follow this step or not. In 
fact, due to little experience with real network QoS systems, 
there is not even an established theory for statistical models 
on how a CDC could look like, although one could argue that 
some of the models known from telephony could be applica- 
ble to some parameters of the CDC. The parameters in ques- 
tion of the CDC are 

the step length I : ,  which is a product of the interarrival 
times of the individual requests at an edge device and the 
duration of such requests, and 
the step height hf , which corresponds to the aggregate 
capacity required to serve the requests. 

Especially, the latter Parameter is extremely difficult to mod- 
el as there is no practical experience with it. It depends upon 
which applications are actually using reservations and how 
widely resource requirements are differing for actual reser- 



vation-based applications. The first parameter, the step 
length, might be modeled by markovian models known from 
teletraffic theory [SI as the characteristics might be similar 
(at least as long as the individual requests correspond to per- 
sonal communications). However, also for this parameter, 
there is a certain degree of uncertainty whether traditional 
models fit. 

3 ADAPTATION SCHEME FOR DECOUPLING 
From the observations of the preceding section, the need for 
adaptive heuristic techniques when tackling the decoupling 
problem under uncertainty about the CDC can be derived. 
The use of heuristic techniques is necessary since the in- 
volved problem is fairly complex even under certainty as dis- 
cussed in the preceding section. Furthermore, as statistical 
models for CDCs are generally not available, we argue for 
the use of adaptation as a way to leam the statistical proper- 
ties of the system in an on-line fashion. This is also highly 
useful in an environrnent where there are unpredictable, but 
rather long-term fluctuations in the demand for capacity. In 
general, the adaptation to behavior that would have been 
"good" in the past is the best a heuristic technique can do un- 
der complete uncertainty about a CDC. 

The question what is "good" behavior can be assessed by 
comparing the outcome of an on-line heuristic with the re- 
sults of applying a technique to solve the cost-minimal cov- 
ering problem for the known CDC frorn the past. In the next 
section, such a technique as well as an inexpensive approxi- 
mation is introduced. Hence, let us assume that we have a 
technique to solve the cost-minimal covering problem for the 
CDC of past system behavior. If we fürther on assume that a 
parametrized heuristic h(8) is applied to the on-line cost- 
minimal CDC covering problem, there are essentially two 
different modes of adaptation that can be directed by good 
behavior as achieved by the cost-minimal cover of the past 
CDC: 
Adaptation in Action Space. In this mode, the heuristic's 
parameter (vector) 8 is adapted such that the behavior of the 
CDC cover produced by applying the heuristic deviates as 
little as possible from the optimal cover with respect to some 
characteristic as, e.g., the number of steps of the optimal cov- 
ers. More formally, if we define the simjlarity characteristic 
of two covers R and S as s(R,S) (with higher values of s(.) 
representing higher similarity), tliis means the adaptation 
problem is 

max. s(H(B), 0 )  
where H(8) and 0 represent the covers produced by applying 
heuristic h(8) and the optimum technique. 
Adaptation in Performance Space. In this mode the heu- 
ristics parameter (vector) 8 is adapted such that the cost of 
the cover produced by applying the heuristic deviates as little 
as possible from the optimal cover's cost. Again, this can be 
stated formally as 

min. c(H(8)) - c(0) 

Discussions on which mode is better suited to our decoupling 
problem are postponed until Section 6 when the individual 
building blocks of the scheme like the employed heuristic 
and the technique for computing optimal covers have been 
investigated in more detail. 

Both adaptation modes have three parameters with which a 
flexible trade-off between adaptation complexity and the 
cost performance of the optimum-directed adaptation can be 
achieved: 
1. The frequency of adaptation determines how often the 

adaptation of the heuristics parameter is carried out. 
2. The firne window of adaptafion detennines the length of 

the past period that is taken into account for the adapta- 
tion. 

3. The accuracy of adaptation determines how thoroughly 
the parameter space is searched during the optimization 
problem for the adaptation. 

