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Abstract Arnbient systems weave computing and coinmu- 
nication aspects into everyday life. To provide self-adaptive 
Services, it is necessary to acquire context information using 
Sensors and to leverage the collected information for reason- 
ing and classification of situations. To enable self-learning 
systems, we propose to depart from static rule-based deci- 
sions and first-order logic to define situations from basic 
context, but to build on inachine-learning techniques. How- 
ever, existing learning algorithms show substantial weak- 
nesses if applied in highly dynamic environments, where 
we expect accurate decisions in realtiine while the User is in- 
the-loop to give feedback to the system's recommendations. 
To address ambient and pervasive computing environmcnts, 
we propose the FLORA-multiple classification (FLORA- 
MC) online learning algorithm. In particular, we enhance 
the FLORA algorithm to allow for (1) multiple classifi- 
cation and (2) numerical input values, while improving 
its concept drift handling capabilities; thus, making it an 
excellent choice for use in the area of ambient computing. 
The multiple classification allows context-aware systems to 
differentiate between multiple categories instead of taking 
binary decisions. Support for numerical input values enables 
the processing of arbitrary sensor inputs beyond nominal 
data. To provide the capability of concept drift handling, we 
propose the use of an advanced window adjustment heuris- 
tic, which allows FLORA-MC to continuously adapt to the 
user's behavior, even if herlhis preferences change abniptly 
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over time. In combination with the inherent characteristics 
of online learning algorithms, our scheme is very well suited 
for realtime application in the area of ambient and pervasive 
computing. We describe the design and implementation of 
FLORA-MC and evaluate its performance vs. state-of-the- 
art learning algonthins. We are able to show the superior 
performance of our algorithm with respect to reaction time 
and concept drift handling, while maintaining an excellent 
accuracy. Our implementation is available to the research 
coinmunity as a WEKA module. 

Keywords ambient computing pervasive computing . 
context-aware cornputing . machine learning 

1 Introduction 

1.1 Introduction and motivation 

The accurate determination of the context of users and 
devices is the basis for ambient cornputing systems. In order 
to adapt to changing deinands and environments, the System 
needs to reason based on basic context facts to determine 
knowledge of higher level situations. Existing rcasoning 
techniques includc simple first-order logic and static rule- 
based systems to infer about the user's situation. However, 
to adequately match the requirements of ambient computing 
such as convenience and flexibility, the aforementioned 
techniques are considered to be too intrusive and too hard 
to configure and maintain. We focus our work on machine 
learning algorithms to aid in building and maintaining deci- 
sion models. Designed to provide a more natural interaction 
between humans and Computers, one of the key success 
factors of these systems is the ease of use, i.e., the system's 
ability to continuously adapt to the user's situation, the 
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immediate response to User feedback, etc. Existing inachine 
learning approaches for context determination mostly rely 
on offline learning algorithms, which are highly accurate. 
However, accuracy Comes at the expense of a slow model- 
building process, largc inemory consuinption, and-for 
plain offline learning algorithms-the inability to handle 
concept drift, i.e., the seamless adaptation to changing User 
demands, appropriately (see [I I). 

Application scenarios such as context-aware commu- 
nications or-more in general-ambient coinputing and 
communications have a Set of pivotal requirements, which 
would strongly benefit, if the model-adaptation process 
could be performed in realtime, thus conserving the pre- 
cious resource of User attention and waiting time. However, 
there is a lack of adequate online learning algorithms, which 
could push context-aware systems into the realtime realm. 

This is particularly triie, ifwe consider advanced features 
of the learning algorithm, which are crucial to support 
ambient services. Additional requirements for learning al- 
gorithins to be applied in the aforementioned scenarios 
are, e.g., the support of multiple classifications, i.e., the 
ability of the model to differentiate between multiple result 
categories, the support to handle numerical input values, and 
the handling of concept drift, i.e., the very fast adaptation to 
abruptly changing User preferences over time. 

Due to the lack of applicable online learning algorithms, 
offline learners in combination with window or weight- 
ing mcchanisms are often used as alternatives (see [2]). 
When a concept drift occurs, these window mechanisms 
preferably delete old history eleinents (see also Section 
2.2), which leads to problems with multiple categories, i.c., 
rarely iised categories are not supported correctly by the 
resulting model. Instead of model updates, offline learners 
typically pcrforin complete model building, which can be 
very costly, if the amount of sainples or input values rises. 
Online lcarning algorithms are able to detect changes and 
adapt only the related parts of the model, thus providing for 
fast adaptation of the model. 

Given the aforeinentioned assuinptions and require- 
ments of the ability to (1) classify context into multi- 
variate categories (multiple classification), while (2) 
supporting arbitrary numerical inpiit values and promptly 
adapting to changing user preferences (numerical input 
and concept drift), we discuss the following Open research 
questions: 

- How to combine the realtiine model-building capabil- 
ities of online machine learning algorithms to allow 
classification of contexts into multiple categorics? 

- How to support numerical instead of nominal in- 
put, while maintaining the capability of online ma- 
chine learning algorithms to handle concept drift 
appropriately? 

1.2 Contribution 

We answer these research questions by introducing the 
concepts to enhance online machinc learning algorithms for 
use in the application domain of context-aware and ambient 
computing. In particular, our contribution is as follows: 

- We design the FLORA-MC algorithm, which combines 
the online learning capabilities of the FLORA algorithm 
[3] with multiple classification. 

- We allow for processing of numerical input values in 
FLORA-MC instead of nominal values only in FLORA. 

- We present an extended window adjustment heuris- 
tic (WAH) to address the concept drift problem. Our 
heuristic is able to trade-offfast reaction time to concept 
drift vs. optimality of the classification accuracy. 

- We enhance our WAH to be stable to context fluctua- 
tions by evaluating the Shannon-entropy of the classifi- 
cation process. 

- We realize an impleinentation of FLORA-MC, which 
can be applied and compared with other algorithms 
within the commonly used data-inining framework 
WEKA [4]. 

- We perforin extensive experimentation to analyze the 
performance of our algorithm in various representative 
settings. 

To the best of our knowledge, our work is the first one to 
enhance online learning algorithms to provide an adequate 
feature Set supporting advanced context-aware services; 
thus, pioneering the application of realtime model-building 
capabilities within ambient and pervasive systems. 

1.3 Outline 

In Section 2, we survey related work in literature and 
discuss the FLORA algorithin, which serves as the basis 
for our work. In Section 3, we describe the design and 
working of FLORA-MC and give implementation details. 
We put particular emphasis on the multiple classification of 
context and the window management to optimizc the han- 
dling of concept drift. In Section 4, a thorough evaluation 
of the proposed algorithms is presented. This is followed by 
Section 5, which surnmarizes our findings and gives point- 
Crs to future work. 

2 Background and related work 

This section first introduces an application scenario rep- 
rescnting the class of targeted ainbient applications. Next, 
related work in general that deals with ambient and context- 
aware computing is surveyed. We then discuss the ap- 
plication of machine learning algorithms in context-aware 
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systeins and introduceldefine the terminology of these sys- 
tems. We briefly survey the existing classes of algorithms 
with emphasis on online learning algorithms. In particular, 
we discuss the FLORA approach, which serves as the basis 
for our work. 

