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Abstract Ambient systems weave computing and commu-
nication aspects into everyday life. To provide self-adaptive
services, it is necessary to acquire context information using
sensors and to leverage the collected information for reason-
ing and classification of situations. To enable self-learning
systems, we propose to depart from static rule-based deci-
sions and first-order logic to define situations from basic
context, but to build on machine-learning techniques. How-
ever, existing learning algorithms show substantial weak-
nesses if applied in highly dynamic environments, where
we expect accurate decisions in realtime while the user is in-
the-loop to give feedback to the system’s recommendations.
To address ambient and pervasive computing environments,
we propose the FLORA—multiple classification (FLORA-
MC) online learning algorithm. In particular, we enhance
the FLORA algorithm to allow for (1) multiple classifi-
cation and (2) numerical input values, while improving
its concept drift handling capabilities; thus, making it an
excellent choice for use in the area of ambient computing.
The multiple classification allows context-aware systems to
differentiate between multiple categories instead of taking
binary decisions. Support for numerical input values enables
the processing of arbitrary sensor inputs beyond nominal
data. To provide the capability of concept drift handling, we
propose the use of an advanced window adjustment heuris-
tic, which allows FLORA-MC to continuously adapt to the
user’s behavior, even if her/his preferences change abruptly
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over time. In combination with the inherent characteristics
of online learning algorithms, our scheme is very well suited
for realtime application in the area of ambient and pervasive
computing. We describe the design and implementation of
FLORA-MC and evaluate its performance vs. state-of-the-
art learning algorithms. We are able to show the superior
performance of our algorithm with respect to reaction time
and concept drift handling, while maintaining an excellent
accuracy. Our implementation is available to the research
community as a WEKA module.

Keywords ambient computing - pervasive computing «
context-aware computing - machine learning

1 Introduction
1.1 Introduction and motivation

The accurate determination of the context of users and
devices is the basis for ambient computing systems. In order
to adapt to changing demands and environments, the system
needs to reason based on basic context facts to determine
knowledge of higher level situations. Existing rcasoning
techniques include simple first-order logic and static rule-
based systems to infer about the user’s situation. However,
to adequately match the requirements of ambient computing
such as convenience and flexibility, the aforementioned
techniques are considered to be too intrusive and too hard
to configure and maintain. We focus our work on machine
learning algorithms to aid in building and maintaining deci-
sion models. Designed to provide a more natural interaction
between humans and computers, one of the key success
factors of these systems is the ease of use, i.e., the system’s
ability to continuously adapt to the user’s situation, the
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immediate response to user feedback, etc. Existing machine
learning approaches for context determination mostly rely
on offline learning algorithms, which are highly accurate.
However, accuracy comes at the expense of a slow model-
building process, large memory consumption, and—for
plain offline learning algorithms—the inability to handle
concept drift, i.e., the seamless adaptation to changing user
demands, appropriately (see [11).

Application scenarios such as context-aware commu-
nications or—more in general-—ambient computing and
communications have a set of pivotal requirements, which
would strongly benefit, if the model-adaptation process
could be performed in realtime, thus conserving the pre-
cious resource of user attention and waiting time. However,
there is a lack of adequate online learning algorithms, which
could push context-aware systems into the realtime realm.

This is particularly true, if we consider advanced features
of the learning algorithm, which are crucial tosupport
ambient services. Additional requirements for learning al-
gorithms to be applied in the aforementioned scenarios
are, e.g., the support of multiple classifications, i.e., the
ability of the model to differentiate between multiple result
categories, the support to handle numerical input values, and
the handling of concept drift, i.e., the very fast adaptation to
abruptly changing user preferences over time.

Due to the lack of applicable online learning algorithms,
offline learners in combination with window or weight-
ing mechanisms are often used as alternatives (see [2]).
When a concept drift occurs, these window mechanisms
preferably delete old history elements (see also Section
2.2), which leads to problems with multiple categories, i.e.,
rarely used categories are not supported correctly by the
resulting model. Instead of model updates, offline learners
typically perform complete model building, which can be
very costly, if the amount of samples or input values rises.
Online learning algorithms are able to detect changes and
adapt only the related parts of the model, thus providing for
fast adaptation of the model.

Given the aforementioned assumptions and require-
ments of the ability to (1) classify context into multi-
variate categories (multiple classification), while (2)
supporting arbitrary numerical input values and promptly
adapting to changing user preferences (numerical input
and concept drift), we discuss the following open research
questions:

— How to combine the realtime model-building capabil-
ities of online machine learning algorithms to allow
classification of contexts into multiple categorics?

— How to support numerical instead of nominal in-
put, while maintaining the capability of online ma-
chine learning algorithms to handie concept drift
appropriately?
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1.2 Contribution

We answer these research questions by introducing the
concepts to enhance online machine learning algorithms for
use in the application domain of context-aware and ambient
computing. In particular, our contribution is as follows:

—  We design the FLORA-MC algorithm, which combines
the online learning capabilities of the FLORA algorithm
[3] with multiple classification.

— We allow for processing of numerical input values in
FLORA-MC instead of nominal values only in FLORA.

— We present an extended window adjustment heuris-
tic (WAH) to address the concept drift problem. Our
heuristic is able to trade-off fast reaction time to concept
drift vs. optimality of the classification accuracy.

—  We enhance our WAH to be stable to context fluctua-
tions by evaluating the Shannon-entropy of the classifi-
cation process.

—  We realize an implementation of FLORA-MC, which
can be applied and compared with other algorithms
within the commonly used data-mining framework
WEKA [4].

—  We perform extensive experimentation to analyze the
performance of our algorithm in various representative
settings.

To the best of our knowledge, our work is the first one to
enhance online learning algorithms to provide an adequate
feature set supporting advanced context-aware services;
thus, pioneering the application of realtime model-building
capabilities within ambient and pervasive systems.

1.3 Outline

In Section 2, we survey related work in literature and
discuss the FLORA algorithm, which serves as the basis
for our work. In Section 3, we describe the design and
working of FLORA-MC and give implementation details.
We put particular emphasis on the multiple classification of
context and the window management to optimize the han-
dling of concept drift. In Section 4, a thorough evaluation
of the proposed algorithms is presented. This is followed by
Section 5, which summarizes our findings and gives point-
ers to future work.