It might seem that the adaptation in performance space does 
not depend on the optimum cover to be computed as it is only 
a constant in the objective function. However, if one takes 
into account the accuracy of adaptation Parameters, it is ob- 
vious that without the notion of a target cost to strive for the 
heuristic, this parameter cannot be Set reasonably. Thus, in 
both modes of adaptation the optimal cover for the past CDC 
directs the adaptation. Therefore the whole scheme is called 
ODAH (Optimum-Directed Adaptive Heuristic). 

4 SEARCHING FOR THE MINIMAL COVER 
UNDER CERTAINTY 

As the ODAH scheme depends heavily on being able to com- 
pute the cost-minimal cover for past CDCs, the problern of 
finding such a cover for a CDC under certainty is investigat- 
ed in this section. First, an exhaustive search technique to de- 
terministically find the cost-minimal cover is presented. This 
approach, however, is computationally very expensive for 
CDCs with a considerable number of steps. Therefore an in- 
expensive approximation technique based on the optimal al- 
gorithm is devised. 

4.1 Finding the Optimal Cover 
Simply searching the space of tight covers is prohibitively 

expensive as Theorem 1 states. An observation that can be 
made for Ropr is that for the peak step of the regarded CDC R 
it takes the Same value for the period of this step, i.e., 

R R  RoPr(t) = R(t) for t E [ s k ,  ek ] with 

Furthermore, it applies that the shapes of the right and left 
R R  R R  side from the peak, i.e., [X,, sk ] and [ e , ,  e  ,] do not influ- 

ence each other. So, the question for ROP' iS how far to pro- 
long the peak step to the left and to the right. These 
observations can be combined into a divide-and-conquer 
strategy to recursively search the space of strict covers by the 
algorithm given in Figure 3, which is denoted OPT. 



OPT(R,  a, b) / /  R is the CDC, a and b are the start and 
/ /  end times for which to find an optimal cover 

I if (a ! =  b) 
find k / /  as defined in Equation (41  
for 1 - k-1 dowito a 

I prolong R to the left till step 1 
leftCost = OPT(R,  a, elll) + cost for prolongation 
if ileftcost C minLeEtCostJ 1 ~. 

minLeEtCost = leftcost 
left = 1 

LB = sum of variable costs for steps from a to 1 
+ cost for prolongation 

if (LB z minLeftCost) 
break 

for r = k+l to b 
prolong R to the right till step 1 
rightcost = OPT(R,  a, e[l] ) + cost for prolongatior 
if (rightcost C minRightCost) 

minRightCost = rightcost 
right = r 

LB = sum of variable costs for steps from r to b 
+ cost for prolongation 

if (LB > minRightCost) 
break 

return minLeftCost + minRightCost + 
(s Irightl -e IleEtl J *h [kl *U + F 

else 
return 0; 

Figure 3: Algorithrn to find cost-minimal cover of a CDC (OPT) 

OPT finds the cost-minimal cover of a CDC under all cir- 
cumstances, yet it is less expensive than a total enumeration 
of the space of tight covers by using the observation from (4) 
and by pruning the search space using a lower bound on the 
costs for further prolongations. 

OPT has been implemented in a discrete-event Simulation 
environment which simulates the overlaying of a fast time 
scale resemation System onto a slow one. The environment 
allows to generate CDCs with different statistical properties 
and to apply decoupling techniques on these CDCs in an on- 
line as well as an off-line manner. Using this simulation en- 
vironment, OPT has been tested on a number of CDCs in or- 
der to obtain a feeling how complex it would be to compute 
a cost-minimal cover. An example CDC and the cost-mini- 
mal cover computed by OPT is given in Figure 4. 

For the simulated CDC R, we have had the following (arbi- 
trary) settings: nR = 40; h: E [1,10] and 1: e [1,6] drawn 
from uniform random distributions; F = 25 and U = 1. This 
yields a cost of c(R) = 1809. Under these settings the cost- 
minimal cover 0 as computed by OPT has the following 
characteristics no = 6 and c(0) = 1353. Hence, had the opti- 
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Figure 4: Cost-minimal cover computed by OPT. 

mal cover been used for decoupling the two QoS Systems as 
simulated here, about 25% costs could have been saved. The 
saving in cost, however, is, of course, totally dependent on 
the cost parameters Fand U. If F is very high compared to U. 
then the cost savings can be considerably higher. 