2.1 Scenario and background 

As a sample scenario we chose a context-aware multimedia 
communication system such as introduced by Görtz in [ 5 ] .  
The communication means in ambient environments are 
characterized by an abundance of different cominunica- 
tion technologies, services, and applications such as voice 
over IP, instant messaging, email, video-conferencing, or 
telepresencelteleimmersion. These ineans are often coupled 
with technical or social implications. For instance, video- 
conferencing demands an appropriate technical infrastruc- 
ture for all participants; or on the dimension of social 
context, the user might be embarrassed if herlhis mobile 
phone rings during a business meeting. In our sample appli- 
cation, the goal is to optimally support the user in inanaging 
herlhis communication needs, while being agnostic to the 
different coinmunication channels as shown in Fig. 1. 

Let us assume that Alice wants to talk to Bob. He might 
or might not be available or wanting to accept the call. If 
Alice realizes that she cannot reach Bob via phone, she 
might Want to contact him via email, instant messaging, 
or leave a message on his voice mailbox. However, to 
do so, both Alice and Bob have to constantly update the 
configuration of their coinmunication services; as of today 
aiitoination of appropriate call handling requires setting of 
coinplex rules to govern the system's decisions. 

Arnbient support for a smart coinmunication service 
could leverage a virtual assistant to control the handling of 
calls (see, e.g., Schmitt et al. [6]). In particular, the context- 
information about both communication Partners and their 
environinent can be used to determine the appropriate 
Course of action. While being a simplistic example, the 
system's requirements are already very challenging and 
also capture key requirements of ambient coinputing 
systems. This includes but is not limited to appropriate 
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Figure I Sample application of a smart commu~iication service 
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userl 
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Figure 2 Architecture for context determination and model 
adaptation 

context acquisition and evaluation in realtime in highly 
dynamic, complex environments. Furthermore, the service 
should be self-learning with minimal User interaction, and 
feedback of the User should be incorporated for future 
decisions iminediately. 

Fundamental work in the area of context-aware and 
pervasive coinputing has been pursued by Schilit [7] with 
the Mobile Context-Aware Computing system, Dey et al. 
[8, 91 with the Context Toolkit, and Schmidt et al. [10, 111 
in the Technology for Enabling Awareness (TEA) architec- 
ture. A huge body of work has refined and extended on 
this work and pushed it closer to real-world applications. 
Recent efforts include the European projects Amigo [12] 
and Ambient Networks [13], which aim to realize a smart 
living environment and an ambient communication plat- 
form, respectively. In our work, we focus on the decision 
component within ambient computing systeins. Our goal is 
to provide one building block for these, namely an optimally 
suited online inachine-learning algorithm. 

2.2 Applying machine learning for context-aware systems 

In order to introduce a common terminology, Fig. 2 shows 
an abstracted architecture of a context-aware system, which 
is designed to adapt the applied decision model as follows. 

1) Incoming sensor data is evaluated using the actual 
decision model. 

2) As a result, the decision model returns the determined 
category, which can be used by the requesting instance, 
e.g., to trigger an event or to configure devices. 

3) The objectfuser can feedback the system with infor- 
ination whether the decision has been correct, e.g., by 
entering the demanded category into the system. 

4) The feedback in coinbination with the related sensor 
data forms a sample, which can be seen as a snapshot 
of the User demand. 

5 )  The sample is used to update the model or to generate 
a new model in combination with a history of recent 
samples. 
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6) The adapted inodel is used for further evaluation- 
requests. 

It is obvious that the decision model needs to bc created and 
maintained to capture an accurate representation of the user 
demand for a dynamic set of available Sensors and sensor- 
types. This model adaptation is performed by machine 
leaming mechanisms, which determinc the Patterns between 
the inpiit values (sensor data) and the output values (deci- 
sions/categories). Discovered pattems will be represented 
by rnodel-specific expressions within the model. For our 
application domain, the model and the algorithm for model 
adaptation have to fulfil the following requirements. 

a) Classification of a situation into a user-defined set of 
categories. 

b) Reaction on changing user demand as fast as 
possible. 

C) Evaluation of sensor data in realtime. 
d) Low system-requirements and effort for model build- 

ing. 
e) Accurate decisions in presence of dynamic sets of 

sensor data (e.g., noise, missing data). 

2.3 A brief survey on machine learning algorithms 
for context-aware systems 

While several classes of machine learning algorithms exist, 
only a few of them are suited for our application domain. 
Figure 3 shows a classification of relevant algorithms. We 
next briefly discuss the feasibility of the individual algo- 
rithm classes for the given requirements. 

Requirements (a) and (b) indicate the use of the class of 
supen~ised learner, whereas req. (C) prohibits the use of Iary 
learners. For our problem, we can thus chose from the eager 
learners: algorithms of the online learner class are designed 
to cater to req. (b) and (C), while algorithms of the ojjine 
learner class are particularly ~iseful for req. (e). 

Ojfline learner-s (or batch learners) are designed to handle 
common data-mining tasks. Due to their long history, inany 
well-engineered algorithms are available, e.g., algorithms to 

inductive learner 

A 
unsupervised learner supewised learner 

/ 
[. . .I lazy learner 
A 

eager learner 

/ 
[ . . - I  online leamer offline leamer 

/ 
[. . .I batcll learner 

------I 
incremental learner 

Figure 3 Overview of macliine learning algorithms for context-aware 
systems 

generate support vector inachines (SVM), Neural Networks 
(NN) or Decision Trees (DT). Enhancing ofline learners 
with a meta-algorithms to introduce window management 
allows to fulfil rcqs. (b) and (e). Howcver, since most olpine 
learners need to build up an entirely new model each time 
instead of incrementally updating the existing model, req. 
(d) cannot be easily fulfilled. We here omit the further 
discussion of other meta-algorithms such as 11-way binary 
classification to address req. (a), since the violation of req. 
(d) outweighs the possible gain of these inechanisins for our 
scenario. 

In contrast, incremental learners (such as algorithms for 
generation of Naive Bayes (NB) models) and online learn- 
ers have the feature to update existing models for each new 
sample, thus, satisfying req. (d). Online learners use several 
sample (instance) storage strategies. Online learner ~litliout 
instance storage have good results regarding rcqs. (b) and 
(d), however, often at the expense of lower classification 
accuracy compared with ofline learners. Partial instance 
storage can be applied for online learners. Here, sets of 
training instances are managed within the model enhancing 
the model's "knowledge", which increased the classification 
accuracy. 

2.4 Online leaming algorithms and FLORA 

The class of online leaming algorithms provides proinising 
features for our class of applications. Plain online learners, 
which do not have an instance management and do not store 
samples, enable fast adaptation to new concepts, because 
new samples overrule old and conflicting samples. Due to 
this behavior, however, they are typically not as precise as 
offline leamers. Examples for online learning algorithrns 
are STAGGER and Winnow [14]. To compensate for the 
iinprecision of online learners, either statistic extensions 
and heuristics are applied or partial instance storage is 
irnplemented. Online learners featuring the latter extension 
can be described as hybrids between incremental and online 
learning algorithms. They store and process a set of cur- 
rent samples to compensate the loss of information, which 
results during model building (e.g. by discretization) [15]. 
Examples for algorithms using this concept are LAIR [16], 
HILLARY [17], and FLORA [3]. 