2 Background and related work

This section first introduces an application scenario rep-
resenting the class of targeted ambient applications. Next,
related work in general that deals with ambient and context-
aware computing is surveyed. We then discuss the ap-
plication of machine learning algorithms in context-aware
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systems and introduce/define the terminology of these sys-
tems. We briefly survey the existing classes of algorithms
with emphasis on online leaming algorithms. In particular,
we discuss the FLORA approach, which serves as the basis
for our work.

2.1 Scenario and background

As a sample scenario we chose a context-aware multimedia
communication system such as introduced by G6rtz in [5].
The communication means in ambient environments are
characterized by an abundance of different communica-
tion technologies, services, and applications such as voice
over IP, instant messaging, email, video-conferencing, or
telepresence/teleimmersion. These means are often coupled
with technical or social implications. For instance, video-
conferencing demands an appropriate technical infrastruc-
ture for all participants; or on the dimension of social
context, the user might be embarrassed if her/his mobile
phone rings during a business meeting. In our sample appli-
cation, the goal is to optimally support the user in managing
her/his communication needs, while being agnostic to the
different communication channels as shown in Fig. 1.

Let us assume that Alice wants to talk to Bob. He might
or might not be available or wanting to accept the call. If
Alice realizes that she cannot reach Bob via phone, she
might want to contact him via email, instant messaging,
or leave a message on his voice mailbox. However, to
do so, both Alice and Bob have to constantly update the
configuration of their communication services; as of today
automation of appropriate call handling requires setting of
complex rules to govern the system’s decisions.

Ambient support for a smart communication service
could leverage a virtual assistant to control the handling of
calls (see, e.g., Schmitt et al. [6]). In particular, the context-
information about both communication partners and their
environment can be used to determine the appropriate
course of action. While being a simplistic example, the
system’s requirements are already very challenging and
also capture key requirements of ambient computing
systems. This includes but is not limited to appropriate
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Figure I Sample application of a smart communication service
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Figure 2 Architecture for context determination and model
adaptation

context acquisition and evaluation in realtime in highly
dynamic, complex environments. Furthermore, the service
should be self-learning with minimal user interaction, and
feedback of the user should be incorporated for future
decisions immediately.

Fundamental work in the area of context-aware and
pervasive computing has been pursued by Schilit [7] with
the Mobile Context-Aware Computing system, Dey et al.
[8, 9] with the Context Toolkit, and Schmidt et al. [10, 11]
in the Technology for Enabling Awareness (TEA) architec-
ture. A huge body of work has refined and extended on
this work and pushed it closer to real-world applications.
Recent efforts include the European projects Amigo [12]
and Ambient Networks [13], which aim to realize a smart
living environment and an ambient communication plat-
form, respectively. In our work, we focus on the decision
component within ambient computing systems. Our goal is
to provide one building block for these, namely an optimally
suited online machine-learning algorithm.

2.2 Applying machine learning for context-aware systems

In order to introduce a common terminology, Fig. 2 shows
an abstracted architecture of a context-aware system, which
is designed to adapt the applied decision model as follows.

1) Incoming sensor data is evaluated using the actual
decision model.

2) As a result, the decision model returns the determined
category, which can be used by the requesting instance,
e.g., to trigger an event or to configure devices.

3) The object/user can feedback the system with infor-
mation whether the decision has been correct, ¢.g., by
entering the demanded category into the system.

4) The feedback in combination with the related sensor
data forms a sample, which can be seen as a snapshot
of the user demand.

5) The sample is used to update the model or to generate
a new model in combination with a history of recent
samples.

@ Springer
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6) The adapted model is used for further evaluation-
requests.

It is obvious that the decision model needs to be created and
maintained to capture an accurate representation of the user
demand for a dynamic set of available sensors and sensor-
types. This model adaptation is performed by machine
learning mechanisms, which determine the patterns between
the input values (sensor data) and the output values (deci-
sions/categories). Discovered patterns will be represented
by model-specific expressions within the model. For our
application domain, the model and the algorithm for model
adaptation have to fulfil the following requirements.

a) Classification of a situation into a user-defined set of
categories.

b) Reaction on changing user demand as fast as
possible.

¢) Evaluation of sensor data in realtime.

d) Low system-requirements and effort for model build-
ing.

e) Accurate decisions in presence of dynamic sets of
sensor data (e.g., noise, missing data).

2.3 A brief survey on machine leaming algorithms
for context-aware systems

While several classes of machine learning algorithms exist,
only a few of them are suited for our application domain.
Figure 3 shows a classification of relevant algorithms. We
next briefly discuss the feasibility of the individual algo-
rithm classes for the given requirements.

Requirements (a) and (b) indicate the use of the class of
supervised learner, whereas req. (¢) prohibits the use of lazy
learners. For our problem, we can thus chose from the eager
learners: algorithms of the online learner class are designed
to cater to req. (b) and (c), while algorithms of the offfine
learner class are particularly useful for req. (e).

Offline learners (or batch learners) are designed to handle
common data-mining tasks. Due to their long history, many
well-engineered algorithms are available, e.g., algorithms to

inductive learner

unsupervised learner supervised learner

/

(-] lazy learner eager learner
— 7

[...] online learner offline learner
— ]

[...] batch learner incremental learner

Figure3 Overview of machine learning algorithms for context-aware
systems
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generate support vector machines (SVM), Neural Networks
(NN) or Decision Trees (DT). Enhancing offline learners
with a meta-algorithms to introduce window management
allows to fulfil regs. (b) and (¢). Howecver, since most offfine
learners need to build up an entirely new model each time
instead of incrementally updating the existing model, req.
{d) cannot be easily fulfilled. We here omit the further
discussion of other meta-algorithms such as »-way binary
classification to address req. (a), since the violation of req.
(d) outweighs the possible gain of these mechanisms for our
scenario.

In contrast, incremental learners (such as algorithms for
generation of Naive Bayes (NB) models) and online learn-
ers have the feature to update existing models for each new
sample, thus, satisfying req. (d). Onfine learners use several
sample (instance) storage strategies. Online learner without
instance storage have good results regarding regs. (b) and
(d), however, often at the expense of lower classification
accuracy compared with offline learners. Partial instance
storage can be applied for online learners. Here, sets of
training instances are managed within the model enhancing
the model’s “knowledge”, which increased the classification
accuracy.