Larger values for nR are generally not possible as even nR = 

40 already took up to a few seconds on average for the com- 
putations from OPT (on a 400 MHz Pentium-I1 processor). 
That OPT is increasingly expensive to compute can be Seen 
when observing that the average size of the space of covers 
So(n) searched by OPT for a CDC with n steps is recursively 
defined as (corresponding to the operation of the algorithm) 

n - k  

j =  I 

A comparison of xo(n) with Sdn), the size of the space of 
tight covers, for some example values of n is given in 
Table 1. This is intended to give an illustration of how much 
is saved by OPT when compared to a total enumeration of 
tight covers. At the Same time, of course, it also illustrates 

Table 1: Growth of search spaces. 

that even So(n) is too large to be searched exhaustively (al- 
though the pruning is quite effective on average so that only 
a small part of the search space needs to be traversed). So, 
while the search space is diminished by the recursive opera- 
tion of OPT, it is still too large if the number of steps of the 
CDC is becoming larger. 

An alternative formulation of the problem as an integer 
program is given in [4]. This Opens up a Standard Set of oper- 
ations research techniques to deal with the problem, howev- 
er, all of these are computationally very expensive in the 
worst-case. That means, even if they produce the cost-opti- 
mal cover in a reasonable time on average, the execution 
times might vary considerably. This is something the ODAH 
scheme cannot deal with as it requires the optimum to be 
computed fast for recent past behavior to be able to adapt 
heuristics best. Therefore, we go a different way and try to 
find a good approximation of OPT that is computationally 
inexpensive. 

4.2 Finding Near-Optimal Covers 
In the ODAH scheme the optimum is required to adapt pa- 
rameters from heuristics to "good" past behavior. In the pre- 
ceding section, it has been shown that the deterrnination of 
the optimum for a past CDC is very compute-intensive if the 
CDC becomes too large in terms of steps. That means if the 
time window of adaptation becomes moderately large and 
that is generally desirable in order to take more past behavior 



NEAROPT(R, a, b) / /  R is the CDC, a and b are the Start and 
/ /  end times Eor which to find an optimal cover 

if (a !- b) 
find k / /  as defined in Equation ( 4 )  
leftcost = NEAROPT(R, a, eIk-11) t F 
if (leftcost C (e(k-11 -a) *h[kl 'U) 
prolong R to the left till a 

else 
leftcost = (elk-11 -a)*hlkl *U 

riqhtcost = NEAROPT(R, s[ktll, b) + P 
if (rightcost < (b-s [ktll )*h[kl *U) 
prolong R to the right till b 

else 
rightcost = ib-s lk+ll) *h [kl 'U 

return leEtCost + rightcost + (s [kl -e[kl) *h[kl *U + F 
else 

return 0 ;  

Figure 5: NEAROPT algorithm. 

into account, then it is more suitable to compute an approxi- 
mation of the cost-minimal cover for the adaptation of the 
heuristic instead of the absolute optimum. 

So, in this section, an approximation approach to compute 
the cost-minimal cover is introduced. It is based on the strat- 
egy followed by OPT but instead of trying all prolongations 
from a peak step for a certain part of the regarded CDC, it 
only compares the cost for prolonging the level of the peak 
until the next peak (in both directions certainly) with the sum 
of a further setup cost F and the cost of the subsection be- 
tween the peaks being calculated by this strategy itself. We 
call this algorithm NEAROPT. It uses the notion of OPT to 
cut the problem into halves wherever possible and always 
tries only two different choices for prolongation. To compare 
exactly those two cases for each step of the algorithm is mo- 
tivated by obsewations of the covers that were produced by 
OPT and which mostly used just either of these extremes. 
The detailed working of NEAROPT is given in Figure 5. 

The following theorem shows that NEAROPT is indeed 
substantially less expensive than OPT and should be easy to 
compute for all reasonable time windows of adaptation. 
Theorem 2: NEAROPT has a time complexity of O(n). 