For our work, we have chosen FLORA ("FLOating 
Rough Approximation") as a basis, because it is consid- 
ered a de-facto standard among online learning algorithms. 
FLORA has been incrementally developed and Comes in 
four versions (FLORA- I to FLORA-4). The algorithm gen- 
erates a rule-based model, which has the ability to make 
binary decisions using discrete input data. A rule is re- 
lated to at least one sample, which is stored within the 
included instance management. Rules are removed, if all re- 
ferring samples are discarded by the instance management. 
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FLORA manages three different rule sets: the Accepted 
DEScriptor-Set (ADES) to represent positive niles, the Po- 
tential DEScriptor-Set (PDES) representing neutral rules, 
and the Negative DEScriptor-Set (NDES) representing neg- 
ative rules. 

The FLORA model can be instantaneously adapted, 
by creatinglassigning into these sets or by moving rules 
between these Sets appropriately. The decision process is 
performed by matching incoining samples against the 
ADES-Set, while the other Sets are used during the model 
adaptation in order to generalize or depreciate rules. 

FLORA-2 extends the instance management of the basic 
FLORA concept by adding a flexible window size, which 
is set by monitoring the model's stability and accuracy. 
During the initial training phase the window size increases, 
whereas the size is kept constant in steady state (i.e. for 
stable concepts). If a concept drift is detected the window 
size is decreased, thus, leading to fast adaptation to new 
concepts. However, if concept dnft is mis-indicated, the 
classification accuracy suffers. 

FLORA-3 introduces a "long-term mind" in order to 
handle incorrectly indicated concept drifts. During steady 
state, the current model (all nile-sets) is stored. If-after a 
concept drift-the latest concept matches a concept within 
the long terin mind, the old concept is restored, thus short- 
ening the learning cycle. This leads to increased accuracy 
and allows for a more sensitive configuration of the concept 
drift detection. A drawback of FLORA-3 is the memory 
intensive storage of old models, which depends on the 
number of models as well as on the size of the individual 
nile sets. 

FLORA-4 has been designed to also handle noisy or con- 
tradicting feedback. To hinder the removal of valid concepts 
due to noise in samples (FLORA-1-3 reacts by invalidating 
even well-established concepts if encountering a single 
contradicting sample), the model allows a certain amount of 
contradiction. As a result, FLORA-4 is much inore robust 
to noisy input data, however, resulting in a much slower 
convergence of the inodel, which is also hindering the swift 
reaction to concept drift. 

2.5 Summary 

We identified the key requirements of context-aware and 
pervasive computing for inachine learning algorithms. On- 
line algorithms fulfil most of these requirements, as they 
enable fast evaluation as well as fast model building. We 
identified FLORA as a lightweight and accurate candi- 
date algorithin to operate with low memory consumption 
and providing an excellent basis for concept drift han- 
dling. For our intended cxtension, FLORA-3 and FLORA- 
4 add unnecessary complexity, thus, we base our work on 
FLORA-2. 

3 FLORA-MC 

We introduce FLORA-Multiple Classification (FLORA- 
MC) to address the aforementioned short-comings of exist- 
ing machinc learners. In particular, we detail the design and 
implementation of FLORA-MC with particular emphasis on 
the key mechanisms of the algorithm. 

3.1 Algorithm design 

FLORA-MC is based on FLORA-2 [3]. Main drawbacks of 
the FLORA family are the restrictions to nominal input val- 
ues (sensor values for training instances) and binary output 
values (classifications) only, which are severe liinitations for 
the envisioned application area. At the Same time, the design 
principle of FLORA provides a powerful basis for our work, 
because the inherent characteristics of this learner are very 
promising. Our design, thus, is based on the construction 
principle of FLORA, but replicates the main design element, 
i.e., the storage for description items, to match the number 
of target categories. To ensure proper operation of FLORA- 
MC, we have to realize the handling of multiple descriptor 
sets instead of the unique Sets in FLORA. 

We next describe the internal working of our algorithin. 
The processing of input values of FLORA and FLORA-MC 
is based on classification rules, so-called description iteins 
(DI), which are composed out of different combinations 
of the attribute values of the training instances; e.g., a 
D1 for FLORA-MC could be size = small A diarneter = 
[2.2; 2.91 A temperature = [30; 401 A color = green. Please 
note that only numerical values are represented using inter- 
vals, but nominal values can only be uniquely represented in 
the description item (i.e., size = {small, inediutn) is not per- 
mitted). DIS are constructed or extended during the learning 
process (see Section 3.2 below for details on learning and 
forgetting). The FLORA family stores the obtained DIS in 
its ADES, PDES, and NDES sets. For FLORA-MC, the 
division in three subsets as well as the (logical) role of 
the sets is kept. However, we depart frorn the limitation of 
only one group of description Sets (ADES, PDES, NDES) 
per category, which results in a more complex interrelation 
between the individual Sets (see Fig. 4): 

The ADES-Set m contains all DIS, which describe 
category rn, i.e., all corresponding training instances are 
representing category m. 
The NDES-Set m contains all DIS, which do not de- 
scribe category m. Training instances are of category 
1 . . . n without rn. However, this does not imply that the 
NDES DIS of category m form the union of all DIS of 
the ADES-Sets from 1 . . . n without m. 
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Figure 4 Working principle of 
FLOR/\-MC. The original 
FLORA algorithm manages 
oiily uiiique ADES, PDES, and 
NDES Sets 

/ training instances 
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1 11  NDES set I 1 NDES ~ e t  n / I 

description item N(1,z description itern N(n,z,J 1 . 1 

description itein N(I, I) 

- The PDES-Set m contains all DIS, which are ssupported 
by instances of category m as well as instances different 
from in. 

description item N(n, I) 

Description items are only kept in the corresponding Set, 
as long as training instances are within the range of the 
window, but are reinoved as soon as this is no longer true. 
The above example could be part of ADES for category 
"bad" and NDES for category "nice" and "fair" (the exam- 
ple is based on the STAGGER-methodology for evaluation 
of our learning algorithin, which is further elaborated in 
Section 4.1). 

3.2 Learning and forgetting for multiple classifications 

The key inechanisms of FLORA are the process of knowl- 
edge acquisition (leaming) as well as the process of dis- 
carding knowledge (forgetting). The learning process is 
straightforward: new instances passed to the learning sys- 
tem enter the window and trigger a call of function learn() 
(see Fig. 5). For the ease of following the discussion, we 
keep the notation of [3] as far as possible. 