2.4 Online learning algorithms and FLORA

The class of online learning algorithms provides promising
features for our class of applications. Plain online learners,
which do not have an instance management and do not store
samples, enable fast adaptation to new concepts, because
new samples overrule old and conflicting samples. Due to
this behavior, however, they are typically not as precise as
offline learners. Examples for online learning algorithms
are STAGGER and Winnow [14]. To compensate for the
imprecision of online learners, either statistic extensions
and heuristics are applied or partial instance storage is
implemented. Online learners featuring the latter extension
can be described as hybrids between incremental and online
learning algorithms. They store and process a set of cur-
rent samples to compensate the loss of information, which
results during model building (e.g. by discretization) [15].
Examples for algorithms using this concept are LAIR [16],
HILLARY [17], and FLORA [3].

For our work, we have chosen FLORA (”FLOating
Rough Approximation”) as a basis, because it is consid-
ered a de-facto standard among online learning algorithms.
FLORA has been incrementally developed and comes in
four versions (FLORA-1 to FLORA-4). The algorithm gen-
erates a rule-based model, which has the ability to make
binary decisions using discrete input data. A rule is re-
lated to at least one sample, which is stored within the
included instance management. Rules are removed, if all re-
ferring samples are discarded by the instance management.
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FLORA manages three different rule sets: the Accepted
DEScriptor-Set (ADES) to represent positive rules, the Po-
tential DEScriptor-Set (PDES) representing neutral rules,
and the Negative DEScriptor-Set (NDES) representing neg-
ative rules.

The FLORA model can be instantaneously adapted,
by creating/assigning into these sets or by moving rules
between these sets appropriately. The decision process is
performed by matching incoming samples against the
ADES-Set, while the other sets are used during the model
adaptation in order to generalize or depreciate rules.

FLORA-2 extends the instance management of the basic
FLORA concept by adding a flexible window size, which
is set by monitoring the model’s stability and accuracy.
During the initial training phase the window size increases,
whereas the size is kept constant in steady state (i.e. for
stable concepts). If a concept drift is detected the window
size is decreased, thus, leading to fast adaptation to new
concepts. However, if concept drift is mis-indicated, the
classification accuracy suffers.

FLORA-3 introduces a “long-term mind” in order to
handle incorrectly indicated concept drifts. During steady
state, the current model (all rule-sets) is stored. If—after a
concept drift—the latest concept matches a concept within
the long term mind, the old concept is restored, thus short-
ening the learning cycle. This leads to increased accuracy
and allows for a more sensitive configuration of the concept
drift detection. A drawback of FLORA-3 is the memory
intensive storage of old models, which depends on the
number of models as well as on the size of the individual
rule sets.

FLORA-4 has been designed to also handle noisy or con-
tradicting feedback. To hinder the removal of valid concepts
due to noise in samples (FLORA-1-3 reacts by invalidating
even well-established concepts if encountering a single
contradicting sample), the model allows a certain amount of
contradiction. As a result, FLORA-4 is much more robust
to noisy input data, however, resulting in a much slower
convergence of the model, which is also hindering the swift
reaction to concept drift.

2.5 Summary

We identified the key requirements of context-aware and
pervasive computing for machine learning algorithms. On-
line algorithms fulfil most of these requirements, as they
enable fast evaluation as well as fast model building. We
identified FLORA as a lightweight and accurate candi-
date algorithm to operate with low memory consumption
and providing an excellent basis for concept drift han-
dling. For our intended cxtension, FLORA-3 and FLORA-
4 add unnecessary complexity, thus, we base our work on
FLORA-2.

3 FLORA-MC

We introduce FLORA-Multiple Classification (FLORA-
MC) to address the aforementioned short-comings of exist-
ing machine learners. In particular, we detail the design and
implementation of FLORA-MC with particular emphasis on
the key mechanisms of the algorithm.

3.1 Algorithm design

FLORA-MC is based on FLORA-2 [3]. Main drawbacks of
the FLORA family are the restrictions to nominal input val-
ues (sensor values for training instances) and binary output
values (classifications) only, which are severe limitations for
the envisioned application area. At the same time, the design
principle of FLORA provides a powerful basis for our work,
because the inherent characteristics of this learner are very
promising. Our design, thus, is based on the construction
principle of FLORA, but replicates the main design element,
i.e., the storage for description items, to match the number
of target categories. To ensure proper operation of FLORA-
MC, we have to realize the handling of multiple descriptor
sets instead of the unique sets in FLORA.

We next describe the internal working of our algorithm.
The processing of input values of FLORA and FLORA-MC
is based on classification rules, so-called description items
(DI), which are composed out of different combinations
of the attribute values of the training instances; e.g., a
DI for FLORA-MC could be size = small A diameter =
[2.2; 2.9] A temperature = [30; 40] A color = green. Please
note that only numerical values are represented using inter-
vals, but nominal values can only be uniquely represented in
the description item (i.e., size = {small, medium} is not per-
mitted). DIs are constructed or extended during the learning
process (see Section 3.2 below for details on learning and
forgetting). The FLORA family stores the obtained Dls in
its ADES, PDES, and NDES sets. For FLORA-MC, the
division in three subsets as well as the (logical) role of
the sets is kept. However, we depart from the limitation of
only one group of description sets (ADES, PDES, NDES)
per category, which results in a more complex interrelation
between the individual sets (see Fig. 4):

The ADES-Set m contains all DIs, which describe
category m, i.e., all corresponding training instances are
representing category m.

The NDES-Set m contains all DIs, which do rot de-
scribe category m. Training instances are of category
1...n without m. However, this does not imply that the
NDES DIs of category m form the union of all DIs of
the ADES-Sets from 1...n without m,
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Figure 4 Working principle of
FLORA-MC. The original
FLORA algorithm manages
only unique ADES, PDES, and
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— The PDES-Set m contains all DIs, which are supported
by instances of category m as well as instances different
from m.

Description items are only kept in the corresponding set,
as long as training instances are within the range of the
window, but are removed as soon as this is no longer true.
The above example could be part of ADES for category
“bad” and NDES for category “nice” and “fair” (the exam-
ple is based on the STAGGER-methodology for evaluation
of our learning algorithm, which is further elaborated in
Section 4.1).

3.2 Learning and forgetting for multiple classifications

The key mechanisms of FLORA are the process of knowl-
edge acquisition (learning) as well as the process of dis-
carding knowledge (forgetting). The learning process is
straightforward: new instances passed to the learning sys-
tem enter the window and trigger a call of function learn()
(see Fig. 5). For the ease of following the discussion, we
keep the notation of {3] as far as possible.