Proof: See [5]. 
So, NEAROPT has linear time complexity and is thus inex- 
pensive to compute. The question certainly is how good the 
results are that can be achieved with NEAROPT. Therefore, 
a simulative comparison of NEAROPT with OPT is done. As 
a metric for this comparison, we use the achieved cost sav- 
ing, denoted by ACSWAROPT) and defined as 

where RnOp' is the cover as computed by the NEAROPT algo- 
rithm (later on the ACS(.) metric will also be used for other 
decoupling heuristics). As above, we use F = 25 and U = 1 
for the fixed respectively variable cost of capacity from the 
underlying QoS system and draw the capacity demands hi of 
the overlaid QoS system from a uniform random distribution 
over [I ,  101. For the step length li of the generated CDCs, we 
use 3 different scenarios, called F, M, and S, for which li is 

drawn from [I ,  31, [ I ,  61 and [ l ,  101. This corresponds to fast, 
medium, and slow fluctuations of the CDC. For all scenarios, 
we repeat the simulations 100 times. The sample means and 
Standard deviations of the ACSWAROPT), and 
oACS, and the average number of steps for the covers pro- 
duced by OPT and NEAROPT, noPT and nNEARoPT are given 
in Table 2. 

Table 2: ACS(NEAR0PT) for different scenarios. 

From these experiments, it can be Seen that NEAROPT per- 
forms very well if the CDC is fluctuating very fast, and be- 
haves worse if the fluctuations become slower, though still 
doing pretty well. This is due to the fact that for fast fluctua- 
tions as in F the problem actually becomes simpler because it 
rarely makes sense to change the capacity level as it is expen- 
sive compared to the time period for which the fixed setup 
costs can be amortized. Furthermore, it can be noticed that 
NEAROPT has a tendency to change capacity levels too of- 
ten for all scenarios. Actually, when taking a closer look at 
the covers produced by NEAROPT and OPT, it was ob- 
served that NEAROPT often did not prolong capacity levels 
for peaks long enough. That often produced Situations as de- 
picted in Figure 7 (indicated by an X), where a small prolon- 
gation to the lefi or right from a peak would have yielded the 
optimum behavior (Figure 7 is one particular Simulation out- 
come of type Scenario S). This observation led to a simple 
improvement technique for the cover computed by 
NEAROPT: try to prolong each peak of R"'pf up to K steps 
(of the CDC) to the left and to the right and See if an im- 
provement can be achieved. We call this improvement tech- 
nique K-REPAIR and the combination of NEAROPT and K- 
REPAIR is denoted as NEAROPT-K. Of Course, K-repair is 
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Figure 6: Covers computed by OPT and NEAROPT. 



an O(n)  algorithm for a fixed K and as NEAROPT and K-re- 
pair are performed sequentially, NEAROPT-K's time com- 
plexity is still O(n) .  

To investigate NEAROPT-K's potential and to See how 
different values for K perform, another Set of simulations 
with the Same parameters as above has been performed. The 
resulting means of the achieved cost saving for different val- 
ues of K, denoted by p A C S ( K ) ,  in the different scenarios are 
given in Table 3 (note that NEAROPT-0 is equal to 
NEAROPT). 

Table 3: p  for different scenarios. 

It can be Seen that the use of K-repair actually pays off, espe- 
cially for Scenario S. The experiments also exhibit that srnall 
values of K, e.g., 3 or 4, are performing well. Considerably 
larger values for K, e.g., 10, do not achieve better ACS val- 
ues. This is, of course, beneficial with respect to the eficien- 
cy of NEAROPT-K. 

In conclusion, the experiments indicate that NEAROPT-K 
with small values for K is a good approximation technique 
for finding near-optimal covers of a known CDC. 

5 S~MPLE HEURISTIC FOR DECOUPLING - 
THRESHOLDED DEPOT EXCESS 

In this section, a very simple, yet reasonable heuristic is in- 
troduced that deals with the problem under uncertainty at 
each single step in time. It is called thresholded depot excess 
(TDE) as it ensures that the capacity depot held for decou- 
pling is never above a certain threshold. 

Note that TDE is to be regarded as an illustrative example 
for how parametrized heuristics can be integrated into the 
ODAH scheme and how they can be improved by this inte- 
gration. There are certainly "smarter" heuristics than TDE. 
However, the emphasis is on investigating what results can 
be achieved by adaptation of a simple heuristic like TDE (See 
Section 6). 