Function learn() is called as learn(I, ADES!, PDES;., 
NDES) and works as follows. (1) A new training instance 
(sample) I for ADESi enters the system/window. (2) The 
algorithm checks, if instance I matches (nominal values 
are equal, numerical values fall into the given interval) an 
existing D1 (ADJ) in ADES-Set ADES) For a non-matching 
instance, the algorithm tries to generalize an existing D1 
(ADZJ in ADES-Set ADESi. For matching items, the sup- 
porting Counter of the matching D1 is incremented. The 
support coiinter ultimately determines, if DIS arc either kept 
in the ADES-Set (AP, > 0) or removed (AP, = 0). Similar 
Counters exist for NDES (NN, ) .  (3) The function general- 
ke() is called to extend an existing D1 with respect to its 
numerical values/intervals. Only DIS that have all nominal 
values in common with the new sample are considered.' 

'Please note that the original FLORA algorithm performs the gener- 
alization differeiitly: nominal values are directly removed from the 
Dls (we keep these nominal valoes and extend the intewals of the 
numerical values only). A weakness of FLORA'S simple removal 
strategy is the easy over-generalization of concepts, which leads to 
inferior classification perforniance. 
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Notations: 
A D E S  
P D E S  
N D E S  
I 
A P; 
PPi,  PN; 
N Ni 

siimmary of all ADES-Sets 
summary of all PDES-Sets 
summary of all NDES-Sets 
new training instance 
num. of 1 supporting A DI; 
num. of I supporting PD], 
num. of I supporting N D  I; 

A lgorithm: 
function learn(1, A D ES,, P D  ES,, N D  ES) 

M A T C H  := false 

for i := 1 to IA DESjl d o  
if rnatch(1, A DI;) then 

A P ; : =  A P ; +  1 
M A T C H  := true 

if not M A T C H  then 
G := generalize(1, A D ES,, N D  ES,) 

if not MA T C  H and not G then 
include(1, A P, = 1, A D ESj) 

for i := 1 to  1 P D  ESjl d o  
if match(1, P D I , )  then 

PP; := PP; + I 

f o r i  := 1 to INDES, ]  d o  
if match(1. NDl;)  then 

delete(NDl;,  N D  ES,) 
include(NDI;, PNi  = NNi, PP; = 1 ,  PDES,)  

Figure 5 FLORA-MC function: learn() 

To avoid over-generalization, the NDES-Set j has to be 
jointly processed. (4) Only if an existing D1 cannot be 
generalized, a novel D1 in ADESi is created. The supporting 
counter is initialized to AP, = 1. (5) A check is performed 
if the instance inatches a D1 in the PDES-Set. If yes, the 
supporting counter is increinented similar to step (2) for 
the ADES) (6) As a last step, the algorithm checks if the 
instance is equal to an existing D1 of NDES-Set j. If yes, the 
D1 is moved into PDES-Set j with PN = Nfl ,  and PPi = 1. 

It is important to note that the function learn() is also 
applied on all NDES-Sets except NDES-Set jper  instance. 
The inodified pseudo-code has to exchange the NDES and 
ADES-Sets as well as the corresponding DIS. Additionally, 
counter PP; is replaced by PN.  

Please note the Special role of the PDES-Set. In PDES, 
DIS are not included or generalized directly, but only if they 
are moved from ADES or NDES. E.g., if a D1 has been 

created in ADES-Set m, and a novel instance for category 
m + 1 matches this DI, then it is tnoved to the PDES-Set, 
because the D1 now supports an instance not only form, but 
also for an instance other than m. Within the PDES-Set the 
item has a supporting counter (Pfi) for category m as well 
as a counter ( P q )  for categories other than m. Using the 
function,forget(), the D1 can be moved back to the ADES or 
NDES set. 

Function forget() (see Fig. 6) is called to remove DIS 
from the descriptor sets, the call being ,forget(l, ADES,, 
PDEq, NDES). (1) The supporting counter Afi is decre- 
mented. If the D1 is no longer supported by any training 
sample in the window (AP, = O), the D1 is removed from 
the ADES-Set. (2) The counter for PDES-Set j is also 
decremented. However, as soon as Zero is reached, the 
D1 is inoved back into the NDES-Set j i.e, the D1 in 
question is only further supported from instances other than 
category j. 

Again, the function ,forget() is also executed on the 
NDES-Sets, the changes in the pseudo-code are similar to 
the ones for function learno. 

To support numerical attribute values in training in- 
stances, our FLORA extension introduces the concept of 
(numerical) intervals. Matching of numerical input values is 
performed constantly (i.e. for each new instance feeding the 
leaming process). A key problem of supporting numerical 
values instead of nominal values is to determine up to 
which distance a new element is considered to inatch an 
existing value or fall into an existing interval. FLORA-MC 
checks for each set, if the intervalslvalues n~atch or can be 
joined (generalized) with an existing intervallvalue. Joining 
an interval in ADESi requircs both intervals plus/ininus a 
smoothing factor to overlap each other, while at the same 
time not contradicting any other D1 in the NDES-Set j. We 
introduce a smoothing factor to serve as a distance inetric. 

A lgorithm: 
function forget(I, A D ESj,  P D  ES,, N D  ES) 

for i := I to  IA DES,[  d o  
if rnatch(1, A DIi) then 

AP; :=  A P , -  1 
if A P; = 0 then 

delete(A D I;, A D ESj) 

for i := I to I P D  ESjl d o  
i f  match(I, PDI, )  then 

PP ,  := P P ,  - I 
if PP i  = 0 then 

delete(PDl;,  P D  ESj) 
include(PDIi, NN; = PN; , N D E S j )  

Figure 6 FLORA-MC function:,/orgct() 
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The smoothing parameter smooth E (0, 1 )  is User defined 
per nuinerical attribute. The generalization of the numerical 
value x or of an interval is performed as follows: 

( I )  smoothing(smooth, n) = J-, with n being a 
constant representing the' number of eleinents from 
all training instances falling within the interval and 
smootl~ being the threshold for the matching function. 
The higher the occupation of the interval, the lower the 
likelihood that distant values are part of this interval, 
the smaller the smoothing factor. 

(2) .V as value for a training instance is said to 
generalize a numerical value X within an D1 
if and only if X - smoothing(smooth, n) 5 y 5 x + 
srnoothing(srnooth, n). We are able to apply the Same 
riiles for an interval, if we extend the upper and lower 
bound of the interval by smoothing(smootli, n). 

The aforementioned functions are applied to allow for the 
multiple classification in FLORA-MC. In particular, the DIS 
in the ADES-Set form the basis for classifications. 

Based on the classification sets as well as the fundainen- 
tal functions learno and forget(), we are able to easily re- 
alize a multiple classification capability. Each classification 
instance entering the system is compared with all DIS in all 
ADES-Sets only, which can in fact lead to multiple hits. 

In contrast to the FLORA-14, a classification might 
fail due to the numerical nahire of the input values in 
FLORA-MC. The original algorithm family would classiS, 
an instance non-matching to any D1 as false, which is not 
feasible in FLORA-MC. Here, a minimal-distance-based 
approach is chosen to obtain the DI, which is closest to 
the sample. The function for the distance is determined as 
follows. (1) If a nominal value of an instance is not equal 
to the corresponding nominal value of a DI, the distance is 
increinented by one. (2) If a numerical value of an instance 
is not equal to the corresponding numerical value of a 
DI, the normalized distance between both nuinerical values 
is added to the distance. If the D1 contains a numerical 
interval for an attribute, FLORA-MC coinputes the distance 
between the numerical value of the classification instance 
and the upper or lower boundary of the interval. 