@_ Springer

Function learn() is called as learn(I, ADES;, PDES;
NDES) and works as follows. (1) A new training instance
(sample) [ for ADES; enters the system/window. (2) The
algorithm checks, if instance / matches (nominal values
are equal, numerical values fall into the given interval) an
existing DI (4D1) in ADES-Set ADES),. For a non-matching
instance, the algorithm tries to generalize an existing DI
(ADI) in ADES-Set ADES;. For matching items, the sup-
porting counter of the matching DI is incremented. The
support counter ultimately determines, if DIs arc either kept
in the ADES-Set (4P > 0) or removed (4P, = 0). Similar
counters exist for NDES (NN}). (3) The function general-
ize() is called to extend an existing DI with respect to its
numerical values/intervals. Only DIs that have all nominal
values in common with the new sample are considered.'

'Please note that the original FLORA algorithm performs the gener-
alization differently: nominal values are directly removed trom the
DIs (we keep these nominal values and extend the intervals of the
numerical values only). A weakness of FLORA's simple removal
strategy is the easy over-generalization of concepts, which leads to
inferior classification performance.
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Notations:
ADES summary of all ADES-Sets
PDES summary of all PDES-Sets
NDES summary of all NDES-Sets

I new training instance

AP num. of I supporting AD/;

PP;, PN; num. of I supporting PD]I,

NN; num. of J supporting NDT;
Algorithm:

function learn(7, ADES;, PDES;, NDES)
MATCH := false

fori:=1to|[ADES;| do
if match(J, A DI;) then
AP;:= AP+ |
MATCH = true

if not MATCH then
G := generalize(I, ADES;, NDES))

if not MATCH and not G then
include(/, AP, =1, ADES))

fori:=1to[PDES;| do
if match(J, PDI;) then
PP;:= PP; + 1

fori:=1to|NDES, do
if match(7, NDT;) then
delete(NDI;, NDES))
include(NDI;, PN; = NN;, PP; =1, PDES))
Figure 5 FLORA-MC function: /earn()

To avoid over-generalization, the NDES-Set j has to be
jointly processed. (4) Only if an existing DI cannot be
generalized, a novel DI in ADES;is created. The supporting
counter is initialized to AP, = 1. (5) A check is performed
if the instance matches a DI in the PDES-Set. If yes, the
supporting counter is incremented similar to step (2) for
the ADES; (6) As a last step, the algorithm checks if the
instance is equal to an existing DI of NDES-Set j If yes, the
DI is moved into PDES-Set j with PN; = NN; and PP; = 1.

It is important to note that the function learn() is also
applied on all NDES-Sets except NDES-Set jper instance.
The modified pseudo-code has to exchange the NDES and
ADES-Sets as well as the corresponding DIs. Additionally,
counter PPF; is replaced by PN,.

Please note the special role of the PDES-Set. In PDES,
DIs are not included or generalized directly, but only if they
are moved from ADES or NDES. E.g., if a DI has been

created in ADES-Set m, and a novel instance for category
m <+ 1 matches this DI, then it is moved to the PDES-Set,
because the DI now supports an instance not only for m, but
also for an instance other than m. Within the PDES-Set the
item has a supporting counter ( PP;) for category m as well
as a counter (PN;) for categories other than m. Using the
function forget(), the DI can be moved back to the ADES or
NDES set.

Function forget() (see Fig. 6) is called to remove DIs
from the descriptor sets, the call being forget(l, ADES;,
PDES;, NDES). (1) The supporting counter AP; is decre-
mented. If the DI is no longer supported by any training
sample in the window (4P; = 0), the DI is removed from
the ADES-Set. (2) The counter for PDES-Set j is also
decremented. However, as soon as zero is reached, the
DI is moved back into the NDES-Set j i.e, the DI in
question is only further supported from instances other than
category J

Again, the function forget() is also executed on the
NDES-Sets, the changes in the pseudo-code are similar to
the ones for function learn().

To support numerical attribute values in training in-
stances, our FLORA extension introduces the concept of
(numerical) intervals. Matching of numerical input values is
performed constantly (i.e. for each new instance feeding the
learning process). A key problem of supporting numerical
values instead of nominal values is to determine up to
which distance a new element is considered to match an
existing value or fall into an existing interval. FLORA-MC
checks for each set, if the intervals/values match or can be
joined (generalized) with an existing interval/value. Joining
an interval in ADES; requires both intervals plus/minus a
smoothing factor to overlap each other, while at the same
time not contradicting any other DI in the NDES-Set j We
introduce a smoothing factor to serve as a distance metric.

Algorithm:
function forget(I, ADES;, PDES;, NDES)
fori:=1to|]ADES)| do
if match(/, ADJ;) then
A P,' = A P,' -1
if AP; =0 then
delete(ADI;, ADES))

fori:= 1t |PDES; do
if match(/, PDI,) then
PP,' = PP, -1
if PP; = () then
delete(PDI;, PDES))
include(PDI;, NN; = PN;, NDES))
Figure 6 FLORA-MC function: forget(}
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The smoothing parameter smooth € {0, 1} is user defined
per numerical attribute. The generalization of the numerical
value x or of an interval is performed as follows:

(1) smoothing(smooth, n) = mi%f’s‘f—,’”—’, with n being a

constant representing the number of elements from
all training instances falling within the interval and
smooth being the threshold for the matching function.
The higher the occupation of the interval, the lower the
likelihood that distant values are part of this interval,
the smaller the smoothing factor.

(2 v as value for a training instance is said to
generalize a numerical value x within an DI
if and only if x — smoothing(smooth,n) < y < x +
smoothing(smooth, n). We are able to apply the same
rules for an interval, if we extend the upper and lower
bound of the interval by smoothing(smooth, n).

The aforementioned functions are applied to allow for the
multiple classification in FLORA-MC. In particular, the DIs
in the ADES-Set form the basis for classifications.

Based on the classification sets as well as the fundamen-
tal functions learn() and forget(), we are able to easily re-
alize a multiple classification capability. Each classification
instance entering the system is compared with all DIs in all
ADES-Sets only, which can in fact lead to multiple hits.