The exact working of the TDE algorithm is given in Figure 
7. A slotted time is assumed for TDE and the algorithm is ap- 
plied in every time slot. If the CDC rises above the current 
capacity depot, i.e., D(f-I) < R(t), this change is always fol- 
lowed (assuming that there is enough capacity at the under- 
lying QoS System). Whenever the CDC takes a step 
downward, i.e., if R(t) < R(t- I), TDE checks whether the step 
is smaller than a certain fraction a E [O,I] of the old level of 

TDE(t, alpha) / /  R is the CDC and alpha is the 
/ /  the relative threshold parameter 

if (R[tl c alphahD(t-11 I I RItl > D[t-11) 
DItl = R(t) 

D[t] - D(t-11 
Figure 7: TDE algorithm. 

the capacity depot (D(t- I)) and if that is the case, TDE fol- 
lows this step. 

Again, simulations are used to evaluate the potential of 
TDE for decoupling of QoS systems that operate on different 
time scales. Yet, this time an attempt is made to use more re- 
alistic and significantly longer CDCs. The CDCs are pro- 
duced by simulating individual requests with poisson arrival 
and exponential holding times. They are thus based on mark- 
ovian models as known from teletraffic theory. The capacity 
demand for each individual request is still drawn from ran- 
dom distributions as for this quantity there are no known sta- 
tistical madels. In order to assess the covers generated 
sequentially by TDE, we also apply NEAROPT-4 to the 
CDCs in an off-line manner once these are known (to use 
OPT as a reference value is computationally infeasible for 
the large CDCs we used). The Cover produced by 
NEAROPT-4 is then used to get an approximate ACS for 
TDE's covers that is, of course, a little bit higher than the 
correct ACS value. The aggregated results of 100 simula- 
tions are shown in Table 4. 

Table 4: ACS(TDE) for requests with different lifetimes. 

Here paCS denotes again the Sam le means* from the sim- 
ulations for different values of a .  n ?DES a ,,NOPT4 are the 
average number of steps produced by TDE (with parameter 
a )  respectively NEAROPT-4. For each simulation 5000 in- 
dividual requests were generated with poisson arrival (h = 6) 
and capacity demands drawn randomly from the uniform dis- 
tribution over [1,30].t For the Iifetime of a request, we sim- 
ulated three different scenarios with short-, medium and 
long-lived flows by drawing from an exponential distribu- 
tion with parameter p = 40, 100 and 400. In order to model 
very different time scales for the two QoS systems, we set 
F = 2000 and U = 1 for all simulations (note that under these 
settings the absolute cost saving was extremely high (one or- 
der of magnitude on average)). 

It can be Seen from the results that for different lifetimes of 
requests TDE performs best with different values of a .  For 
short-lived flows, it is good to Set a rather low, for medium- 

'. The standard deviation is below 0.01 in all cases. 
t. These parameter settings were taken arbitrarily due to a lack of ernpiri- 

cal data. However, simulations indicared that the results are not very 
sensitive to these Parameters. 



lived ~ q u e s t s  it is good to set it at an intermediate level and 
for long-lived requests, it is best chosen very high. Further- 
more, it can be perceived that wrong values for a can have a 
devastating effect for the performance of TDE. For example, 
in the short-lived requests case setting a = 0.9 only yields 
about 20% of the cost saving potential. So, TDE cannot be 
considered to deliver a robust behavior if the lifetimes of re- 
quests vary. It is interesting to note that for all kinds of flows 
the value of a that yields the best results for TDE exhibits for 
the ratio of steps for its cover and for the cover of 
NEAROPT-4 values fairly close to 2 while the worse a pro- 
duce ratios far apart from this. In particular, a ratio close to 
one as is the case for TDE with a = 0.5 and long-lived re- 
quests did not achieve a good result. The likely reason for 
this is that TDE cannot cope with the Same number of steps 
as NEAROPT-4 to produce a good cover. 