3.3 Window management 

The number of training instances that are used to build up 
the target concept is managed via FLORA-MC's window 
size, which thus acts as the inain control parameter of 
the algorithm. The appropriate choice and adaptation of 
the window size is paramount to guarantee a high quality 
of the classifications, while remaining sensible to concept 
drift. If the window is chosen too small, the entire learning 
process is characterized by uncertainty, which results in 
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an excessive amount of mis-classifications. In contrast, an 
oversized window decreases the algorithm perforrnance and 
leads to a much slower convergence in presence of concept 
drift. 

FLORA-MC could perform optimally, if the window 
size is reduced as soon as a concept drift occurs, thus 
allowing for a fast learning process for the novel concept 
space. We propose a window adjustment heuristic (WAH), 
to first detect concept drift and second adjust the window 
size accordingly (see Fig. 7). Since our algorithm is only 
exposed to partial real-world context information (in form 
of training instances), however, this detection of concept 
drift is challenging. This is particularly true due to the 
complexity of detection the concept drift for nuinerical 
instead of nominal input values. We embed our WAH into 
the learning process and make use of the characteristic 
operational parameters of the learner (accuracy Acc and 
Shannon-entropy S of the classifications). The behavior of 
the WAH is as follows. 

- The Shannon-entropy is a measiire of the uncertainty 
associated with a random information and can be used 
to act as a switch to avoid mis-detections of con- 
cept drift. Uncertain learning situations such as during 
the initialization of the system are suspected for S > 
~ l i re sho ld  Here the main goal is to stabilize prediction 
performance, but not to (mistakenly) assume concept 
drift. We propose to increment the window by one 

Nota~ion: 
I W] window size 
S Shannon-entropy (using previous classifi- 

cations) 
Acc current accuracy (using previous classifi- 

cations) 
Ace„, previous accuracy 
OA~, . , , ,  standard deviation of Accpr,. 

User-ciefined pararneters: 
A C C ~ / , ~ ~ , ~ ~ , , / , /  accuracy threshold 
.r/hresho/d Shannon-entropy threshold 

Algorithm: 
if ( S  > St/lrc.vho/,t) 

I W I = I W I + I  
else if ( A c c  < A C C ~ ~ , . ~ , . ~ ~ , , ~ ~ ~ )  and ( A c c  (Ace,,,.,.-aA„„,,.)) 

IWI = 0.8 * IWI 
else if ( Ace < Acc,l,r„l„,l,l) 

I W I = ( W l + l  
else 

IWI = IWI 
Figure 7 Window Adjiistrneiit Heuristic (WAH) 
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instance allowing FLORA-MC to acquire an additional 
sample, thus improving the prediction quality (if we 
assuine stable concepts) and mitigating the uncertain 
leaming situation. 
A concept drift can be suspected, if the accuracy is 
momentarily falling below a defined threshold (Acc < 
A c c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )  while, at the Same time, being smaller than 
the previous accuracy minus its standard deviation 
(Acc i (Accprc - CTA~~.„)). The window size should be 
significantly reduced, e.g., by 20%. The resulting re- 
duction in 20% of active training samples results in a 
preference towards novel concepts, thus increasing the 
convergence speed of the algorithm. 
A slowly decreasing classification accuracy (Acc < 
A c c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )  ~houid be countered by incrementing the 
window size. The increase in number of samples allows 
the leamer to increase its accuracy again. 
If none of the above applies, the learning behavior is 
considered to be fine, thus, no additional samples are 
necessary and the window size is kept constant. Also, 
for each arriving sample, old samples are discarded in a 
FIFO manner. 

A couple of key differences exist between our win- 
dow management heuristics and the mechanisms present in 
the original FLORA-2 model. First, we use the Shannon- 
entropy to yield more stable results directly after a context 
switch has been detected, while original FLORA does not 
so, which inight lead to constantly fluctuating window sizes 
in such situations. Second, FLORA-MC keeps the windows 
size constant if the context is detected as stable; FLORA- 
2 here decrements the window size by one, which caused 
problems for the classification of numerical values in our 
experiments. Also, the WAH of FLORA-2 inakes use of the 
ADES-Set, which is not possible for numerical values and 
the multi-classification case. Additionally, FLORA-2 uses 
a decrease in Acc to detect concept drifts. Using numerical 
values, however, Acc is constantly changing, which would 
unnecessarily trigger the FLORA-2 mechanism. FLORA- 
MC, in contrast, includes the standard deviation of the 
recent Acc values for the detection of concept drifts. In 
Summary, we added various suppleinental inechanisms to 
the original WAH heuristics of FLORA-2 to avoid mis- 
classifications in presence of numerical values and multi- 
classifications. 

3.4 Implementation 

We iinplemented FLORA-MC as a WEKA module, which 
is available to the community as open-source (see [18]). 
Impleinentation details can be found in [19]. 

4 Evaluation 

This section comprises the description of the evaluation of 
FLORA-MC. We first introduce the goals of our study and 
specify the features of the System under test. Subsequently, 
the Parameters of interest are introduced and the experimen- 
tal design is devised. By ineans of a comparative analysis, 
we study the perfonnance and accuracy of FLORA-MC vs. 
state-of-the-art offline leaming algorithms including Naive 
Bayes (NB), decision tree (DT), artificial neural network 
(NN) and support vector machine (SVM). For the latter 
four learners, we include implementations with and without 
a meta-window adjustment heuristic (meta-WAH), to be 
able to evaluate the handling of concept drift appropriately. 
We chose the well-known STAGGER-concept to generate 
the workload for our simulation study; to be able to mea- 
sure the extended features of FLORA-MC, we extend the 
STAGGER-concept correspondingly. Finally, we present 
the obtained results and analyse and interpret the findings. 

4.1 Goals and methodology 

Our goal is to study the performance and accuracy of 
FLORA-MC, i.e., the model-building time, the precision of 
the model predictions, and the reaction time to concept drift. 
We compare FLORA-MC with a representative Set of offline 
learners. 

Naive Bayes (NB), which is a simple, yet highly effi- 
cient incremental probabilistic leamer. 
Decision tree (DT), which represents the class of 
hierarchical-tree algorittuns. We use a binary tree with 
NB-classifier. 
Artificial neural network (NN), which is an algorithn 
inodelling the learning process of the human brain. 
Support vector machine (SVM), which detects pat- 
tems by mapping the input vectors into a high di- 
mensional space and constructing maximal separating 
hyperplanes. 

Obvioiisly the above offline leamers arc not able to 
natively handle concept drift. To level the playing ground 
and allow for a fair comparison with our incremental online 
learner FLORA-MC, we augment the offline learners with a 
window heuristic (meta-WAH) similar to our WAH to detect 
concept drift. The interpretation of the results discusses the 
implications and efficacy of this approach. 