In contrast to the FLORA-1-4, a classification might
fail due to the numerical nature of the input values in
FLORA-MC. The original algorithm family would classify
an instance non-matching to any DI as false, which is not
feasible in FLORA-MC. Here, a minimal-distance-based
approach is chosen to obtain the DI, which is closest to
the sample. The function for the distance is determined as
follows. (1) If a nominal value of an instance is not equal
to the corresponding nominal value of a DI, the distance is
incremented by one. (2) If a numerical value of an instance
is not equal to the corresponding numerical value of a
DI, the normalized distance between both numerical values
is added to the distance. If the DI contains a numerical
interval for an attribute, FLORA-MC computes the distance
between the numerical value of the classification instance
and the upper or lower boundary of the interval.

3.3 Window management

The number of training instances that are used to build up
the target concept is managed via FLORA-MC’s window
size, which thus acts as the main control parameter of
the algorithm. The appropriate choice and adaptation of
the window size is paramount to guarantee a high quality
of the classifications, while remaining sensible to concept
drift. If the window is chosen too small, the entire learning
process is characterized by uncertainty, which results in
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an excessive amount of mis-classifications. In contrast, an
oversized window decreases the algorithm performance and
leads to a much slower convergence in presence of concept
drift.

FLORA-MC could perform optimally, if the window
size is reduced as soon as a concept drift occurs, thus
allowing for a fast learning process for the novel concept
space. We propose a window adjustment heuristic (WAH),
to first detect concept drift and second adjust the window
size accordingly (see Fig. 7). Since our algorithm is only
exposed to partial real-world context information (in form
of training instances), however, this detection of concept
drift is challenging. This is particularly true due to the
complexity of detection the concept drift for numerical
instead of nominal input values. We embed our WAH into
the learning process and make use of the characteristic
operational parameters of the leamer (accuracy Acc and
Shannon-entropy S of the classifications). The behavior of
the WAH is as follows.

— The Shannon-entropy is a measure of the uncertainty
associated with a random information and can be used
to act as a switch to avoid mis-detections of con-
cept drift. Uncertain learning situations such as during
the initialization of the system are suspected for S >
Sthreshotd- Here the main goal is to stabilize prediction
performance, but not to (mistakenly) assume concept
drift. We propose to increment the window by one

Notation:

|W]| window size

S Shannon-entropy (using previous classifi-
cations)

Acc current accuracy (using previous classifi-
cations)

Accpe  previous accuracy

Oace,., Standard deviation of Accpy,

User-defined parameters:
accuracy threshold
Shannon-entropy threshold

A CCthreshold
Sthre.\‘hnl d

Algorithm:

if (8> Sthreshold)
(W] =1W|+1

else if (Acc < AcCireshard) and (Acc < (ACCpre—0 ace,,,))
(W] = 0.8 % | W]

else if (Acc < AcCureshord)

W] = W]+ 1
else
W[ =|W|

Figure 7 Window Adjustment Heuristic (WAH)
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instance allowing FLORA-MC to acquire an additional
sample, thus improving the prediction quality (if we
assume stable concepts) and mitigating the uncertain
learning situation.

A concept drift can be suspected, if the accuracy is
momentarily falling below a defined threshold (A4cec <
Accyreshold) While, at the same time, being smaller than
the previous accuracy minus its standard deviation
(Ace < (Accpre — O pecy,))- The window size should be
significantly reduced, e.g., by 20%. The resulting re-
duction in 20% of active training samples results in a
preference towards novel concepts, thus increasing the
convergence speed of the algorithm.

A slowly decreasing classification accuracy (dcc <
Accureshold) should be countered by incrementing the
window size. The increase in number of samples allows
the learner to increase its accuracy again.

If none of the above applies, the learning behavior is
considered to be fine, thus, no additional samples are
necessary and the window size is kept constant. Also,
for each arriving sample, old samples are discarded in a
FIFO manner.

A couple of key differences exist between our win-
dow management heuristics and the mechanisms present in
the original FLORA-2 model. First, we use the Shannon-
entropy to yield more stable results directly after a context
switch has been detected, while original FLORA does not
so, which might lead to constantly fluctuating window sizes
in such situations. Second, FLORA-MC keeps the windows
size constant if the context is detected as stable; FLORA-
2 here decrements the window size by one, which caused
problems for the classification of numerical values in our
experiments. Also, the WAH of FLORA-2 makes use of the
ADES-Set, which is not possible for numerical values and
the multi-classification case. Additionally, FLORA-2 uses
a decrease in Acc to detect concept drifts. Using numerical
values, however, Acc is constantly changing, which would
unnecessarily trigger the FLORA-2 mechanism. FLORA-
MC, in contrast, includes the standard deviation of the
recent Acc values for the detection of concept drifts. In
summary, we added various supplemental mechanisms to
the original WAH heuristics of FLORA-2 to avoid mis-
classifications in presence of numerical values and multi-
classifications.

3.4 Implementation

We implemented FLORA-MC as a WEKA module, which
is available to the community as open-source (see [18]).
Implementation details can be found in [19].

4 Evaluation

This section comprises the description of the evaluation of
FLORA-MC. We first introduce the goals of our study and
specify the features of the system under test. Subsequently,
the parameters of interest are introduced and the experimen-
tal design is devised. By means of a comparative analysis,
we study the performance and accuracy of FLORA-MC vs.
state-of-the-art offline learning algorithms including Naive
Bayes (NB), decision tree (DT), artificial neural network
(NN) and support vector machine (SVM). For the latter
four learners, we include implementations with and without
a meta-window adjustment heuristic {meta-WAH), to be
able to evaluate the handling of concept drift appropriately.
We chose the well-known STAGGER-concept to generate
the workload for our simulation study; to be able to mea-
sure the extended features of FLORA-MC, we extend the
STAGGER-concept correspondingly. Finally, we present
the obtained results and analyse and interpret the findings.

4.1 Goals and methodology

Our goal is to study the performance and accuracy of
FLORA-MC, i.e., the model-building time, the precision of
the model predictions, and the reaction time to concept drift.
We compare FLORA-MC with a representative set of offline
learners.

— Naive Bayes (NB), which is a simple, yet highly effi-
cient incremental probabilistic leamer.

— Decision tree (DT), which represents the class of
hierarchical-tree algorithms. We use a binary tree with
NB-classifier.

— Artificial neural network (NN), which is an algorithm
modelling the learning process of the human brain.

—  Support vector machine (SVM), which detects pat-
terns by mapping the input vectors into a high di-
mensional space and constructing maximal separating
hyperplanes.