The overall result from these discussions is, not surprising- 
ly, that TDE alone cannot guarantee to deliver good covers 
for decoupling QoS Systems with different time scales but an 
integration in the ODAH scheme to self-control the setting of 
a instead of setting it manually to some arbitraiy value may 
be a promising direction. 

6 TDE IN THE ODAH SCHEME 
In this section, the integration of TDE into the ODAH 
scheme is described and the resulting heuristic, called 
ODAH-TDE, is evaluated again by simulations. This inte- 
gration is motivated by the previous discussions on TDE's 
sensitivity to the parameter a. 

6.1 Embedding TDE in ODAH 
As discussed in Section 3, there are two modes of adaptation 
in the ODAH scheme: adaptation in performance space and 
in action space. In principle, both kinds of adaptation are 
possible for ODAH-TDE. In both cases, we use NEAROPT- 
K instead of OPT if the time window of adaptation is too 
large for OPT to compute the minimal cover in a reasonable 
time (which is the case in most circumstances). 

The adaptation in performance space works by simply ad- 
justing TDE's parameter a such that 

c ( ~ ~ ~ ~ .  a, - C ( R " ~ ' )  (7) 

is minimized. This minimization is done by a simple recur- 
sive grid search [9] through the intewal[O,l] for parameter a 
as there is no simple relationship between a and C for a more 
intelligent search to exploit. 

For the adaptation in action space, it was decided to use the 
number of steps as basis for the similarity relation between 
covers, so that in this case 

I n T D E m a -  RF x n O P T l  (8) 

is to be minimized. RF is a relaxation factor that compen- 
sates for the obse~at ion that TDE cannot produce good cov- 
ers with the Same number of steps as OPT respectively 
NEAROPT-K. In the simulations below, we always Set RF= 
2 since experiments showed good results for that value (see 
also Section 5 for a discussion of this). For the minimization 

in this case we can use an interpolation search [9] since a and 
T D E . a  . 

n have a simple relationship: n 1s rnonotonically in- 
creasing in a. This is, of course, much more efficient than the 
recursive grid search for the adaptation in perfonnance space 
mode. 

The adaptation parameters for both modes are more or less 
the Same, so we discuss them together: 
Frequency of Adaptation. This parameter determines 
partially how expensive the technique is in terms of compu- 
tational effort because the computation of the optimal or 
even the near-optimal cover is certainly much more com- 
pute-intensive than the simple TDE algorithm on its own. So, 
if the frequency of adaptation is very high, e.g., every time 
period, ODAH-TDE can become a very expensive technique 
while little new data collected about the CDC may not 
change the adaptation process significantly and hence not 
justim the effort. On the other hand, if the adaptation fie- 
quency is too low, then ODAH-TDE may be too slow to re- 
act on changes in the CDC. Hence, a good trade-off between 
cornputational effort and responsiveness to changes is the 
target here. 
Time Window of Adaptation. As well as the frequency 
of adaptation, this parameter is jointly responsible for the 
computational effort invested in the adaptation in ODAH as 
it controls how expensive it is to compute the "optimal" cov- 
er for a certain past period. Moreover, it controls how much 
past behavior is taken into account for the adaptation proc- 
ess. The larger the time window of adaptation the more past 
information is included. However, including too much "old" 
behavior is not necessarily helpful because recent behavior 
might be more relevant for the decision on future behavior. 
On the other hand, if not enough past behavior is captured, 
some important inforrnation from the past may be lost. For 
efficiency reasons of the ODAH-TDE algorithm it is, of 
course, beneficial to use smaller windows. 
Accuracy of Adaptation. This parameter deals with the 
exactness of each adaptation step, i.e., how thoroughly the 
parameter space for a is searched during the minimization 
problems solved at each adaptation step. Extreme accuracy 
should not be required since a "perfect" fitting to past behav- 
ior does not necessarily yield better results since ODAH- 
TDE is still only a heuristic (in particular as it is based on 
NEAROPT-K for larger K). Furthermore, less accuracy Cer- 
tainly improves the efficiency of ODAH-TDE. 
For ODAH-TDE, we use the number of steps of the CDC to 
be covered as units for the frequency as well as for the time 
window of adaptation. This means these Parameters are not 
specified in absolute time but adapt themselves to the rate of 
changes of the offered CDC, i.e., adaptation takes place often 
in times of many changes and less often in more quiet peri- 
ods. That is a desirable behavior from our point of view. 