We build on the STAGGER-methodology introduced 
by Schlimmer and Granger [20] for the evaluation of the 
algorithms, because it is comnonly used to relate the perfor- 
inance between online and offline learners in literature (see 
e.g. [2 11). Originally, the STAGGER-concept uses a simple 
domain of three nominal attributes, which are defined as 
follows. 
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- object size E {(s)rnull. (m)ediurn, ( / )arge) ,  
- object color E {(g)reetl, (b)lue, ( r )ed] ,  and 
- object s h a p  E ((b-)iangular, (ci)rcular, (sq)iiare). 

The learning cycle consist of three distinct phases in the 
following order [3]. 

- Concept 1: 

size = smull A color = red := psit ive 
- Concept 2: 

color = green V s h a p  = circ~llat- := psit ive 
- Concept 3: 

size = (medium V large) := psit ive 

We inodify the STAGGER-concept to suit our case. We 
keep the object size and color, but replace the object shape 
with two numerical attributes: diameter and temprature. 
We retain the three concepts (or phases), however, now 
reprcsenting a multi-variate learning scenario instead of 
a binary one, the class values being (nice, fair, Ind]. The 
learning phases are defined as follows. 

- Conceptlphase 1: 

size = s A color = r A dia. = [O; 21 A tenip. 
= 125; 451 := nice 

size = m A color = g A dia. = [2; 31 A temp. 
= [O; 251 := ,fair 

size = I A color = b A dia. = ([O; 2 )  V 13; 51) 
A temp. = [O: 451 := bad 

- Conceptlphase 2: 

size = rn A color = G A dia. = [ 2 ;  3 1 A ternp. 
= [O; 251 := nice 

size = 1 A color = B A  dia. = (10; 21 V [3; 51) 
A temp. = [O; 451 := &ir 

size = s A color = R A  dia. = [O: 21 A ternp. 
= [25: 451 := bad 

- Conceptlphase 3: 

size = m A color = G A dia. = [2; 31 A temp. 
= [O; 251 := nice 

size = 1 A color = B A  dia. = ([O; 21 V [3; 51) 
A ternp. = [O; 451 := fair 

size = ( s  V m )  A color = ( g  V r )  r\ dia. 
= [2; 31 A temp. = [25; 451 := bad 

Figure 8 visualizes our modified STAGGER- 
methodology. The boxes filled in grey indicate the 
class-value for the concept nice, vertical lines indicate the 
valuc &ir, and horizontal lines the value Ind. It is obvious 
that the transition from phase 1 to phase 2 changes all 
concepts (concept drift in 313 concepts). The transition 
between phase 2 and 3 only varies the concept for bzd. Thus, 

the modified STAGGER-concept allows the evaluation of 
the learners for strong and weak concept drift. 

4.2 Experimental design and workload 

We perform ten replications per simulation. The ten training 
Sets are randomly created using the modified STAGGER- 
concept; however, to be able to compare the results, we 
re-use the Same ten random STAGGER data Sets for all 
algorithms. Each Simulation nin consists of the training 
of each individual training-instance (denoted as I, I E 

{ 1 . . . 1 SO}), i.e., we perform 150 trainings per riin, and 
subsequently 100 test-classifications per training to obtain 
the classification accuracy. The runtime results havc becn 
obtained using WEKA 3.4.7 [4] on a Pentium IV, 3.0 GHz 
PC with IGByte main meinory. 

Our FLORA-MC algorithm can be tuned to fit specific 
scenarios. The influence of parameters such as window size, 
the liinits of the Shannon-entropy to detect concept drift 
using our WAH, and the reduction rate of the window size 
if a concept drift is detected has been evaluated; please 
refer to [I91 for an extensive Set of experimental results 
covering all the individual building blocks of the FLORA- 
MC System. For the remainder of the experiments, we 
have chosen conservative settings to act as a baseline for 
FLORA-MC. The limit of the Shannon-entropy is Set to 
0.7, Acc = 0.7, the windows size is reduced by 20%, if 
WAH detects a concept drift. A second, more aggressive 
parameterization, reduces the windows size by 100%, i.e., 
discards all training samples if a concept drift is detected. 
If WAH does not work properly, the latter parameterization 
might lead to unstable classifications, because entire (valid) 
concepts might be dropped; however, this behavior has not 
been observed during the performed experiments. Further 
optimization of these parameters is possible and has been 
extensively discussed in [19] for the employed training Set. 

4.3 Results-comparative performance analysis 

The obtained results for the classification accuracy of the 
tested algorithms are shown in Fig. 9. In particular, we 
analyse the performance ofFLORA-MC vs. the plain offline 
learners and vs. offline learners that are extended with our 
meta-WAH (20% window reduction). Table 1 shows the 
corresponding results for the runtime-characteristics of the 
algorithms for model building and classification. We also 
study the performance of FLORA-MC vs. offline learners, 
if both use a more aggressive WAHImeta-WAH, which dis- 
cards 100% of training samples as soon as a concept drift is 
detected (see Fig. 10 and Table 2). While the latter approach 
allows for a much faster convergence of the algorithms, it 
presents the danger of mis-detections of concept drifts; thus, 
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(a) Modifi ed STAGGER-concept phase I. 
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(b) Moditied STAGGER-coiicept phase 2. 
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temperature 

(C) Modified STAGGER-concept phase 3. 

Figure 8 Visualization of the three phases of the modified STAGGER-concept, which seives as the workload for our performance evaluation 

the implications of the aggressive WAHJmeta-WAH have to 
be carefully considered, depending on the application. 

All presented results represent the average values over 
ten replications per siinulation. For the ease of following the 
discussion, we highlight the relative runtime-performance 
of the algorithms in Tables 1 and 2 using arrows: J, indi- 
cates that FLORA-MC performs worse cornpared with the 
respective offline leamer, while f denotes that FLORA-MC 
outperforms the candidate offline algorithm. Please note 
that some of the results for the algorithm-runtime show 
iip to an order of three magnitudes difference between 
the algorithms; this behavior is obvious though, since we 
compare our online learner (FLORA-MC) that incremen- 
tally adjusts its rnodel with offline learners (NB, DT, NN, 
SVM) that have to fully rebuild the model 150 times during 
our test. 

4.3.1 FLORA-MC vs. Naive Bayes (NB) 

Figures 9a and 10a clearly show that our FLORA-MC 
approach outperforms NB with respect to classification 
accuracy for all three phases of the modified STAGGER- 
concept. During the first phase (1 = 1 . . .50) FLORA-MC 

quickly adapts to the concepts, because all sets (ADES, 
PDES, NDES) are initially empty. For the second phase 
(1 = 5 1 . . . 100) all concepts are exchanged, thus modeling 
an abrupt concept drift. FLORA-MC's behavior-as shown 
in Fig. 9a-is characterized by a slightly dainped learning 
process; WAH detects the concept drift and reduces the 
window size, however, still the outdated concepts need to 
be vacated. 