Obviously the above offline learners are not able to
natively handle concept drift. To level the playing ground
and allow for a fair comparison with our incremental online
learner FLORA-MC, we augment the offline learners with a
window heuristic (meta-WAH) similar to our WAH to detect
concept drift. The interpretation of the results discusses the
implications and efficacy of this approach.

We build on the STAGGER-methodology introduced
by Schlimmer and Granger [20] for the evaluation of the
algorithms, because it is commonly used to relate the pertfor-
mance between online and offline learners in literature (sce
e.g. [21]). Originally, the STAGGER-concept uses a simple
domain of three nominal attributes, which are defined as
follows.
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— object size € {(s)mall, (m)edium, ()arge},
— object color € {(g)reen, (b)lue, (r)ed}, and
—  object shape € {(tr)iangular, (ci)rcular, (sq)uare).

The learning cycle consist of three distinct phases in the
following order [3].

—~  Concept 1:

size = small A color = red := positive
—  Concept 2:

color = green V shape = circular := positive
-~ Concept 3:

size = (medium Vv large) := positive

We modify the STAGGER-concept to suit our case. We
keep the object size and color, but replace the object shape
with two numerical attributes: diameter and temperature.
We retain the three concepts (or phases), however, now
representing a multi-variate learning scenario instead of
a binary one, the class values being {nice, fair, lad). The
learning phases are defined as follows.

—  Concept/phase 1:
size = s A color = r Ndia. = [0; 2] A temp.
= [25; 45] := nice
size = m A color = g A dia. = [2; 3] A temp.
= [0; 25] := fair
size = [ A color = b Adia. = ([0; 2] v [3; 5]
A temp. = [0; 45] := bad

— Concept/phase 2:
size = m A color = G A dia. = [2; 3} A temp.
= [0; 25] := nice
size = | A color = BAdia. = ([0; 2] v [3; 5]
A temp. = [0; 45] := fair
size = 5 A color = R A dia. = [0; 2] A temp.
= [25: 45) := bad

—  Concept/phase 3:
size = m A color = G A dia. = [2; 3] A temp.
= [0; 25] := nice
size = [ A color = BA dia. = ([0; 2] v [3; 5]
A temp. = [0; 45] 1= fair
size = (s v m) Acolor = (g Vr) Adia.
= [2; 3] A temp. = [25; 45] := bad

Figure 8 visualizes our modified STAGGER-
methodology. The boxes filled in grey indicate the
class-value for the concept nice, vertical lines indicate the
valuc fair, and horizontal lines the value hud. It is obvious
that the transition from phase 1 to phase 2 changes all
concepts (concept drift in 3/3 concepts). The transition
between phase 2 and 3 only varies the concept for fud. Thus,
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the modified STAGGER-concept allows the evaluation of
the learners for strong and weak concept drift.

4.2 Experimental design and workload

We perform ten replications per simulation. The ten training
sets are randomly created using the modified STAGGER-
concept; however, to be able to compare the results, we
re-use the same ten random STAGGER data sets for all
algorithms. Each simulation run consists of the training
of each individual training-instance (denoted as I, /¢
{1...150}), i.e., we perform 150 trainings per run, and
subsequently 100 test-classifications per training to obtain
the classification accuracy. The runtime results have been
obtained using WEKA 3.4.7 [4] on a Pentium IV, 3.0 GHz
PC with 1GByte main memory.

Our FLORA-MC algorithm can be tuned to fit specific
scenarios. The influence of parameters such as window size,
the limits of the Shannon-entropy to detect concept drift
using our WAH, and the reduction rate of the window size
if a concept drift is detected has been evaluated; please
refer to [19] for an extensive set of experimental results
covering all the individual building blocks of the FLORA-
MC system. For the remainder of the experiments, we
have chosen conservative settings to act as a baseline for
FLORA-MC. The limit of the Shannon-entropy is set to
0.7, Acc = 0.7, the windows size is reduced by 20%, if
WAH detects a concept drift. A second, more aggressive
parameterization, reduces the windows size by 100%, i.e.,
discards all training samples if a concept drift is detected.
If WAH does not work properly, the latter parameterization
might lead to unstable classifications, because entire (valid)
concepts might be dropped; however, this behavior has not
been observed during the performed experiments. Further
optimization of these parameters is possible and has been
extensively discussed in [19] for the employed training set.

4.3 Results—comparative performance analysis

The obtained results for the classification accuracy of the
tested algorithms are shown in Fig. 9. In particular, we
analyse the performance of FLORA-MC vs. the plain offline
learners and vs. offline learners that are extended with our
meta-WAH (20% window reduction). Table 1 shows the
corresponding results for the runtime-characteristics of the
algorithms for model building and classification. We also
study the performance of FLORA-MC vs. offline learners,
if both use a more aggressive WAH/meta-WAH, which dis-
cards 100% of training samples as soon as a concept drift is
detected (see Fig. 10 and Table 2). While the latter approach
allows for a much faster convergence of the algorithms, it
presents the danger of mis-detections of concept drifts; thus,
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Figure 8 Visualization of the three phases of the modified STAGGER-concept, which serves as the workload for our performance evaluation

the implications of the aggressive WAH/meta-WAH have to
be carefully considered, depending on the application.

All presented results represent the average values over
ten replications per simulation. For the ease of following the
discussion, we highlight the relative runtime-performance
of the algorithms in Tables | and 2 using arrows: | indi-
cates that FLORA-MC performs worse compared with the
respective offline learner, while 1 denotes that FLORA-MC
outperforms the candidate offline algorithm. Please note
that some of the results for the algorithm-runtime show
up to an order of three magnitudes difference between
the algorithms; this behavior is obvious though, since we
compare our online learner (FLORA-MC) that incremen-
tally adjusts its model with offline learners (NB, DT, NN,
SVM) that have to fully rebuild the model 150 times during
our test.

4.3.1 FLORA-MC vs. Naive Bayes (NB)

Figures 9a and 10a clearly show that our FLORA-MC
approach outperforms NB with respect to classification
accuracy for all three phases of the modified STAGGER-
concept. During the first phase (/ = 1...50) FLORA-MC

quickly adapts to the concepts, because all sets (ADES,
PDES, NDES) are initially empty. For the second phase
(I=51...100) all concepts are exchanged, thus modeling
an abrupt concept drift. FLORA-MC’s behavior—as shown
in Fig. 9a—is characterized by a slightly damped learning
process; WAH detects the concept drift and reduces the
window size, however, still the outdated concepts need to
be vacated.