The accuracy of adaptation in ODAH-TDE is measured by 
the granularity of the parameter space for ol at which the min- 
imization procedures terminate to search any further (in case 
they do not succeed before). In all of the simulations of 



ODM-TDE that are discussed in the next subsection, this 
accuracy was Set to 104. 
6.2 Simulations for ODAH-TDE 
Using again the Simulation environment for QoS systems 
with different time scales, this subsection evaluates ODAH- 
TDE's performance for the on-line sequential determination 
of a cover for a CDC. The Same kind of CDCs generated 
from different types of requests as in Section 5 is used in or- 
der to allow for a comparison of ODAH-TDE with the values 
for plain TDE given in Table 4. Again, NEAROPT-4 is ap- 
plied to the off-line problem under certainty about the gener- 
ated CDC in order to be able to compute the approximate 
ACS metric for ODAH-TDE. 

Although, we have experimented with both adaptation 
modes we concentrate on adaptation in action space for the 
simulations here, since both modes performed very similar 
and, as we argued in the preceding section, adaptation in ac- 
tion space is more efficient due to the less compute-intensive 
adaptation step. 

The simulations are targeted at evaluating different adapta- 
tion parameters for ODAH-TDE, in particular different time 
windows and adaptation fkequencies. To limit the possible 
number of alternatives for the adaptation Parameters, it has 
been decided to investigate ODAH-TDE algorithms for cas- 
es where the time window of adaptation equals the reciprocal 
value of the frequency of adaptation. In these cases, all past 
information about the CDC is used exactly once for an adap- 
tation epoch as we call it. So, at the end of an adaptation ep- 
och, the adaptation step is camed out using only the data 
collected about the CDC within this epoch. In the simula- 
tions ODAH-TDE works with adaptation epochs of 20, 100, 
200, 500, and 1000. For an adaptation epoch of 20 ODAH- 
TDE uses OPT to compute the cost-optimal cover against 
which the adaptation is performed whereas for the larger ep- 

, ochs NEAROPT-4 is applied since OPT is computationally 
infeasible for these. In all cases ODAH-TDE Starts with a = 

0.5, and adapts itself in the Course of time. 
As in all preceding experiments, 100 simulations each for 

the different adaptation epochs and requests with different 
lifetimes have been performed, the results of which are given 
in Table 5. 

Table 5: ACS(0DAH-TDE) for requests with different lifetimes. 

Here, P A E S  denotes the sample mean* of an approximate 
ACS (based on NEAROPT-4) in the simulations for different 
adaptation epochs AE E (20,100,200,500, 1000). 

As the results indicate, ODAH-TDE generally achieves a 
good and robust performance over all types of requests espe- 
cially for medium-size adaptation epochs. For the smallest 
adaptation epoch of 20, the performance is considerably 
worse although it is the only one based on OPT. However, 
the adaptation epoch apparently is too short so that the adap- 
tation is too sensitive to short-term random effects. This em- 
phasizes the necessity of an approximation technique like 
NEAROPT-K as a Substitute for OPT in ODAH-TDE since 
OPT is computationally infeasible for suitable adaptation ep- 
och sizes. 

In conclusion the simulation results give evidence that 
ODAH represents a robust scheme for heuristically dealing 
with the sequential decoupling problem under uncertainty 
about a CDC. In particular, it should work well even if flow 
characteristics as the lifetime of requests change since it 
shows good performance for all types of requests in the sim- 
ulations. 