If we compare the results from Figs. 9a and IOa, it is 
clearly visible that a moderate reduction of the window 
(i.e. of 20%, see Fig. 9a) leads to a slow adaptation, while 
the increase in learning accuracy is much steeper for the 
aggressive WAH (reduction of 100%, see Fig. 10a). The 
drift of one concept during the transition into the third phase 
(I = 101..  . 150) does not trigger our WAH, nevertheless 
FLORA-MC shows an excellent performance: the learner 
moves the vacated concept from an ADES Set to a PDES set 
and creates a novel ADES set describing the new concept 
and is, thus, able to follow the concept drift swiftly. 

Compared with NB, FLORA-MC is characterized by 
faster convergence times as well as overall higher accu- 
racy of the classification. Especially the ability of FLORA- 
MC to constnict a working set with very few samplcs 
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lnstance 
(a) FLORA-MC vs. Naive Bayes (NB). 
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(b) FLORA-MC vs. Decision Tree (DT). 
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(C)  FLORA-MC vs. Neural Network (NN). (d) FLORA-MC vs. Support Vector Machine (SVM). 

Figure 9 Classification accuracy of FLORA-MC vs. offline learning algorithms NB, DT, NN. and SVM 
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outperforms NB, which needs a larger number of sainples 
due to its conditional-probability-bascd nature. NB without 
meta-WAH struggles to handle the concept drifts of phase 
2 appropriately, since the classifier still uses all (now out- 
dated) samples. Only at around I = 100, NB again reaches 
an accuracy of SO%, because the Set of samples for both 
concepts is equal. The same behavior can be observed 
during phase 3. Our proposed meta-WAH significantly im- 
proves NB for all tests. The window reduction of 20% (see 
Fig. 9a, I = 5 1 . . . 100) is not able to reinove enough con- 
flicting sainples and results in a slower adaptation to the 
novel concepts compared with FLORA-MC. The results in 
phase 3 are closer to FLORA-MC, because the moderate 
change of only one concept can be covered by NB'S strategy 
inuch faster. Table 1 and Table 2 show that NB has excellent 
runtime-behavior, though. Due to the simple incremental 
probabilistic nature, the inodel-building times are very short 

and faster if compared with FLORA-MC; the classification 
times are excellent as expected for the simple NB learner. 

I , . , . . ,  

4.3.2 FLORA-MC vs. Decision Tree (DT) 

The original DT algorithm (which bases on NB to determine 
its branching dccision) shows very fast convergence for 
phase 1 (I = 1 . . .50). In contrast to NB, the construction 
of the decision tree allows for immediate classifications 
of high certainty. For phase 2 and 3, pure DT reaches 
only mediocre classification accuracy as shown in Fig. 9b, 
because it still relies on the tree constructed during phase 1, 
thus mirroring the shortcoming of NB. In combination with 
our incta-WAH, the accuracy improves significantly and is 
roughly on par with FLORA-MC (see Fig. 9b and lob) 
due to the construction of an entirely novel tree-structure. 

.,..:: :... 
{ . . ,  DT .................... 

. FLORA-MC- ; ,;.,... , ..: ... ' . 
...... DT meta-WAI-1 
. I I . l . . I . . I . . I . . I . .  
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Table 1 Results for runtime of rnodel-buildin process and classification process (standard algorithms) 

Parameter FLORA-MC Naive Bayes (NB) Decision tree (DT) Neural network (NN) Support vector 
rnachine (SVM) 

Time [ms] Time [ms] r Time [ms] 1: Time [ms] Time [ms] t 

Avg. rnodel building 1.048 0.25 1 4.17 1 35.64 0.03 304 0.003 721 0.001 
Min. model building 0.513 0.083 6.181 13.25 0.04 251 0.002 694 0.001 
Max. model building 1.666 0.940 1.77 J 62.20 0.03 365 0.004 T 744 0.002 T 
Avg. classification 0.085 0.013 6.53 J. 0.009 9.44 J. 0.008 10.63 J. 0.006 14.17 J 
Min. classification 0.068 0.009 7.55 J 0.003 22.70 J 0.005 13.60 1 0.004 17.00 J 
Max. classification 0. I01 0.023 4.39 J. 0.021 4.811 0.011 9.18 J. 0.01 1 9.18 J 

We denote the relative gainlpenalty both as factor and visually using arrows: J. indicatcs that FLORA-MC perforrns worse conipared with thc 
respective leamer, while T denotes that FLORA-MC outperforms the respective algorithm 

While DT is able to converge even faster than FLORA-MC The nintime-behavior for the model-building process is 
for the second phase (I = 5 1 . . .  100) with standard window inferior to the performance of FLORA-MC as shown in 
settings, it is more susceptible to mis-classifications for the Tables 1 and 2; in contrast, the classification process is 
aggressive meta-WAH setting (see Fig. lob). handled better by DT. The edge in performance of FLORA- 
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(a) Aggressive meta-WAH strategy for NB. 
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(C) Aggressive meta-WAH strategy for NN. (d) Aggressive meta-WAH strategy for SVM. 

Figure 10 Classification accuracy of FLORA-MC vs. offline learning algorithms NB, DT, NN, and SVM. Aggressive meta-WAH strategy 
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Table 2 Results for niiitime of model-building process and classification process (aggressive WAFlImeta-WAH) 

Parameter FLORA-MC Naive Bayes (NB) Decision trec (DT) Neural network (NN) Support vector 
machine (SVM) 

Time [ms] Time [msl t Time [ms] $ Time [ms] 2 Time [ms] t 

Avg. model buildiiig 0.894 0.126 7.101 11.55 0.07 f 158 0.006 f 664 0.00i 
Min. model building 0.520 0.010 52.0 L 4.99 0.10 I18 0.004 f 639 0.001 T 
Max. niodel building 1.360 0.520 2.26 J 25.09 0.05 f 361 0.004 695 0.002 
Avg. classification 0.067 0.012 5.58 L 0.01 1 6.09 5 0.009 7.444 4. 0.004 16.75 4. 
Min. classification 0.056 0.009 6.22 J 0.005 11.20 4. 0.006 9.333 J 0.001 56.00 4. 
Max. classification 0.075 0.018 4.16 J 0.017 4.41 5 0.014 5.357 4. 0.010 7.50 J, 

We denote the relative gainlpenalty both as factor iuid visually using arrows: L indicates that FLORA-MC performs worse compared with the 
respectivc learner, wliile denotes that FLORA-MC outperforins tlie respective algorithni 

MC for thc expensive model-building process can be con- 
sidered the most important distinguishing factor between 
FLORA-MC and DT; thus, the choice betwecn both algo- 
rithms should be based on the corresponding application 
requireinents. 

4.3.3 FLORA-MC vs. Nezlrul Network (NN) 

Figurc 9c shows thc classification accuracy of NN: com- 
pared with FLORA-MC, again, the original leamer is in- 
ferior, while the meta-WAH brings NN nearly on par with 
FLORA-MC. This behavior meets our expectations, be- 
cause NN is subject to the same limitations as NB and 
DT. For the aggressive meta-WAH, the quality of classifi- 
cations of FLORA-MC and NN is equally good as shown 
in Fig. 10c. The classification runtime-behavior of NN is 
moderatcly better cornpared with FLORA-MC. However, 
the model-building process is slower in the order of 2- 
3 magnitiides for NN vs. FLORA-MC (see Table 1 and 
Tablc 2). Especially the latter fact makes NN a sub-optimal 
choice for ambient computing applications. 