If we compare the results from Figs. 9a and 10a, it is
clearly visible that a moderate reduction of the window
(i.e. of 20%, see Fig. 9a) leads to a slow adaptation, whilc
the increase in learning accuracy is much steeper for the
aggressive WAH (reduction of 100%, see Fig. 10a). The
drift of one concept during the transition into the third phase
(I=101...150) does not trigger our WAH, nevertheless
FLORA-MC shows an excellent performance: the learner
moves the vacated concept from an ADES set to a PDES set
and creates a novel ADES set describing the new concept
and is, thus, able to follow the concept drift swiftly.

Compared with NB, FLORA-MC is characterized by
faster convergence times as well as overall higher accu-
racy of the classification. Especially the ability of FLORA-
MC to construct a working set with very few samples
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Figure 9 Classification accuracy of FLORA-MC vs. offline learning algorithms NB, DT, NN, and SVM

outperforms NB, which needs a larger number of samples
due to its conditional-probability-based nature. NB without
meta-WAH struggles to handle the concept drifts of phase
2 appropriately, since the classifier still uses all (now out-
dated) samples. Only at around / = 100, NB again reaches
an accuracy of 50%, because the set of samples for both
concepts is equal. The same behavior can be observed
during phase 3. Our proposed meta-WAH significantly im-
proves NB for all tests. The window reduction of 20% (see
Fig. 9a, /= 51...100) is not able to remove enough con-
flicting samples and results in a slower adaptation to the
novel concepts compared with FLORA-MC. The results in
phase 3 are closer to FLORA-MC, because the moderate
change of only one concept can be covered by NB’s strategy
much faster. Table 1 and Table 2 show that NB has excellent
runtime-behavior, though. Due to the simple incremental
probabilistic nature, the model-building times are very short
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and faster if compared with FLORA-MC; the classification
times are excellent as expected for the simple NB learner.

4.3.2 FLORA-MC vs. Decision Tree (DT)

The original DT algorithm {(which bases on NB to determine
its branching dccision) shows very fast convergence for
phase 1 (/= 1...50). In contrast to NB, the construction
of the decision tree allows for immediate classifications
of high certainty. For phase 2 and 3, pure DT reaches
only mediocre classification accuracy as shown in Fig. 9b,
because it still relies on the tree constructed during phase 1,
thus mirroring the shortcoming of NB. In combination with
our meta-WAH, the accuracy improves significantly and is
roughly on par with FLORA-MC (see Fig. 9b and 10b)
due to the construction of an entirely novel tree-structure.
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Table 1 Results for runtime of model-building process and classification process (standard algorithms)
Parameter FLORA-MC  Naive Bayes (NB) Decision tree (DT) Neural network (NN) Support vector
machine (SVM)

Time [ms] Time [ms] $ Time [ms] 3 Time [ms] t Time [ms] 3
Avg. model building 1.048 0.251 4171 3564 0.034 304 0.003 ¢ 721 0.001 1
Min. mode! building ~ 0.513 0.083 6.18 | 13.25 0.04 4+ 251 0.002 ¢+ 694 0.001 ¢
Max. model building  1.666 0.940 1.77 )  62.20 0.031 365 0.004 4+ 744 0.002 t
Avg, classification 0.085 0.013 6.53 ) 0.009 9.44 | 0.008 10.63 | 0.006 1417 )
Min. classification 0.068 0.009 755 0.003 22,70 § 0.005 13.60 | 0.004 17.00 )
Max. classification 0.101 0.023 439 ] 0.021 4.81 | 0.011 9.18 ) 0.011 9.18 |

We denote the relative gain/penalty both as factor and visually using arrows: | indicates that FLORA-MC performs worse compared with the
respective learner, while 1 denotes that FLORA-MC outperforms the respective algorithm

While DT is able to converge even faster than FLORA-MC
for the second phase (/ = 51...100) with standard window
settings, it is more susceptible to mis-classifications for the
aggressive meta-WAH setting (see Fig. 10b).
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The runtime-behavior for the model-building process is
inferior to the performance of FLORA-MC as shown in
Tables 1 and 2; in contrast, the classification process is
handled better by DT. The edge in performance of FLORA-
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Table 2 Results for runtime of model-building process and classification process (aggressive WAH/meta-WAH)

Parameter FLORA-MC Naive Bayes (NB) Decision tree (DT) Neural network (NN) Support vector
machine (SVM)
Time [ms] Time [ms] t Time [ms] t Time [ms] + Time [ms] +
Avg. model building  0.894 0.126 7.10 ) 11.55 0.07 ¢+ 158 0.006 + 664 0.001 1
Min. model building  0.520 0.010 520 4.99 0.10 1 18 0.004 + 639 0.001 ¢
Max. model building  1.360 0.520 226) 2509 0.05 1 361 0.004 + 695 0.002 1
Avg. classification 0.067 0.012 558 4 0.011 6.09 | 0.009 7.444 | 0.004 16.75 |
Min, classification 0.056 0.009 6.22 ) 0.005 11.20 | 0.006 9.333 ) 0.001 56.00 |
Max. classification 0.075 0.018 416 | 0.017 441 | 0.014 5357 1 0.010 7.50 |

We denote the relative gain/penalty both as factor and visually using arrows: | indicates that FLORA-MC performs worse compared with the
respective learner, while 4 denotes that FLORA-MC outperforms the respective algorithm

MC for the expensive model-building process can be con-
sidered the most important distinguishing factor between
FLORA-MC and DT; thus, the choice betwecn both algo-
rithms should be based on the corresponding application
requirements.

4.3.3 FLORA-MC vs. Neural Network (NN)

Figure 9c shows the classification accuracy of NN: com-
pared with FLORA-MC, again, the original leamer is in-
ferior, while the meta-WAH brings NN nearly on par with
FLORA-MC. This behavior meets our expectations, be-
cause NN is subject to the same limitations as NB and
DT. For the aggressive meta-WAH, the quality of classifi-
cations of FLORA-MC and NN is equally good as shown
in Fig. 10c. The classification runtime-behavior of NN is
moderately better compared with FLORA-MC. However,
the model-building process is slower in the order of 2-
3 magnitudes for NN vs. FLORA-MC (see Table 1 and
Table 2). Especially the latter fact makes NN a sub-optimal
choice for ambient computing applications.