7 RELATED WORK 
The problem of different time-scales of network QoS sys- 
tems has been largely neglected in the literature so far. There 
is some work that deals with RSVPtIntServ over DiffSew, 
probably the most important scenario for decoupling to be 
applied. For instance, in the IETF, there is work within the 
ISSLL working group that gives a.very comprehensive 
framework for RSVPIIntServ over DiffServ and the issues 
involved [IO]. However, how to deal with different time 
scales of QoS systems based on the two architectures is not 
considered. In fact, a scenario is depicted in which both sys- 
tems are assumed to operate on the Same time scale, i.e., each 
RSVP request results in a query to the BB. From our point of 
view, this is not desirable as it would destroy the scalability 
of the DiMServtBB approach. In [l I], the design of an 
IntServlDiMServ edge device is described. But again the fo- 
cus of this work is more on the interworking of mechanisms 
like mapping of IntServ classes onto DSCPs and so on 
whereas decoupling is not studied. A last example in that 
area of work is [I21 which gives very detailed treatment of 
the protocol between an IntSew/DiffSew edge device and a 
BB based on the COPS protocol. It is, however, not the target 
of that work to treat strategic decisions of an edge device as 
represented by decoupling. 

[13] deals with a two-tier model which consists of an intra- 
and interdomain resource management. BBs are representing 
each administrative domain in the interdomain resource 
management. Based on measurements, a watermark heuristic 
at edge devices is used to trigger inter-domain signalling. In 
contrast to our work, the triggers are based on traffic meas- 
urements instead of control path events. Furthermore, the in- 

*. The siandard deviation is below 0.01 in all cases. 



troduction of the watennark technique is rather ad hoc, and 
resembles the TDE algorithm without any adaptation. 

One piece of work that explicitly deals with different time 
scales of access and backbone networks on the control paths 
is [14]. Here a backbone QoS signalling is proposed which 
integrates mechanisms in order to dampen the faster time 
scales of access networks. This mechanism is based on hys- 
teresis and quantization for traffic aggregates which are 
based on sink trees towards destinations. The applied algo- 
rithrn is to always reserve capacity in multiples of a certain 
quantity Q. Whenever the reserved capacity level of k X Q is 
no more sufficient, it is increased to (k  + 1 ) X Q and the new 
quantum is only relinquished when the reserved capacity 
falls below ( k  - I ) X Q . This is very comparable to the simple 
strategy of the TDE algorithm, and uses no adaptation. 
Moreover, we think that the integration of such a mechanism 
into a signalling protocol represents an unfortunate mixing of 
strategy and mechanisms since decisions on decoupling of 
time scales should be subject to the strategy of an edge de- 
vice irrespective of the utilized signalling protocol. 

Interestingly, the decoupling problem may also be applied 
to the Situation where a QoS system supporting dynamic 
QoS is mapped onto a System that only allows for static QoS 
as is the case when mapping an RSVPflntServ- onto an 
ATM-based QoS system. A further instance of the decou- 
pling problem is the computation of renegotiation schedules 
for a non-stationary variable rate source which uses a rene- 
gotiated Service class as, e.g., described in [15]. The algo- 
rithms presented in [15] are pretty similar to the ones derived 
in this paper, especially for the case where the source's rate 
process is known beforehand. However, the algorithm pro- 
posed for interactive sources, which is comparable to the 
covering under uncertainty about the CDC, is not based on 
adaptation directed via the optimum Cover calculation. 

8 CONCLUSIONS 
This paper has dealt with a largely neglected problem when 
intenvorking heterogeneous QoS systems - the accommoda- 
tion of different time scales for QoS systems by decoupling. 
The decoupling problem has been formalized in order to an- 
alyze its complexity and derive solution approaches. These 
approaches are based on the ODAH adaptation framework 
which we devised for that purpose. The ODAH framework 
makes use of past knowledge about capacity demands by 
adapting parametrized heuristics with the aid of optimal 
techniques which, however, require perfect knowledge about 
CDCs. Throughout this paper, we have used simulations to 
verifi the perfonnance of our solution approaches to the de- 
coupling problem. In particular, it has been demonstrated 
that a very simple heuristic like TDE could be integrated into 
the ODAH scheme resulting in a very robust and still compu- 

tationally feasible solution to the decoupling problem at an 
edge device between a fast and a slow time scale QoS sys- 
tem. While the heuristics developed in this paper may be en- 
hanced by introducing more empirical data into the heuristics 
(once this data is available), we believe that an adaptive 
scheme as presented here (based on (near-) optimal decisions 
for the past) may continue to play an important role for the 
decoupling problem. 
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