4.3.4 FLORA-MC i1.r. Support Vector Machines (SVM) 

For static concepts SVM offers an excellent classification 
accuracy as shown in Fig. 9d for I = 1 . . .50. However, the 
original SVM algorithm shows the worst classification per- 
forinance of all offline leamers for abrupt change in multiple 
concepts (see I = 5 1 . . . 100 in Fig. 9d), which is due to the 
constniction of thc hyperplanes that reqiiires at least 50% 
of the sainples from the new concepts; starting from I = 75 
this requiremcnt is met and the accuracy Starts to improve. 
The standard meta-WAH is able to veiy much improve 
the perforrnance of the SVM, becausc the sample set is 
reduced and the SVM can construct maximal hyperplanes 
much earlier. E.g., the switch from the first to the second 
phase (abrupt change in all concepts that trigger the ineta- 
WAH) is handled superior compared with all other learners. 
However, the switch froin phase 2 to 3 (abrupt change in 
one of thrce concepts, meta-WAH is not triggered) is not 

handled that well. Like DT, SVM is also susceptible to the 
more aggressive meta-WAH (see Fig. Iod), showing worse 
classification accuracy compared with FLORA-MC. 

For SVM we observe the highest difference in runtime- 
behavior between classification and model building. The 
inodel-building process is up to three orders of magnitude 
slower compared with FLORA-MC, but the classification 
time is extremely fast, outperforrning all other learners. 
Like NN, the performance penalty of SVM excludes this 
algorithrn for tasks that demand fast model building. Addi- 
tionally, the inconsistency in the prediction quality of SVM 
can be considered as a drawback of this algorithm. 

4.4 Summary 

The obtained results are very promising, cspccially if we 
keep the intended application scenario in mind. Compared 
with the tested offline learners, FLORA-MC is able to 
reduce execution time for the model-building process in 
average by factors aroiind 13-34 (DT), 175-290 (NN), 690- 
740 (SVM); NB outperforms FLORA-MC by a factor of 
4-7, though. In contrast the classification time of FLORA- 
MC shows a 5-17-fold increase compared with the offline 
leamers. 

From the presented results, we can arguc that our al- 
gorithm FLORA-MC is well suited for applications in 
ambient computing. The model-building process that is 
commonly considered time-critical is reduced significantly 
(except compared with NB), while the increase in classi- 
fication time can bc tolerated, because it is still very low 
(in avcragc below O.lms per classification with FLORA- 
MC). The quality of the predictions can be judged as very 
good for FLORA-MC. Without meta-WAH, iione of the 
offline leamers is able to compete with the accuracy of 
FLORA-MC's classifications, given the workload includes 
concept drift. This is due to the functioning of FLORA- 
MC, which is able to adjust its ADES or NDES Sets as 
soon as one conflicting sample is recognized. Extending the 
offline learners with our meta-WAH brings the accuracy of 
classification of DT, NN, and SVM on par with FLORA- 
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MC; NB with meta-WAH still falls significantly behind 
FLORA-MC showing the worst accuracy of all algorithms, 
thus rendering the excellent runtime-performance pointless. 
In conclusion FLORA-MC presents a highly efficient and 
accurate machine leaming algorithm that has been tailored 
to fit the requirements of ambient computing. 

5 Conclusion 

The challenging requirements of reasoning mechanisms 
for ambient computing include ease-of-use, self-learning 
abilities, and very high prediction accuracy, while the em- 
ployed techniques need to be able to operate in realtime. 
To fulfil these requirements, we propose to rely on machine 
learning algorithms to evaluate and determine the context of 
Users, devices, and objects. We presented the FLORA-MC 
approach, which is one of the first approaches to introduce 
realtime model-building capabilities to aid the process of 
context determination. Based on the online learning ap- 
proach FLORA, we augmented the crucial features for 
the intended application area: (1) multiple classification 
capabilities and (2) support for numerical input values. At 
the Same time, our window adjiistment heuristic allows 
for superior handling of concept drift. We gave a detailed 
description of the design, implementation, and working of 
FLORA-MC. Based on our proof-of-concept impleinenta- 
tion [19], we validated the functioning of our algorithm 
and performed an extensive simulation study using repre- 
sentative artificial workload. Our results are very promising 
with respect to the perfonnance as well as accuracy of our 
algorithrn. FLORA-MC is able to outperform traditional 
offline learner by orders of magnitude with respect to model 
building time, which we consider crucial given the pos- 
sibly very high number of samples to be instantaneously 
processed in truly ambient computing. At the Same time, our 
scheme is able to follow concept drift with only minimal 
reaction time while maintaining an excellent quality of 
prediction, which is on par or better compared with state- 
of-the-art offline learners. We consider FLORA-MC to Open 
up various avenues of research. In current work, we are 
collecting input data in real world scenarios to be able 
to assess the performance of FLORA-MC under realistic 
settings; promising next steps are to fine-tune our algorithm 
to reach optimal perfoi~nance in such realistic scenarios. 
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Abstract Ambient systems weave computing and 
communication aspects into everyday life. To provide 
self-adaptive services, i t  is necessary to  acquire context 
information using Sensors and to leverage the collected 
inforrnation for reasoning and classification of situations. To 
enable self-learning systems, we propose to  depart from static 
rule-based decisions and first-order logic to  define situations 
from basic context, but to build on machine-learning 
techniques. However, existing learning algorithms show 
substantial weaknesses if  applied in highly dynamic 
environments, where we expect accurate decisions in realtime 
while the User is in-the-loop to  give feedback to  the system's 
recommendations. To address ambient and pervasive computing 
environments, we propose the FLORA-multiple classification 
(FLORA-MC) online learning algorithm. I n  particular, we 
enhance the FLORA algorithm to  allow for (1) multiple 
classification and (2) numerical input values, while improving its 
concept driR handling capabilities; thus, making it an excellent 
choice for use in the area of ambient computing. The multiple 
classification allows context-aware systems to  differentiate 
between multiple categories instead of taking binary decisions. 
Support for numerical input values enables the processing of 
arbitrary Sensor inputs beyond nominal data. To provide the 
capability of concept drift handling, we propose the use of an 
advanced window adjustment heuristic, which allows FLORA-MC 
to continuously adapt to the user's behavior, even if  herlhis 
preferences change abruptly over time. I n  combination with the 
inherent charaderistics of online learning algorithms, our 
scherne is very well suited for realtirne application in the area of 
ambient and pervasive computing. We describe the design and 
implementation of FLORA-MC and evaluate its peiformance vs. 
state-of-the-art leaming algorithms. We are able to  show the 
superior performance of our algorithm with respect to reaction 
time and concept drift handling, while maintaining an excellent 
accuracy. Our implementation is available to  the research 
community as a WEKA module. 
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