4.3.4 FLORA-MC vs. Support Vector Machines (SVM)

For static concepts SVM offers an excellent classification
accuracy as shown in Fig. 9d for /= 1...50. However, the
original SVM algorithm shows the worst classification per-
formance of all offline learners for abrupt change in multiple
concepts (see / = 51...100 in Fig. 9d), which is due to the
construction of the hyperplanes that requires at least 50%
of the samples from the new concepts; starting from / = 75
this requirement is met and the accuracy starts to improve.
The standard meta-WAH is able to very much improve
the performance of the SVM, becausc the sample set is
reduced and the SVM can construct maximal hyperplanes
much earlier. E.g., the switch from the first to the second
phase (abrupt change in all concepts that trigger the meta-
WAH) is handled superior compared with all other learners.
However, the switch from phase 2 to 3 (abrupt change in
one of three concepts, meta-WAH is not triggered) is not
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handled that well. Like DT, SVM is also susceptible to the
more aggressive meta-WAH (see Fig. 10d), showing worse
classification accuracy compared with FLORA-MC.

For SVM we observe the highest difference in runtime-
behavior between classification and model building. The
model-building process is up to three orders of magnitude
slower compared with FLORA-MC, but the classification
time is extremely fast, outperforming all other learners.
Like NN, the performance penalty of SVM excludes this
algorithm for tasks that demand fast mode! building. Addi-
tionally, the inconsistency in the prediction quality of SVM
can be considered as a drawback of this algorithm.

4.4 Summary

The obtained results are very promising, especially if we
keep the intended application scenario in mind. Compared
with the tested offline learners, FLORA-MC is able to
reduce execution time for the model-building process in
average by factors around 13-34 (DT), 175-290 (NN), 690—
740 (SVM); NB outperforms FLORA-MC by a factor of
4-7, though. In contrast the classification time of FLORA-
MC shows a 5-17-fold increase compared with the offline
learners.

From the presented results, we can argue that our al-
gorithm FLORA-MC is well suited for applications in
ambient computing. The model-building process that is
commonly considered time-critical is reduced significantly
(except compared with NB), while the increase in classi-
fication time can be tolerated, because it is still very low
(in average below 0.1ms per classification with FLORA-
MC). The quality of the predictions can be judged as very
good for FLORA-MC. Without meta-WAH, none of the
offline learners is able to compete with the accuracy of
FLORA-MC’s classifications, given the workload includes
concept drift. This is due to the functioning of FLORA-
MC, which is able to adjust its ADES or NDES sets as
soon as one conflicting sample is recognized. Extending the
offline learners with our meta-WAH brings the accuracy of
classification of DT, NN, and SVM on par with FLORA-
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MC; NB with meta-WAH still falls significantly behind
FLORA-MC showing the worst accuracy of all algorithms,
thus rendering the excellent runtime-performance pointless.
In conclusion FLORA-MC presents a highly efficient and
accurate machine learning algorithm that has been tailored
to fit the requirements of ambient computing.

5 Conclusion

The challenging requirements of reasoning mechanisms
for ambient computing include ease-of-use, self-learning
abilities, and very high prediction accuracy, while the em-
ployed techniques need to be able to operate in realtime.
To fulfil these requirements, we propose to rely on machine
learning algorithms to evaluate and determine the context of
users, devices, and objects. We presented the FLORA-MC
approach, which is one of the first approaches to introduce
realtime model-building capabilities to aid the process of
context determination. Based on the online leaming ap-
proach FLORA, we augmented the crucial features for
the intended application area: (1) multiple classification
capabilities and (2) support for numerical input values. At
the same time, our window adjustment heuristic allows
for superior handling of concept drift. We gave a detailed
description of the design, implementation, and working of
FLORA-MC. Based on our proof-of-concept implementa-
tion [19], we validated the functioning of our algorithm
and performed an extensive simulation study using repre-
sentative artificial workload. Our results are very promising
with respect to the performance as well as accuracy of our
algorithm. FLORA-MC is able to outperform traditional
offline learner by orders of magnitude with respect to model
building time, which we consider crucial given the pos-
sibly very high number of samples to be instantaneously
processed in truly ambient computing. At the same time, our
scheme is able to follow concept drift with only minimal
reaction time while maintaining an excellent quality of
prediction, which is on par or better compared with state-
of-the-art offline learners. We consider FLORA-MC to open
up various avenues of research. In current work, we are
collecting input data in real world scenarios to be able
to assess the performance of FLORA-MC under realistic
settings; promising next steps are to fine-tune our algorithm
to reach optimal performance in such realistic scenarios.
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Abstract Ambient systems weave computing and
communication aspects into everyday life. To provide
self-adaptive services, it is necessary to acquire context
information using sensors and to leverage the collected
information for reasoning and classification of situations. To
enable seif-learning systems, we propose to depart from static
rule-based decisions and first-order logic to define situations
from basic context, but to build on machine-learning
techniques. However, existing learning algorithms show
substantial weaknesses if applied in highly dynamic
environments, where we expect accurate decisions in realtime
while the user is in-the-loop to give feedback to the system’s
recommendations. To address ambient and pervasive computing
environments, we propose the FLORA—multiple classification
(FLORA-MC) online learning algorithm. In particular, we
enhance the FLORA algorithm to allow for (1) multiple
classification and (2) numerical input values, while improving its
concept drift handling capabilities; thus, making it an excellent
choice for use in the area of ambient computing. The multiple
classification allows context-aware systems to differentiate
between multiple categories instead of taking binary decisions.
Support for numerical input values enables the processing of
arbitrary sensor inputs beyond nominal data. To provide the
capability of concept drift handling, we propose the use of an
advanced window adjustment heuristic, which allows FLORA-MC
to continuously adapt to the user’s behavior, even if her/his
preferences change abruptly over time. In combination with the
inherent characteristics of online learning algorithms, our
scheme is very well suited for realtime application in the area of
ambient and pervasive computing. We describe the design and
implementation of FLORA-MC and evaluate its performance vs.
state-of-the-art learning algorithms. We are able to show the
superior performance of our algorithm with respect to reaction
time and concept drift handling, while maintaining an excellent
accuracy. Our implementation is available to the research
community as a WEKA module.

Keywords ambient computing - pervasive
computing - context-aware computing - machine learning
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